» » Зарождение химии как науки. Основные этапы развития химических знаний. Становление современной химии

Зарождение химии как науки. Основные этапы развития химических знаний. Становление современной химии

Химия древности.

Химия, наука о составе веществ и их превращениях, начинается с открытия человеком способности огня изменять природные материалы. По-видимому, люди умели выплавлять медь и бронзу, обжигать глиняные изделия, получать стекло еще за 4000 лет до н.э. К 7 в. до н.э. Египет и Месопотамия стали центрами производства красителей; там же получали в чистом виде золото, серебро и другие металлы. Примерно с 1500 до 350 до н.э. для производства красителей использовали перегонку, а металлы выплавляли из руд, смешивая их с древесным углем и продувая через горящую смесь воздух. Самим процедурам превращения природных материалов придавали мистический смысл.

Греческая натурфилософия.

Эти мифологические идеи проникли в Грецию через Фалеса Милетского , который возводил все многообразие явлений и вещей к единой первостихии – воде. Однако греческих философов интересовали не способы получения веществ и их практическое использование, а главным образом суть происходящих в мире процессов. Так, древнегреческий философ Анаксимен утверждал, что первооснова Вселенной – воздух: при разрежении воздух превращается в огонь, а по мере сгущения становится водой, затем землей и, наконец, камнем. Гераклит Эфесский пытался объяснить явления природы, постулируя в качестве первоэлемента огонь.

Четыре первоэлемента.

Эти представления были объединены в натурфилософии Эмпедокла из Агригента – создателя теории четырех начал мироздания. В различных вариантах его теория властвовала над умами людей более двух тысячелетий. Согласно Эмпедоклу, все материальные объекты образуются при соединении вечных и неизменных элементов-стихий – воды, воздуха, земли и огня – под действием космических сил любви (притяжения) и ненависти (отталкивания). Теорию элементов Эмпедокла приняли и развили сначала Платон , уточнивший, что нематериальные силы добра и зла могут превращать эти элементы один в другой, а затем Аристотель .

Согласно Аристотелю, элементы-стихии – это не материальные субстанции, а носители определенных качеств – тепла, холода, сухости и влажности. Этот взгляд трансформировался в идею четырех «соков» Галена и господствовал в науке вплоть до 17 в. Другим важным вопросом, занимавшим греческих натурфилософов, был вопрос о делимости материи. Родоначальниками концепции, получившей впоследствии название «атомистической», были Левкипп , его ученик Демокрит и Эпикур . Согласно их учению, существуют только пустота и атомы – неделимые материальные элементы, вечные, неразрушимые, непроницаемые, различающиеся формой, положением в пустоте и величиной; из их «вихря» образуются все тела. Атомистическая теория оставалась непопулярной в течение двух тысячелетий после Демокрита, но не исчезла полностью. Одним из ее приверженцев стал древнегреческий поэт Тит Лукреций Кар , изложивший взгляды Демокрита и Эпикура в поэме О природе вещей (De Rerum Natura ).

Алхимия.

Алхимия – искусство совершенствования вещества через превращение металлов в золото и совершенствования человека путем создания эликсира жизни. Стремясь к достижению самой привлекательной для них цели – созданию неисчислимых богатств, – алхимики разрешили многие практические задачи, открыли множество новых процессов, наблюдали разнообразные реакции, способствуя становлению новой науки – химии.

Эллинистический период.

Колыбелью алхимии был Египет. Египтяне блестяще владели прикладной химией, которая, однако, не была выделена в самостоятельную область знания, а входила в «священное тайное искусство» жрецов. Как отдельная область знания алхимия появилась на рубеже 2 и 3 в. н.э. После смерти Александра Македонского его империя распалась, но влияние греков распространялось на обширные территории Ближнего и Среднего Востока. Особенно бурного расцвета алхимия достигла в 100–300 н.э. в Александрии.

Примерно в 300 н.э. египтянин Зосима написал энциклопедию – 28 книг, охватывавших все знания по алхимии за предыдущие 5–6 вв., в частности сведения о взаимопревращениях (трансмутациях) веществ.

Алхимия в арабском мире.

Завоевав Египет в 7 в., арабы усвоили греко-восточную культуру, сохранявшуюся в течение веков александрийской школой. Подражая древним властителям, халифы начали покровительствовать наукам, и в 7–9 вв. появились первые химики.

Самым талантливым и прославленным арабским алхимиком был Джабир ибн Хайян (конец 8 в.), позднее ставший известным в Европе под именем Гебер. Джабир полагал, что сера и ртуть являются двумя противоположными началами, из которых образуются семь других металлов; труднее всего образуется золото: для этого нужно особое вещество, которое греки называли xerion – «сухой», а арабы изменили на al-iksir (так появилось слово «эликсир»). Эликсир должен был обладать и другими чудесными свойствами: излечивать от всех болезней и давать бессмертие. Другой арабский алхимик, ар-Рази (ок. 865–925) (в Европе известен под именем Разес) занимался также медициной. Так, он описал методику приготовления гипса и способа наложения повязки на место перелома. Однако самым знаменитым врачом был бухарец Ибн Сина , известный также под именем Авиценна. Его сочинения служили руководством для врачей в течение многих веков.

Алхимия в Западной Европе.

Научные воззрения арабов проникли в средневековую Европу в 12 в. через Северную Африку, Сицилию и Испанию. Работы арабских алхимиков были переведены на латынь, а затем и на другие европейские языки. Вначале алхимия в Европе опиралась на работы таких корифеев, как Джабир, но спустя три столетия вновь проявился интерес к учению Аристотеля, особенно в трудах немецкого философа и теолога-доминиканца, ставшего впоследствии епископом и профессором Парижского университета, Альберта Великого и его ученика Фомы Аквинского . Убежденный в совместимости греческой и арабской науки с христианской доктриной, Альберт Великий способствовал введению их в схоластические курсы обучения. В 1250 философия Аристотеля была введена в курс преподавания в Парижском университете. Алхимическими проблемами интересовался и английский философ и естествоиспытатель, монах-францисканец Роджер Бэкон , предвосхитивший многие позднейшие открытия; он изучал свойства селитры и многих других веществ, нашел способ изготовления черного пороха. Среди других европейских алхимиков следует упомянуть Арнальдо да Вилланова (1235–1313), Раймонда Луллия (1235–1313), Василия Валентина (немецкого монаха 15–16 вв.).

Достижения алхимии.

Развитие ремесел и торговли, возвышение городов в Западной Европе 12–13 вв. сопровождались развитием науки и появлением промышленности. Рецепты алхимиков использовались в таких технологических процессах, как обработка металлов. В эти годы начинаются систематические поиски способов получения и идентификации новых веществ. Появляются рецепты производства спирта и усовершенствования процесса его перегонки. Важнейшим достижением было открытие сильных кислот – серной, азотной. Теперь европейские химики смогли осуществить многие новые реакции и получить такие вещества, как соли азотной кислоты, купорос, квасцы, соли серной и соляной кислот. Услугами алхимиков, которые нередко были искусными врачами, пользовалась высшая знать. Считалось также, что алхимики владеют тайной трансмутации обычных металлов в золото.

К концу 14 в. интерес алхимиков к превращению одних веществ в другие уступил место интересу к производству меди, латуни, уксуса, оливкового масла и различных лекарств. В 15–16 вв. опыт алхимиков все чаще использовался в горном деле и медицине.

ЗАРОЖДЕНИЕ СОВРЕМЕННОЙ ХИМИИ

Конец средних веков отмечен постепенным отходом от оккультизма, спадом интереса к алхимии и распространением механистического взгляда на устройство природы.

Ятрохимия.

Совершенно иных взглядов на цели алхимии придерживался Парацельс (1493–1541). Под таким выбранным им самим именем («превосходящий Цельса») вошел в историю швейцарский врач Филипп фон Гогенгейм. Парацельс, как и Авиценна, считал, что основная задача алхимии – не поиски способов получения золота, а изготовление лекарственных средств. Он заимствовал из алхимической традиции учение о том, что существуют три основные части материи – ртуть, сера, соль, которым соответствуют свойства летучести, горючести и твердости. Эти три элемента составляют основу макрокосма (Вселенной) и связаны с микрокосмом (человеком), образованным духом, душой и телом. Переходя к определению причин болезней, Парацельс утверждал, что лихорадка и чума происходят от избытка в организме серы, при избытке ртути наступает паралич и т.д. Принцип, которого придерживались все ятрохимики, состоял в том, что медицина есть дело химии, и все зависит от способности врача выделять чистые начала из нечистых субстанций. В рамках этой схемы все функции организма сводились к химическим процессам, и задача алхимика заключалась в нахождении и приготовлении химических веществ для медицинских нужд.

Основными представителями ятрохимического направления были Ян Гельмонт (1577–1644), по профессии врач; Франциск Сильвий (1614–1672), пользовавшийся как медик большой славой и устранивший из ятрохимического учения «духовные» начала; Андреас Либавий (ок. 1550–1616), врач из Ротенбурга. Их исследования во многом способствовали формированию химии как самостоятельной науки.

Механистическая философия.

С уменьшением влияния ятрохимии натурфилософы вновь обратились к учениям древних о природе. На первый план в 17 в. вышли атомистические (корпускулярные) воззрения. Одним из виднейших ученых – авторов корпускулярной теории – был философ и математик Рене Декарт .Свои взгляды он изложил в 1637 в сочинении Рассуждение о методе . Декарт полагал, что все тела «состоят из многочисленных мелких частиц различной формы и размеров,... которые не настолько точно прилегают друг к другу, чтобы вокруг них не оставалось промежутков; эти промежутки не пустые, а наполнены... разреженной материей». Свои «маленькие частички» Декарт не считал атомами, т.е. неделимыми; он стоял на точке зрения бесконечной делимости материи и отрицал существование пустоты. Одним из виднейших противников Декарта был французский физик и философ Пьер Гассенди . Атомистика Гассенди была по существу пересказом учения Эпикура, однако, в отличие от последнего, Гассенди признавал сотворение атомов Богом; он считал, что Бог создал определенное число неделимых и непроницаемых атомов, из которых и состоят все тела; между атомами должна быть абсолютная пустота. В развитии химии 17 в. особая роль принадлежит ирландскому ученому Роберту Бойлю . Бойль не принимал утверждения древних философов, считавших, что элементы мироздания можно установить умозрительно; это и нашло отражение в названии его книги Химик-скептик . Будучи сторонником экспериментального подхода к определению химических элементов (который в конечном счете и был принят), он не знал о существовании реальных элементов, хотя один из них – фосфор – едва не открыл сам. Обычно Бойлю приписывают заслугу введения в химию термина «анализ». В своих опытах по качественному анализу он применял различные индикаторы, ввел понятие химического сродства. Основываясь на трудах Галилео Галилея Эванджелиста Торричелли , а также Отто Герике , демонстрировавшего в 1654 «магдебургские полушария», Бойль описал сконструированный им воздушный насос и опыты по определению упругости воздуха при помощи U-образной трубки. В результате этих опытов был сформулирован известный закон об обратной пропорциональности объема и давления воздуха. В 1668 Бойль стал деятельным членом только что организованного Лондонского королевского общества, а в 1680 был избран его президентом.

Техническая химия.

Научные успехи и открытия не могли не повлиять на техническую химию, элементы которой можно найти в 15–17 вв. В середине 15 в. была разработана технология воздуходувных горнов. Нужды военной промышленности стимулировали работы по усовершенствованию технологии производства пороха. В течение 16 в. удвоилось производство золота и в девять раз возросло производство серебра. Выходят фундаментальные труды по производству металлов и различных материалов, используемых в строительстве, при изготовлении стекла, крашении тканей, для сохранения пищевых продуктов, выделки кож. С расширением потребления спиртных напитков совершенствуются методы перегонки, конструируются новые перегонные аппараты. Появляются многочисленные производственные лаборатории, прежде всего металлургические. Среди химиков-технологов того времени можно упомянуть Ванноччо Бирингуччо (1480–1539), чей классический труд О пиротехнике был напечатан в Венеции в 1540 и содержал 10 книг, в которых речь шла о рудниках, испытании минералов, приготовлении металлов, перегонке, военном искусстве и фейерверках. Другой известный трактат, О горном деле и металлургии , был написан Георгом Агриколой (1494–1555). Следует упомянуть также об Иоганне Глаубере (1604–1670), голландском химике, создателе глауберовой соли.

ВОСЕМНАДЦАТЫЙ ВЕК

Химия как научная дисциплина.

С 1670 по 1800 химия получила официальный статус в учебных планах ведущих университетов наряду с натурфилософией и медициной. В 1675 появился учебник Николя Лемери (1645–1715) Курс химии , завоевавший огромную популярность, в свет вышло 13 его французских изданий, а кроме того, он был переведен на латинский и многие другие европейские языки. В 18 в. в Европе создаются научные химические общества и большое количество научных институтов; проводимые в них исследования тесно связаны с социальными и экономическими потребностями общества. Появляются химики-практики, занимающиеся изготовлением приборов и получением веществ для промышленности.

Теория флогистона.

В сочинениях химиков второй половины 17 в. большое внимание уделялось толкованиям процесса горения. По представлениям древних греков, все, что способно гореть, содержит в себе элемент огня, который высвобождается при соответствующих условиях. В 1669 немецкий химик Иоганн Иоахим Бехер попытался дать рационалистическое объяснение горючести. Он предположил, что твердые вещества состоят из трех видов «земли», и один из видов, названный им «жирной землей», принял за «принцип горючести».

Последователь Бехера немецкий химик и врач Георг Эрнст Шталь трансформировал концепцию «жирной земли» в обобщенную доктрину флогистона – «начала горючести». Согласно Шталю, флогистон – это некая субстанция, содержащаяся во всех горючих веществах и высвобождающаяся при горении. Шталь утверждал, что ржавление металлов подобно горению дерева. Металлы содержат флогистон, а ржавчина (окалина) уже не содержит флогистона. Это давало приемлемое объяснение и процессу превращения руд в металлы: руда, содержание флогистона в которой незначительно, нагревается на древесном угле, богатом флогистоном, и последний переходит в руду. Уголь же превращается в золу, а руда – в металл, богатый флогистоном. К 1780 теория флогистона была принята химиками почти повсеместно, хотя и не отвечала на очень важный вопрос: почему железо при ржавлении становится тяжелее, хотя флогистон из него улетучивается? Химикам 18 в. это противоречие не казалось столь важным; главное, по их мнению, было объяснить причины изменения внешнего вида веществ.

В 18 в. работало много химиков, чья научная деятельность не укладывается в обычные схемы рассмотрения этапов и направлений развития науки, и среди них особое место принадлежит русскому ученому-энциклопедисту, поэту, поборнику просвещения Михаилу Васильевичу Ломоносову (1711–1765). Своими открытиями Ломоносов обогатил почти все области знания, и многие его идеи более чем на сто лет опередили науку того времени. В 1756 Ломоносов провел знаменитые опыты по обжиганию металлов в закрытом сосуде, которые дали неоспоримое доказательство сохранения вещества при химических реакциях и роли воздуха в процессах горения: наблюдаемое увеличение веса при обжигании металлов еще до Лавуазье он объяснял соединением их с воздухом. В противоположность господствовавшим представлениям о теплороде он утверждал, что тепловые явления обусловлены механическим движением материальных частиц. Упругость газов он объяснял движением частиц. Ломоносов разграничивал понятия «корпускула» (молекула) и «элемент» (атом), что получило всеобщее признание лишь в середине 19 в. Ломоносов сформулировал принцип сохранения материи и движения, исключил флогистон из числа химических агентов, заложил основы физической химии, создал при Петербургской АН в 1748 химическую лабораторию, в которой проводились не только научные работы, но и практические занятия студентов. Обширные исследования проводил он в смежных с химией областях знания – физике, геологии и др.

Пневматическая химия.

Недостатки теории флогистона наиболее ясно выявились в период развития т.н. пневматической химии. Крупнейшим представителем этого направления был Р.Бойль: он не только открыл газовый закон, носящий теперь его имя, но и сконструировал аппараты для собирания воздуха. Химики получили важнейшее средство для выделения, идентификации и изучения различных «воздухов». Важным шагом было изобретение английским химиком Стивеном Хейлзом (1677–1761) «пневматической ванны» в начале 18 в. – прибора для улавливания газов, выделяющихся при нагревании вещества, в сосуд с водой, опущенный вверх дном в ванну с водой. Позже Хейлз и Генри Кавендиш установили существование неких газов («воздухов»), отличающихся по своим свойствам от обычного воздуха. В 1766 Кавендиш систематически исследовал газ, образующийся при взаимодействии кислот с некоторыми металлами, позже названный водородом. Большой вклад в изучение газов внес шотландский химик Джозеф Блэк .Он занялся исследованием газов, выделяющихся при действии кислот на щелочи. Блэк установил, что минерал карбонат кальция при нагревании разлагается с выделением газа и образует известь (оксид кальция). Выделившийся газ (углекислый газ – Блэк назвал его «связанным воздухом») можно было вновь соединить с известью и получить карбонат кальция. Среди прочего, это открытие устанавливало неразрывность связей между твердыми и газообразными веществами.

Химическая революция.

Больших успехов в выделении газов и изучении их свойств достиг Джозеф Пристли – протестантский священник, увлеченно занимавшийся химией. Близ Лидса (Англия), где он служил, находился пивоваренный завод, откуда можно было получать в больших количествах «связанный воздух» (теперь мы знаем, что это был диоксид углерода) для проведения опытов. Пристли обнаружил, что газы могут растворяться в воде, и попытался собирать их не над водой, а над ртутью. Так он сумел собрать и изучить оксид азота, аммиак, хлороводород, диоксид серы (конечно, это их современные названия). В 1774 Пристли сделал самое важное свое открытие: он выделил газ, в котором вещества горели особенно ярко. Будучи сторонником теории флогистона, он назвал этот газ «дефлогистированным воздухом». Газ, открытый Пристли, казался антиподом «флогистированного воздуха» (азота), выделенного в 1772 английским химиком Даниэлом Резерфордом (1749–1819). В «флогистированном воздухе» мыши умирали, а в «дефлогистированном» были весьма активным. (Следует отметить, что свойства газа, выделенного Пристли, еще в 1771 описал шведский химик Карл Вильгельм Шееле , но его сообщение по небрежности издателя появилось в печати лишь в 1777.) Великий французский химик Антуан Лоран Лавуазье сразу же оценил значение открытия Пристли. В 1775 он подготовил статью, где утверждал, что воздух не простое вещество, а смесь двух газов, один из них – «дефлогистированный воздух» Пристли, который соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и является необходимым для жизни. Лавуазье назвал его oxygen , кислород, т.е. «порождающий кислоты». Второй удар по теории элементов-стихий был нанесен после того, как выяснилось, что вода – это тоже не простое вещество, а продукт соединения двух газов: кислорода и водорода. Все эти открытия и теории, покончив с таинственными «стихиями», повлекли за собой рационализацию химии. На первый план вышли только те вещества, которые можно взвесить или количество которых можно измерить каким-то иным способом. В течение 80-х годов 18 в. Лавуазье в сотрудничестве с другими французскими химиками – Антуаном Франсуа де Фуркруа (1755–1809), Гитоном де Морво (1737–1816) и Клодом Луи Бертолле – разработал логическую систему химической номенклатуры; в ней было описано более 30 простых веществ с указанием их свойств. Этот труд, Метод химической номенклатуры , был опубликован в 1787.

Переворот в теоретических взглядах химиков, который произошел в конце 18 в. в результате быстрого накопления экспериментального материала в условиях господства теории флогистона (хотя и независимо от нее), обычно называют «химической революцией».

ДЕВЯТНАДЦАТЫЙ ВЕК

Состав веществ и их классификация.

Успехи Лавуазье показали, что применение количественных методов может помочь в определении химического состава веществ и выяснении законов их объединения.

Атомная теория.

Рождение физической химии.

К концу 19 в. появились первые работы, в которых систематически изучались физические свойства различных веществ (температуры кипения и плавления, растворимость, молекулярный вес). Начало таким исследованиям положили Гей-Люссак и Вант-Гофф, показавшие, что растворимость солей зависит от температуры и давления. В 1867 норвежские химики Петер Вааге (1833–1900) и Като Максимилиан Гульдберг (1836–1902) сформулировали закон действующих масс, согласно которому скорость реакций зависит от концентраций реагентов. Использованный ими математический аппарат позволил найти очень важную величину, характеризующую любую химическую реакцию, – константу скорости.

Химическая термодинамика.

Тем временем химики обратились к центральному вопросу физической химии – о влиянии теплоты на химические реакции. К середине 19 в. физики Уильям Томсон (лорд Кельвин), Людвиг Больцман и Джеймс Максвелл выработали новые взгляды на природу теплоты. Отвергая калористическую теорию Лавуазье, они представляли теплоту как результат движения. Их идеи развил Рудольф Клаузиус . Он разработал кинетическую теорию, согласно которой такие величины, как объем, давление, температура, вязкость и скорость реакций, можно рассматривать исходя из представления о непрерывном движении молекул и их столкновениях. Одновременно с Томсоном (1850) Клазиус дал первую формулировку второго начала термодинамики, ввел понятия энтропии (1865), идеального газа, длины свободного пробега молекул.

Термодинамический подход к химическим реакциям применил в своих работах Август Фридрих Горстман (1842–1929), который на основе идей Клаузиуса попытался объяснить диссоциацию солей в растворе. В 1874–1878 американский химик Джозайя Уиллард Гиббс предпринял систематическое изучение термодинамики химических реакций. Он ввел понятие свободной энергии и химического потенциала, объяснив суть закона действующих масс, применил термодинамические принципы при изучении равновесия между различными фазами при разных температуре, давлении и концентрации (правило фаз). Работы Гиббса создали фундамент современной химической термодинамики. Шведский химик Сванте Август Аррениус создал теорию ионной диссоциации, объясняющую многие электрохимические явления, и ввел понятие энергии активации. Он также разработал электрохимический метод измерения молекулярной массы растворенных веществ.

Крупным ученым, благодаря которому физическая химия была признана самостоятельной областью знаний, был немецкий химик Вильгельм Оствальд , применивший концепции Гиббса при изучении катализа. В 1886 он написал первый учебник по физической химии, а в 1887 основал (вместе с Вант-Гоффом) журнал «Физическая химия» (Zeitschrift für physikalische Chemie).

ДВАДЦАТЫЙ ВЕК

Новая структурная теория.

С развитием физических теорий о строении атомов и молекул были переосмыслены такие старые понятия, как химическое сродство и трансмутация. Возникли новые представления о строении материи.

Модель атома.

В 1896 Антуан Анри Беккерель (1852–1908) открыл явление радиоактивности, обнаружив спонтанное испускание солями урана субатомных частиц, а спустя два года супруги Пьер Кюри и Мария Склодовская-Кюри выделили два радиоактивных элемента: полоний и радий. В последующие годы было установлено, что радиоактивные вещества испускают три вида излучения: a -частицы, b -частицы и g -лучи. Вместе с открытием Фредерика Содди , показавшим, что при радиоактивном распаде происходит превращение одних веществ в другие, все это придало новый смысл тому, что древние называли трансмутацией.

В 1897 Джозеф Джон Томсон открыл электрон, заряд которого с высокой точностью измерил в 1909 Роберт Милликен . В 1911 Эрнст Резерфорд , исходя из электронной концепции Томсона, предложил модель атома: в центре атома находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. В 1913 Нильс Бор , используя принципы квантовой механики, показал, что электроны могут находиться не на любых, а на строго определенных орбитах. Планетарная квантовая модель атома Резерфорда – Бора заставила ученых по-новому подойти к объяснению строения и свойств химических соединений. Немецкий физик Вальтер Коссель (1888–1956) предположил, что химические свойства атома определяются числом электронов на его внешней оболочке, а образование химических связей обусловливается в основном силами электростатического взаимодействия. Американские ученые Гилберт Ньютон Льюис и Ирвинг Ленгмюр сформулировали электронную теорию химической связи. В соответствии с этими представлениями молекулы неорганических солей стабилизируются электростатическими взаимодействиями между составляющими их ионами, которые образуются при переходе электронов от одного элемента к другому (ионная связь), а молекулы органических соединений – за счет обобществления электронов (ковалентная связь). Эти идеи лежат в основе современных представлений о химической связи.

Новые методы исследования.

Все новые представления о строении вещества могли формироваться только в результате развития в 20 в. экспериментальной техники и появления новых методов исследования. Открытие в 1895 Вильгельмом Конрадом Рентгеном Х-лучей послужило основой для создания впоследствии метода рентгеновской кристаллографии, позволяющей определять структуру молекул по картине дифракции рентгеновских лучей на кристаллах. С помощью этого метода была расшифрована структура сложных органических соединений – инсулина, дезоксирибонуклеиновой кислоты (ДНК), гемоглобина и др. С созданием атомной теории появились новые мощные спектроскопические методы, дающие информацию о строении атомов и молекул. Различные биологические процессы, а также механизм химических реакций исследуются с помощью радиоизотопных меток; широкое применение радиационные методы находят и в медицине.

Биохимия.

Эта научная дисциплина, занимающаяся изучением химических свойств биологических веществ, сначала была одним из разделов органической химии. В самостоятельную область она выделилась в последнее десятилетие 19 в. в результате исследований химических свойств веществ растительного и животного происхождения. Одним из первых биохимиков был немецкий ученый Эмиль Фишер . Он синтезировал такие вещества, как кофеин, фенобарбитал, глюкоза, многие углеводороды, внес большой вклад в науку о ферментах – белковых катализаторах, впервые выделенных в 1878. Формированию биохимии как науки способствовало создание новых аналитических методов. В 1923 шведский химик Теодор Сведберг сконструировал ультрацентрифугу и разработал седиментационный метод определения молекулярной массы макромолекул, главным образом белков. Ассистент Сведберга Арне Тизелиус (1902–1971) в том же году создал метод электрофореза – более совершенный метод разделения гигантских молекул, основанный на различии в скорости миграции заряженных молекул в электрическом поле. В начале 20 в. русский химик Михаил Семенович Цвет (1872–1919) описал метод разделения растительных пигментов при прохождении их смеси через трубку, заполненную адсорбентом. Метод был назван хроматографией. В 1944 английские химики Арчер Мартин и Ричард Синг предложили новый вариант метода: они заменили трубку с адсорбентом на фильтровальную бумагу. Так появилась бумажная хроматография – один из самых распространенных в химии, биологии и медицине аналитических методов, с помощью которого в конце 1940-х – начале 1950-х годов удалось проанализировать смеси аминокислот, получающиеся при расщеплении разных белков, и определить состав белков. В результате кропотливых исследований был установлен порядок расположения аминокислот в молекуле инсулина (Фредерик Сенгер), а к 1964 этот белок удалось синтезировать. Сейчас методами биохимического синтеза получают многие гормоны, лекарственные средства, витамины.

Промышленная химия.

Вероятно, наиболее важным этапом в развитии современной химии было создание в 19 в. различных исследовательских центров, занимавшихся, помимо фундаментальных, также прикладными исследованиями. В начале 20 в. ряд промышленных корпораций создали первые промышленные исследовательские лаборатории. В США в 1903 была основана химическая лаборатория «Дюпон», а в 1925 – лаборатория фирмы «Белл». После открытия и синтеза в 1940-х годах пенициллина, а затем и других антибиотиков появились крупные фармацевтические фирмы, в которых работали профессиональные химики. Большое прикладное значение имели работы в области химии высокомолекулярных соединений. Одним из ее основоположников был немецкий химик Герман Штаудингер (1881–1965), разработавший теорию строения полимеров. Интенсивные поиски способов получения линейных полимеров привели в 1953 к синтезу полиэтилена (Карл Циглер ,), а затем других полимеров с заданными свойствами. Сегодня производство полимеров – крупнейшая отрасль химической промышленности.

Не все достижения химии оказались благом для человека. В 19 в. при производстве красок, мыла, текстиля использовали соляную кислоту и серу, представлявшие большую опасность для окружающей среды. В 20 в. производство многих органических и неорганических материалов увеличилось за счет вторичной переработки использованных веществ, а также за счет переработки химических отходов, которые представляют опасность для здоровья человека и окружающей среды.

Литература:

Фигуровский Н.А. Очерк общей истории химии . М., 1969
Джуа М. История химии . М., 1975
Азимов А. Краткая история химии . М., 1983



Химия прошла сложный путь развития. Это древняя наука, возникшая из запросов практики.

Естественно, не известны ни время, ни место, когда человек впервые зажег огонь, стал использовать его для приготовления пищи, в гончарном производстве, для обработки металлов. Во всяком случае, к началу исторической эпохи химические знания в этих направлениях находились на высоком уровне. В древнем Египте, например, умели выплавлять из руд металлы (железо, свинец, медь, олово), получать их сплавы (например, бронзу), применяли золото, серебро, производили стекло и фарфор, гончарные изделия, краски и пигменты, парфюмерию. Химические производства существовали в древних Месопотамии, Индии и Китае.

Корни химии как науки следует искать, прежде всего, в эпоху античности. Древние Греция и Рим оказали огромное влияние на искусство, литературу, на политические, философские и религиозные взгляды всех народов Европы.

Вершина развития древнегреческой философии была достигнута в учении Аристотеля. Развивая идеи своих предшественников – Эмпедокла, Платона, он создал стройную философскую систему, в которой поднял естественнонаучное знание на качественно новую ступень. Особое внимание он уделял превращениям веществ. Каждое вещество он считал определенной комбинацией первоэлементов (атомов), определяемых на основе их чувственного восприятия. Движения, соединения и разъединения элементов (атомов) порождают все видимое многообразие во Вселенной.

Этот период развития науки о природе характеризуется полным отрывом теории от практики. Древние философы лишь наблюдали природу и ставили своей задачей ее объяснение.

Приблизительно в 300-е гг. н. э. грек Панополитанский Зосима написал энциклопедию из 28 книг, охватывающую все знания по химии. Этим моментом датируется начало следующего этапа развития химии – алхимии , который продлился вплоть до XVI в.

Наблюдая превращения одних веществ в другие и осуществляя их путем различных воздействий на вещества и их смеси, алхимики не видели препятствий для реализации любых превращений, в том числе одних металлов в другие и, в частности, в золото, получения универсального медицинского препарата – эликсира молодости и, в конечном счете, изготовления «философского камня», с помощью которого можно осуществить эти превращения.

От алхимиков современная наука унаследовала исключительно ценный метод работы – эксперимент, проверяющий гипотезу. В поисках «философского камня», обеспечивающего трансмутацию, алхимики открыли целый ряд веществ (этиловый спирт, многие соли, уксусную кислоту, серную и азотную кислоты и др.) и химических элементов (фосфор, сурьма, мышьяк, хлор и др.).

Третий период – период становления химии – охватывает XVI–XVIII вв. Изменилась цель исследования – вместо экспериментирования начинается изучение законов превращения веществ в целях использования их в практической деятельности.

В этот период развивается техническая химия, появляются научные труды, посвященные описанию на общедоступном языке химических процессов; начинается развитие химии газов – пневматической химии, связанной в первую очередь с именем Р. Бойля. Он ввел первое научное определение химического элемента как составной части вещества, которую нельзя разложить на более простые части; создал по-настоящему экспериментальный метод исследования; положил начало химическому анализу; написал первый научный трактат «Химик-скептик» (1661 г.), ставший широко известным, способствовал становлению химии как самостоятельной науки.

На рубеже XVII–XVIII вв. появилась первая общая химическая теория – теория флогистона (1697–1703 гг. 1 , Г. Э. Шталь), основанная на том положении, что чем больше тело содержит флогистона, тем более оно способно к горению.

Временем зарождения химии как точной науки условно можно считать середину XVIII в., когда М. В. Ломоносов сформулировал закон сохранения массы веществ в химических процессах и доказал его экспериментально. Он же первым высказал мысль, что при нагревании металл соединяется с «частичками воздуха». Заслуга окончательного ниспровержения теории флогистона принадлежит А. Л. Лавуазье, который выяснил и сделал очевидной для всех роль кислорода в процессах горения, внес ясность в понятия химического элемента, простого и сложного вещества и независимо от Ломоносова экспериментально установил закон сохранения массы. Лавуазье поставил химические исследования на количественную основу. Начиная с Лавуазье, химия «заговорила» на современном языке.

Четвертый этап развития химии – период атомно-молекулярного учения – охватывает конец XVIII – 60–70-е годы XIX в. и характеризуется открытием стехиометрических (количественных) законов химии: закон эквивалентов (1792–1802 гг., И. В. Рихтер); закон постоянства состава (1799–1806 гг., Ж. Л. Пруст); закон кратных отношений (1802–1808 гг., Дж. Дальтон); закон объемных отношений (1805–1808 гг., Ж. Л. Гей-Люссак); закон пропорциональности между плотностями газов или паров и молекулярными массами (1811 г., А. Авогадро); закон изоморфизма (1818–1819 гг., Э. Митчерлих); закон удельных теплоемкостей (1819 г., П. Л. Дюлонг, А. Т. Пти); законы электролиза (1834 г., М. Фарадей); закон постоянства количеств теплоты (1840 г., Г. И. Гесс); определения понятий «атом», «молекула» и создание шкалы атомных масс (1858 г., С. Канниццаро).

Следующий этап развития химии – период классической химии – начинается открытием в 1869 г. периодического закона Д. И. Менделеевым и завершается разработкой в 1913–1921 гг. теории строения атома Н. Бора – А. Зоммерфельда.

В это время также развивается понятие о валентности (1852 г., Э. Франкланд), появляются теории строения органических соединений (1861–1864 гг., А. М. Бутлеров), ароматических соединений (1865 г., Ф. А. Кекуле), комплексных соединений (1893 г., А. Вернер); закон действующих масс (1864–1867 гг., К. М. Гульдберг, П. Вааге); термохимия; теория электролитической диссоциации (1884 г., С. А. Аррениус); принцип смещения химического равновесия (1884 г., А. Л. Ле Шателье); правило фаз (1876 г., Дж. У. Гиббс) и др.

Шестой период развития химии – современный .

Успехи химии XX в. связаны с прогрессом аналитической химии и физических методов изучения веществ и воздействия на них, проникновением в механизмы реакций, с синтезом новых классов веществ и новых материалов, дифференциацией химических дисциплин и интеграцией химии с другими науками, с удовлетворением потребностей современной промышленности, техники и технологии, медицины, строительства, сельского хозяйства и других сфер человеческой деятельности в новых химических знаниях, процессах и продуктах. Успешное применение новых физических методов воздействия привело к формированию новых важных направлений химии, например, радиационной химии, плазмохимии. Вместе с химией низких температур (криохимией) и химией высоких давлений, сонохимией (наукой, изучающей химические и физико-химические эффекты, возникающие в звуковых полях), лазерной химией и др. они стали формировать новую область – химию экстремальных воздействий, играющую большую роль в получении новых материалов (например, для электроники) или старых ценных материалов сравнительно дешевым синтетическим путем (например, алмазов или нитридов металлов).

На одно из первых мест в химии выдвигаются проблемы предсказания функциональных свойств вещества на основе знания его структуры и определения структуры вещества (и его синтез), исходя из его функционального назначения. Решение этих проблем связано с развитием расчетных квантово-химических методов и новых теоретических подходов, с успехами в неорганическом и органическом синтезе. Развиваются работы по генной инженерии и по синтезу соединений с необычными строением и свойствами (например, высокотемпературные сверхпроводники, фуллерены). Все шире применяются методы, основанные на матричном синтезе, а также использующие идеи планарной технологии. Получают дальнейшее развитие методы, моделирующие биохимические реакции. Успехи спектроскопии (в том числе сканирующей туннельной) открыли перспективы «конструирования» веществ на молекулярном уровне, привели к созданию нового направления в химии – нанотехнологии. Для управления химическими процессами как в лаборатории, так и в промышленном масштабе, начинают использоваться принципы молекулярной и надмолекулярной организации ансамблей реагирующих молекул (в том числе подходы, основанные на термодинамике иерархических систем).

Развитие химической науки можно обобщить в виде схемы (рис. 1.1), на которой показано появление на определенных этапах новых концептуальных систем (относительно замкнутых систем теорий, объединенных некоей общей концепцией), определяющих дальнейший прогресс.

Рис. 1.1. Модель процесса развития химии

    Учение о химических элементах и их соединениях , которое непрерывно развивается, обогащаясь, видоизменяясь, начиная с работ Р. Бойля до наших дней. Даже в наше время в некоторых областях химии категории «состав» и «свойства» остаются фундаментальными. Это учение выводит свойства вещества исходя из его состава (рис. 1.2).

    Система структурных теорий, структурная химия возникла с появлением атомно-молекулярной концепции. Теперь свойства веществ (их реакционная способность) описываются не только на основе состава, но и на основе структуры вещества. Таким образом, подобно тому, как «структура» углубляет понятие «состав», так понятие «функция» (реакционная способность) углубляет понятие «свойство» (рис. 1.2).

    Теории химической кинетики и химической термодинамики, учение о химических процессах. Возникновение этой концептуальной системы связано с установлением роли условий проведения химических процессов в их протекании. Эти условия – не только внешние факторы (температура, давление и др.), но и концентрации реагентов, присутствие посторонних веществ (катализаторов, ингибиторов и др.) и т. д. Другими словами, данные теории описывают поведение системы веществ исходя из организации химического процесса (рис. 1.2).

    Биологическая химия и учение об эволюционном катализе – теория саморазвития (самоорганизации) химических систем (А. П. Руденко). В основе этой теории лежит представление об изменяющемся в ходе химической реакции катализаторе.

Рис. 1.2. Этапы эволюции химических знаний

История развития химии . Около двухсот лет назад были предприняты первые историко-научные исследования и написаны первые книги по истории химии. Это было время скачкообразного развития самой науки. Более чем тысячелетний период накопления естественнонаучных знаний закончился в XVIII в. формированием химии как самостоятельной научной дисциплины, были созданы новые система обучения и терминология. Химические исследования были направлены на решение актуальных задач познания природы и на использование достижений химии в промышленности.

Результаты наблюдений химиков-практиков средневековья в это время начали забываться, поскольку в XVIII в. было получено много новых, гораздо более точных, экспериментальных данных. Но ведущие химики XVIII в. понимали громадное значение работ своих предшественников. Поэтому они приложили немало усилий для публикации многочисленных сборников химических «операций», проведенных в средние века.

На первых историков химии - Торберна Бергмана, Иоганна Христиана Виглеба и Иоганна Фридриха Гмелина - обилие накопленных результатов исследований произвело очень большое впечатление. Поэтому они пытались собрать все эти наблюдения и описать их в хронологическом порядке.

Их последователи - Иоганн Бартоломей Троммсдорф, Жан Батист Дюма, Юстус Либих, Герман Копп, Фридрих Хёфер - уже делали попытки проанализировать исторические факты с определенной точки зрения. Более всех это удалось Герману Коппу. Он пришел к убеждению, что характер проводимых работ определялся главным образом задачами, поставленными химиками перед собой. Так, например, на протяжении довольно долгого исторического периода (от 300-х и до 1600-х гг.) они стремились получить золото из неблагородных металлов. Поэтому Копп назвал этот период алхимическим. Тогда, разумеется, еще не существовало подлинно научной химии, хотя и в древности люди использовали многие химические превращения. Но методы химиков тех времен Копп рассматривал как чисто эмпирические и найденные случайно. Исторический период, последовавший далее, Копп назвал периодом иатрохимии (медицинской химии), поскольку основным направлением химических знаний до 1700-х гг. было получение лекарств. Вслед за периодом иатрохимии Копп выделил еще два периода развития химических знаний: периоды флогистонной и количественной химии. Период флогистонной химии Копп назвал по господствовавшей в XVIII в. «флогистонной теории». Термин «флогистон» образован от древнегреческого слова «флогистос», что означает «воспламеняемый», «горючий»; «флогистон» - особая «субстанция», которая якобы определяет механизм процессов горения.

В конце XIX в. немецкий ученый Альберт Ладенбург принял в качестве главного принципа науки истории химии (Представления своего соотечественника Вильгельма Оствальда: без анализа прогресса химического эксперимента и развития химической промышленности нельзя понять общие закономерности становления химии как науки.

Среди ученых часто вспыхивают споры вокруг проблемы: начиная с какого исторического момента можно говорить о возникновении химии как науки? Одни исследователи отстаивали точку зрения, что химическая наука возникла лишь после того, как ученые смогли объяснить причины и особенности протекания реакций. По мнению других, возникновение научной химии следует датировать временем постановки учеными перед собой научно-исследовательских задач. Копп, например, считал научными даже задачи алхимии, хотя, как стало ясно в XX в., задачи алхимиков были нереальны и в общем-то антинаучны.

Развитие химии всегда шло в нескольких направлениях, но в различные периоды на первый план выдвигались разные исследовательские задачи. Отличие заключено в характере основополагающей в то или иное время научной идеи или теории. Специфика использования химического превращения веществ определяется тем, какую цель она преследует - получение какого-либо продукта или накопление новых знаний. Действительно, обе эти задачи вечно стоят перед человечеством, так как неразрывно связаны с целенаправленным использованием химических превращений.

Однако если абсолютизировать значение лишь одного направления в развитии химии, то, несомненно, нельзя избежать трудностей, с которыми и столкнулся Копп. Он рассмотрел эти трудности, проанализировал их с разных сторон, но не сумел найти удовлетворительного пути их преодоления.

Возникает вопрос: правомерно ли выделять в истории химии различные этапы (или периоды) развития? Никто не отрицает, что между химической практикой и теорией в древности, с одной стороны, и в наши дни - с другой, существует громадное различие. Разница (хотя и несколько меньшая) отчетливо заметна и при сопоставлении химических знаний иных, более близких исторических периодов. Для того чтобы провести периодизацию развития химии, нужно найти правильные критерии выделения исторических этапов. Эти критерии можно получить как следствия из закона накопления знаний и их наивысшего развития. Согласно этому закону, постепенное накопление практических и теоретических знаний приводит их к новому качеству, которое в свою очередь может служить основой дальнейшего развития науки. Постепенное накопление знаний за продолжительный исторический период приводит в конце концов к возникновению «революционной фазы», во время которой достигается наивысший уровень развития в теории или практике либо и в теории, и в практике.

Интенсивное развитие теории и практики в истории химии не всегда проходило одновременно. Фаза наивысшего развития знаний выявляется при анализе не только общего развития химии, но также и при рассмотрении эволюции ее отдельных направлений. И разумеется, в отдельные периоды и для различных направлений развития химии эти фазы наивысшего развития знаний различаются. Если, например, подразделить реальный материал истории химии на две исторические эпохи, то при подобном анализе становится очевиден глубочайший процесс преобразования фазы наивысшего накопления знаний в химии с конца XVIII в. С этого времени теория в химии стала приобретать все большее значение как непременное условие целенаправленного проведения разнообразных превращений веществ. До конца XVIII в., напротив, особо важное значение для прогресса химии имели не столько теоретические основы, сколько практическое проведение разнообразных химических «операций».

Деление истории химии на эмпирические и теоретические эпохи нельзя понимать буквально: будто первые были посвящены главным образом практическим работам, а вторые - лишь теоретическим. В истории вообще (и в истории химии, в частности) не существует застывших границ между историческими периодами: и в «эпохи практики» проводились теоретические изыскания, и в «теоретические эпохи» практика всегда имела немалое значение для развития химии. Поэтому такое однозначное название эпохи не отражает ее содержания. Оно характеризует лишь направление работ, которое определяет специфику развития химических знаний в рамках значительного исторического периода.

Рассмотренные подходы к периодизации можно также положить в основу выделения исторических периодов становления химии в соответствии с законом накопления и наивысшего развития знаний.

Вопрос, на который постоянно должен отвечать историк науки,- как методологически подходить к анализу предмета - относится к области истории логики. Для его решения нужно выяснить, какое значение имели важнейшие события истории науки для развития общества. В этом случае наиболее полно будет проявляться фаза наивысшего развития знаний. Однако нельзя забывать, что развитие науки происходило не во всех странах и частях мира. Кроме того, понимание вклада ученых разных стран в развитие химических знаний зависит от уровня наших знаний об основополагающих химических исследованиях, проведенных в различные исторические эпохи. Довольно достоверны известные историкам науки сведения о развитии химических знаний и навыков в древних Индии, Китае, средневековой Аравии, а также в средневековой Европе.

Название «химия» происходит, как считают ученые, от древнегреческого слова «хемейа» (так называли Египет); другое предполагаемое, тоже древнегреческое слово, от которого образовался термин «химия»,- «хюмейа» (от «хюма»), что означает «литье» металлов.

С самого начала использования человечеством химических превращений стали накапливаться определенные знания об особенностях их проведения. Позже на основе таких наблюдений возникли первые гипотезы о составе и свойствах веществ. Одновременно (в значительной мере под влиянием потребностей ремесленной практики) сформировалось мнение о том, что для развития человечества практические методы получения больших количеств различных веществ гораздо важнее, чем химические теории. Нельзя не отметить ограниченности любой одноплановой точки зрения. В действительности теоретический и практический аспекты изучения природы веществ развивались в тесной взаимосвязи; полученные при этом знания и навыки привели впоследствии к возникновению научного естествознания. Хотя существующие в наши дни отношения между естественными науками и производством сформировались лишь в XIX в., предпосылки научного естествознания были созданы еще во времена античности. Однако долгое время развитие естественнонаучных представлений определялось главным образом результатами наблюдений, полученными в ремесленной практике при проведении разнообразных процессов. Поэтому, чтобы правильно понять существование в древности и в средние века соотношения между ремесленной (а позже производственной) практикой и развитием представлений о природе веществ, не следует оценивать эти отношения лишь с точки зрения современных взаимосвязей естествознания и промышленности.

В значительной мере такие рассуждения относятся и к развитию химической науки и химической промышленности. Химия как самостоятельная наука в современном понимании этого слова возникла лишь в XVIII в. До этого химические знания накапливались главным образом в процессе развития химических ремесел. Среди них в XVI-XVII вв. очень большую роль играло приготовление лекарственных препаратов. Развитие фармации в первую очередь, а также совершенствование иных химических ремесел определяли в то время прогресс химических знаний. Термин «знания» употребляется здесь не в узком смысле, описывающем только развитие теоретических представлений, но в гораздо более широком плане - как историческая категория.

В работе «Роль труда в процессе превращения обезьяны в человека» Фридрих Энгельс выделил различные этапы «развития общества». В основу такого подразделения он положил труд, который рассматривал не как механическое выполнение операций, а как деятельность, точно определенную Карлом Марксом в «Капитале». Маркс определял труд как физические, психические и интеллектуальные возможности, которые реализуются лишь в сложном «процессе целенапраленного, целесообразного общения людей друг с другом». В простейшем же случае под трудом понимают - сознательно или неосознанно - опыт, который является исходным пунктом любого дальнейшего развития: определенные способы воздействия на вещества, связанные с конкретными операциями, ведут к некоторым предполагаемым результатам. Повторение этого процесса приводит к накоплению практических навыков и знаний, совершенствующихся при переходе от поколения к поколению. Под практическими навыками понимают не только механическую последовательность операций, но и совершенствование прикладных знаний. Применяемое здесь понятие «знание» - не априорно данное понятие, а исторически понимаемая категория. Так, например, для людей каменного века понимание влияния различных условий на рост растений имело такое же большое значение для прогресса в развитии навыков и знаний, как открытие важности применения удобрений для повышения урожайности сельско­хозяйственных культур, сделанное в XIX в. Юстусом Либихом.

История возникновения химии делится на несколько этапов, начиная от древнего мира и до современности.

Химия – это одна из естественных наук, т.е. наук об окружающем мире, природе и явлениях, происходящих в ней, превращениях веществ.

Еще в глубокой древности человек заметил, что вещества способны изменяться, превращаться в другие, обладающие новыми свойствами.

Костер стал первой химической лабораторией человека. После обжига глины в огне она становилась прочной, из нее можно было делать нехитрую посуду. На огне человек научился готовить пищу из мяса убитых животных, плодов растительного мира. Здесь же человек случайно получил первые металлы – медь, олово, свиней, а также стеклянные изделия из, казалось бы, обыкновенных камней.

Так появились первые, как мы сейчас говорим, химические ремесла – гончарное и металлургическое. Примерно 7000 лет назад человек научился выплавлять медь и делать из нее различные изделия – орудия труда, предметы домашнего обихода, оружие. Этот период в истории древней цивилизации получил название медный век.

К 4000 г. до н.э. наступил новый этап в истории возникновении химии, люди научились выплавлять бронзу – сплав меди с оловом, который был гораздо более твердым, чем медь. Бронза же сразу стала использоваться для изготовления мечей, наконечников стрел и копий, щитов. Наступил бронзовый век.

В последнее тысячелетие до новой эры человек овладел способом получения железа из руд. Это стало поворотным моментом и в истории металлургии, и в истории общества. Так пришло время железного века, который на самом деле продолжался много сотен лет.

В те давние времена люди могли получать не только металлы. Стекло фаянс, минеральные и растительные краски, чернила, косметика и лекарственные препараты – вот далеко не полный перечень изделий, которые мог изготовить человек уже тогда с помощью различных химических превращений.

На рубеже старой и новой эры зародилось и само понятие «химия». Есть несколько версий проявления этого термина. По одной из них это связано с древним названием Египта «Хем» и производным от него «хеми» — египетское искусство. По другой версии считается, что слово «химейя» — выделения соков, а затем и плавки металлов, происходит от древнегреческого «химос», т.е. сок, литье.

В середине первого тысячелетия новой эры, после падения Древнего Рима, центр цивилизации переместился на Ближний Восток. Именно там арабы преобразовали слово «химейя» в «алхимия». Под этим словом понимались все знания, связанные с превращением веществ как практические, так и теоретические.

А главной теоретической идеей алхимии в течение почти полутора тысячи лет было превращение неблагородных металлов в благородные (золото и серебро) под действием так называемого философского камня. С помощью этого мифического «эликсира» надеялись также излечить все болезни и даже сделать человека бессмертным. Последователей этой идеи на арабском Востоке, а затем и в Европе стали называть алхимиками. Алхимиками были практически все ученые средневековья, монахи, врачеватели и даже короли.

Все их усилия получить дешевое золото оказались, конечно, бесплодными. Однако целый ряд практических достижений как алхимиков, так и ремесленников-практиков оставил заметный след в истории возникновении химии. Было получено много новых веществ, прежде всего важнейшие кислоты (серная, соляная, азотная), изобретены различные приборы и приспособления, которые с тех пор стали широко использоваться в химии.

Химия постепенно становилась все более практической областью деятельности, основной задачей которой становилось удовлетворение растущих потребностей общества: получение металлов из руд, пороха, стекла, красок, мыла и многих других, не менее необходимых для жизни веществ. Появились первые книги по практическим способам получения металлов, обработки различных веществ. Поиск эликсира долголетия привел к развитию медицинского направления – иатрохимии, которая с начала XVI в. стала основным видом деятельности химиков, постепенно заменяя прежние – попытки получения благородных металлов из неблагородных.

В алхимию все больше и больше проникало научное начало, желание узнать элементарную природу веществ, причины их способности превращаться в другие вещества. Ученые пытались дать разумные объяснения таким важнейшим для практики процессам, как горение, восстановление металлов из руд и окисление металлов.

В работе английского химика и физика Роберта Бойля было впервые дано научное определение понятия химический элемент, положено начало химическому анализу. Экспериментальные исследования Бойля стали началом химии как настоящей науки. Именно Бойль отбросил от названия «алхимия» приставку «ал», тем самым как бы открыв новый период в жизни истории возникновения химии.

Превращению химии в настоящую науку в XVIII в. способствовали многие ученые, в том числе русский ученый М. В. Ломоносов и французский – А. Лавуазье. На основе многочисленных опытов по изучению процессов горения и окисления металлов они независимо друг от друга пришли к формулировке одного из самых важных законов химии – закона сохранения массы веществ при химических реакциях.

В XVIII в. было открыто много новых элементов, в том числе кислород, водород, азот. Было доказано, что воздух является смесью газов, а вода – сложным веществом.

В начале XIX в. английский ученый Д. Дальтон заложил основы химической атомистики, составил первую таблицу атомных весов, а итальянец А. Авогардо ввел в обиход понятие молекула. Атомно-молекулярное учение стало основной химической теорией. Особенно большая роль в ее развитии в начале XIX в. принадлежит виднейшему шведскому химику Я. Берцелиусу. На основе теории Дальтона он осуществил реформу химии: разработал систему символов элементов, с помощью которых стали записывать формулы и уравнения. Он построил шкалу атомных масс, близкую к современной, ввел в обиход множество терминов и понятий, которые мы используем и сейчас.

В середине XIX в. русский ученый А. М. Бутлеров заложил основы теории строения органических соединений. В 1869 г. другой русский ученый Д. И. Менделеев открыл периодический закон химических элементов. Эти две научные идеи вместе с атомно-молекулярным учением стали основой современной химии.

Химия становилась такой большой наукой, что разделилась на отдельные ветки, такие, как органическая, неорганическая, аналитическая химия, и а позже – физическая химия, биохимия, агрохимия, химия твердого тела и др.

В настоящее время химия стала не только одной из важнейших областей человеческого знания, но и полем практической деятельности многих людей – ученых, инженеров, рабочих и др. Без химии невозможна жизнь современного общества. Она играет ключевую роль в обеспечении людей продовольствием, одеждой, энергией, тысячами самых разнообразных веществ, многих из которых просто нет в природе.

Химия – это наука, которая постоянно изменяет окружающий мир. Вместе с другими естественными науками она помогает глубже познать тайны природы и законы ее развития, сделать жизнь на Земле лучше для каждого человека.

Вам необходимо включить JavaScript, чтобы проголосовать

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Химия - одна из самых древних наук, Человек всегда наблюдал вокруг себя изменения, когда одни вещества давали жизнь другим или неожиданно меняли свою форму, окраску, запах.

Задолго до наступления новой эры люди уже умели извлекать металлы из руд, красить ткани, обжигать глину, неспокойные умы мыслителей прошлого пытались объяснить непрерывно возникающие в Природе химические превращения, любознательные глаза подмечали все новые явления в окружающем мире, искусные руки осваивали сложные ремесла, - неизменно связанные с химией.

Истоки химии. Алхимия

Первыми учеными-химиками были египетские жрецы. Они владели многими до сих пор не разгаданными химическими секретами. К ним, например, относятся приемы бальзамирования тел умерших фараонов и знатных египтян, а также способы получения некоторых красок. Так, изготовленные древними египетскими мастерами голубые и синие краски найденных при раскопках сосудов продолжают оставаться яркими, хотя со времени их изготовления прошло несколько тысяч лет.

Некоторые химические производства существовали в древности в Греции, Месопотамии, Индии, Китае.

В III веке до нашей эры уже был собран и описан значительный материал. Например, в знаменитой Александрийской библиотеке, которая считалась одним из семи чудес света и насчитывала 700 тысяч рукописных книг, хранились и многие труды по химии. В них были описаны такие процессы, как прокаливание, возгонка, перегонка, фильтрование и др. Накопленные за много веков отдельные химические сведения позволяли сделать и некоторые обобщения о природе веществ и явлений.

Например, греческий философ Демокрит, живший в V веке до нашей эры, впервые высказал мысль о том, что все тела состоят из мельчайших, невидимых, неделимых и вечно движущихся твердых частиц материи, которые он назвал атомами. Аристотель в IV веке до нашей эры считал, что в основе окружающей природы лежит вечная первоматерия, которой свойственны четыре основных качества: теплота и холод, сухость и влажность. Эти четыре качества, по его мнению, могли быть отделены от первоматерии или прибавлены к ней в любом количестве.

Учение Аристотеля явилось идейной основой развития отдельной эпохи в истории химии, эпохи так называемой алхимии.

Алхимия (позднелатинское Alchemia, alchimia, alchymia), донаучное направление в химии, зародилась в III-IV веках до нашей эры. Ее название восходит через арабское к греческому сhemeia от cheo - лью, отливаю, что указывает на связь алхимии с искусством плавки и литья металлов. Другое толкование - от египетского иероглифа «хми», означавшего черную (плодородную) землю, в противовес бесплодным пескам. Этим иероглифом обозначался Египет, место, где, возможно, возникла алхимия, которую часто называли «египетским искусством». Арабы снабдили это слово еще своей арабской приставкой «ал», и таким образом сформировалось слово алхимия. Впервые термин «алхимия» встречается в рукописи Юлия Фирмика, астролога 4 века.

Важнейшей задачей алхимики считали превращение (трансмутацию) неблагородных металлов в благородные (ценные), в чем собственно и заключалась главная задача химии до 16 столетия. Эта идея базировалась на представлениях греческой философии о том, что материальный мир состоит из одного или нескольких «первоэлементов», которые при определенных условиях могут переходить друг в друга. Распространение алхимии приходится на 4-16 века, время развития не только «умозрительной» алхимии, но и практической химии. Несомненно, что эти две отрасли знания влияли друг на друга. Недаром знаменитый немецкий химик Либих писал про алхимию, что она «никогда не была ничем иным, как химией».

Таким образом, алхимия относится к современной химии так, как астрология к астрономии. Задачей средневековых алхимиков было приготовление двух таинственных веществ, с помощью которых можно было бы достичь желанного облагораживания металлов. Наиболее важный из этих двух препаратов, который должен был обладать свойством превращать в золото не только серебро, но и такие, например, металлы, как свинец, ртуть и т. д., носил название философского камня, красного льва, великого эликсира. Он также именовался философским яйцом, красной тинктурой, панацеей и жизненным эликсиром. Это средство должно было не только облагораживать металлы, но и служить универсальным лекарством, раствор его, так называемый золотой напиток, должен был исцелять все болезни, омолаживать старое тело и удлинять жизнь.

Другое таинственное средство, уже второстепенное по своим свойствам, носившее название белого льва, белой тинктуры, ограничивалось способностью превращать в серебро все неблагородные металлы.

Родиной алхимии считается Древний Египет. Сами алхимики вели начало своей науки от Гермеса Трисмегиста (он же египетский бог Тот), и поэтому искусство делать золото называлось герметическим. Свои сосуды алхимики запечатывали печатью с изображением Гермеса - отсюда выражение «герметически закрытый».

Существовало предание, что искусству обращать «простые» металлы в золото ангелы научили земных женщин, с которыми вступили в брак, о чем рассказано в «Книге Бытия» и «Книге пророка Еноха» в Библии. Это искусство было изложено в книге, которая называлась «Хема». Арабский ученый аль-Надим (10 век) полагал, что родоначальником алхимии был Гермес Великий, родом из Вавилона, поселившийся в Египте после Вавилонского столпотворения.

Существовали греко-египетская, арабская и западно-европейская школы алхимии. Римский император Диоклетиан повелел в 296 г. предавать сожжению все египетские рукописи, касающиеся искусства делать золото (речь, вероятно, шла о позолоте и искусстве изготовления поддельных украшений). В 4 веке нашей эры задача превращения металлов в золото исследовалась Александрийской школой ученых. Писатель, выступавший под псевдонимом Демократа, принадлежавший к александрийским ученым, своим сочинением «Физика и мистика» положил начало длинному ряду алхимических руководств. Для того чтобы обеспечить успех, такие труды появлялись под именами известных философов (Платон, Пифагор и т. д.), но вследствие общей затемненности стиля, они мало доступны пониманию, так как большинство своих достижений алхимики держали в секрете, зашифровывали описания полученных веществ и проведенных опытов.

Крупнейшая коллекция алхимических рукописей хранится в Библиотеке Святого Марка в Венеции.

Греки были учителями арабов, давших алхимии имя. Запад воспринял алхимию от арабов в 10-м столетии. В период с 10 по 16 век алхимией занимались известные ученые, оставившие след в европейской науке. Например, Альберт Великий, создатель работы «О металлах и минералах», и Роджер Бэкон, оставивший потомству труды «Могущество алхимии» и «Зеркало алхимии», были также и знаменитейшими алхимиками своего времени. Арнольдо де Вилланова, выдающийся врач, умерший в 1314 г., он издал более 20 алхимических трудов.

Раймунд Луллий, известнейший ученый 13 и 14 веков, был автором 500 сочинений алхимического содержания, главное из которых имеет название «Завещание, излагающее в двух книгах всеобщее химическое искусство». (Многие специалисты считают, впрочем, что известный своей набожностью Луллий этих сочинений не писал, и они лишь приписаны ему)..

В 15-17 веках многие коронованные особы ревностно занимались алхимией. Таков, например, английский король Генрих VI, в правление которого страна была наводнена фальшивым золотом и фальшивой монетой. Металл, игравший в этом случай роль золота, был по всей вероятности медной амальгамой. Подобным же образом действовал и Карл VII во Франции, вместе с известным мошенником Жаком ле Кер.

Император Рудольф II был покровителем странствующих алхимиков, и его резиденция представляла центр алхимической науки того времени. Императора называли германским Гермесом Трисмегистом.

Курфюрст Август Саксонский и его супруга Анна Датская производили опыты: первый - в своем дрезденском «Золотом дворце», а его супруга - в роскошно устроенной лаборатории на своей даче «Фазаний сад». Дрезден долго оставался столицею государей, покровительствующих алхимии, особенно в то время, когда соперничество за польскую корону требовало значительных денежных расходов. При саксонском дворе алхимик И. Бетгер, не сумевший сделать золото, впервые в Европе открыл фарфор.

Одним из последних адептов алхимии был Каэтан, называемый графом Руджиеро, родом неаполитанец, сын крестьянина. Он действовал при мюнхенском, венском и берлинском дворах, пока не окончил своих дней в 1709 году в Берлине на виселице, украшенной мишурным золотом.

Но и после распространения уже собственно химии, алхимия вызывала интерес у многих, в частности И.В. Гете несколько лет посвятил изучению трудов алхимиков.

Из дошедших до нас алхимических текстов видно, что алхимикам принадлежит открытие или усовершенствование способов получения ценных соединений и смесей, таких, как минеральные и растительные краски, стекла, эмали, соли, кислоты, щелочи, сплавы, лекарственные препараты. Они использовали такие приемы лабораторных работ, как перегонка, возгонка, фильтрование. Алхимики изобрели печи для длительного нагревания, перегонные кубы.

Достижения алхимиков Китая и Индии остались неизвестны в Европе. В России алхимия не была распространена, хотя трактаты алхимиков были известны, а некоторые даже переведены на церковно-славянский язык. Мало того, Московскому двору немецкий алхимик Ван Гейден предлагал свои услуги по приготовлению философского камня, но царь Михаил Федорович после «расспроса» эти предложения отклонил.

То, что алхимия не получила распространения на Руси, объясняется тем, что деньги и золото на Руси начали широко применять позже по сравнению с западными странами, так как здесь позднее происходил переход с оброка на денежную ренту. Кроме того, мистицизм, туманность целей и нереальность способов алхимии противоречили здравому смыслу и деловитости русских людей. Почти все русские алхимики (самый знаменитый из них Я. Брюс) иностранного происхождения.

Химия в средние века

С эпохи Возрождения химические исследования все в большей степени стали использовать для практических целей (металлургия, стеклоделие, производство керамики, красок). В начале VI века алхимики стали использовать полученные знания для нужд промышленности и медицины. Реформатором в области горного дела и металлургии явился Агрикола, а в области медицины - Парацельс, который указывал, что « цель химии состоит не в изготовлении золота и серебра, а в изготовлении лекарств». В 16-18 веках возникло также особое медицинское направление алхимии - ятрохимия (иатрохимия), представители которого рассматривали процессы, происходящие в организме, как химические явления, болезни - как результат нарушения химического равновесия и ставили задачу поиска химических средств их лечения.

Все настойчивее становилось желание исследователей понять истинные причины необъяснимых процессов, раскрыть тайны великих, но случайных достижений практики. Множилось число опытов, появлялись первые научные гипотезы. В средние века человек начал активно и сознательно соперничать с Природой в получении полезных веществ и материалов. Постепенно создавалась химическая наука, и уже в средневековье появилось химическое производство.

На Руси химия развивалась преимущественно самобытно. В Киевской Руси осуществляли выплавку металлов, производство стекла, солей, красок, тканей. При Иване Грозном в Москве в 1581 г. была открыта аптека. При Петре I были построены купоросные и квасцовые заводы, первые химические мануфактуры, а в Москве насчитывалось уже восемь аптек. Дальнейшее развитие химии в России связано с работами М.В. Ломоносова.

Более двухсот лет назад наш знаменитый соотечественник Михаил Васильевич Ломоносов выступил в публичном собрании петербургской Академии наук. В докладе, сохранившемся в истории науки под красноречивым названием « Слово о пользе химии», мы читаем вещие строки: «Широко распростирает химия руки свои в дела человеческие... Куда ни посмотрим, куда ни оглянемся, везде обращаются веред очами нашими успехи ее прилежания».

Глубокие и оригинальные исследования Михаила Васильевича способствовали развитию не только теории химии, но и химической практики. Ему удалось разработать простую технологию окрашивания стекла, он делал яркие искусственные мозаичные плитки, превосходившие по сочности и разнообразию оттенков натуральные цветные камни, пластинки из которых много веков использовались для составления мозаик, украшавших здания. М.В. Ломоносов наладил, выражаясь современным языком, их промышленный выпуск. Это была одна из первых в истории химии побед синтезированного, изготовленного человеком нового материала над веществом, созданным Природой. Удачи все же приходили слишком редко. Наиболее проницательные ученые XVIII века, и среди них М.Н. Ломоносов, понимали, что научные основы химии только закладываются. Нельзя же все время следовать по бесконечному пути бесчисленных опытов и повторять одни и те же ошибки. Для дальнейшего прогресса химии были жизненно необходимы новые теории, объясняющие опытные данные и предсказывающие, как поведут себя материалы и вещества при изменении условий, в которых они находятся.

Во 2-й половине 17 века Р. Бойль дал первое научное определение понятия «химический элемент». Период превращения химии в подлинную науку завершился во 2-й половине 18 века, когда был открыт М. В. Ломоносовым (1748 г.) и в общем виде сформулирован А. Лавуазье (1789 г.) закон сохранения массы при химических реакциях. В настоящее время этот закон формулируется так: сумма массы вещества системы и массы, эквивалентной энергии, полученной или отданной той же системой, постоянна. При ядерных реакциях закон сохранения массы следует применять в современной формулировке.

В начале 19 века Дж. Дальтон заложил основы химической атомистики, А. Авогадро ввел понятие «молекула» (новолатинское molecula, уменьшительное от латинского moles - масса). В современном понимании это микрочастица, образованная из атомов и способная к самостоятельному существованию. Она имеет постоянный состав входящих в нее атомных ядер и фиксированное число электронов и обладает совокупностью свойств, позволяющих отличать молекулы одного вида от молекул другого. Число атомов в молекуле может быть различным: от двух до сотен тысяч (например, в молекуле белков); состав и расположение атомов в молекуле передает химическая формула. Молекулярное строение вещества устанавливается рентгеноструктурным анализом, электронографией, масс-спектрометрией, электронным парамагнитным резонансом (ЭПР), ядерным магнитным резонансом (ЯМР) и другими методами.

Эти атомно-молекулярные представления утвердились лишь в 60-х годах 19 века. Тогда же А.М. Бутлеров создал теорию строения химических соединений, а Д.И. Менделеев (1869 г.) открыл периодический закон, представляющий собой естественную систему химических элементов. Современная формулировка этого закона звучит так: свойства элементов находятся в периодической зависимости от заряда их атомных ядер. Заряд ядра Z равен атомному (порядковому) номеру элемента в системе. Элементы, расположенные по возрастанию Z (H, He, Li, Be...), образуют 7 периодов. В 1-м - 2 элемента, во 2-м и 3-м - по 8, в 4-м и 5-м - по 18, в 6-м - 32. В 7-м периоде (на 1990 г.) известны 23 элемента. В периодах свойства элементов закономерно изменяются при переходе от щелочных металлов к благородным газам. Вертикальные столбцы - группы элементов, сходных по свойствам. Внутри групп свойства элементов также изменяются закономерно (напр., у щелочных металлов при переходе от Li к Fr возрастает химическая активность). Элементы с Z = 58-71, а также с Z = 90-103, особенно сходные по свойствам, образуют 2 семейства - соответственно лантаноиды и актиноиды. Периодичность свойств элементов обусловлена периодическим повторением конфигурации внешних электронных оболочек атомов. С положением элемента в системе связаны его химические и многие физические свойства. Тяжелые ядра неустойчивы, поэтому, напр., америций (Z = 95) и последующие элементы не обнаружены в природе; их получают искусственно при ядерных реакциях.

Закон и система Менделеева лежат в основе современного учения о строении вещества, играют первостепенную роль в изучении всего многообразия химических веществ и в синтезе новых элементов.

Полное научное объяснение периодическая система элементов Менделеева получила на основе квантовой механики. Квантовая механика впервые позволила описать структуру атомов и понять их спектры, установить природу химической связи, объяснить периодическую систему элементов и т. д. Т. к. свойства макроскопических тел определяются движением и взаимодействием образующих их частиц, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Так, квантовая механика позволила понять многие свойства твердых тел, объяснить явления сверхпроводимости, ферромагнетизма, сверхтекучести и многое др.; квантовомеханические законы лежат в основе ядерной энергетики, квантовой электроники и т. д. В отличие от классической теории, все частицы выступают в квантовой механике как носители и корпускулярных, и волновых свойств, которые не исключают, а дополняют друг друга.

С конца 19 - начала 20 веков важнейшим направлением химии стало изучение закономерностей химических процессов.

Современное развитие химии

Из чего состоят химические соединения? Как устроены мельчайшие частицы материи? Как расположены они в пространстве? Что объединяет эти частицы? Почему одни вещества реагируют между собой, а другие - нет? Можно ли ускорить течение химических реакций? Вероятно, больше, чем для любой другой науки, для химии требовалось понимание первооснов, знание первопричин. И химики успешно применяли в своих рассуждениях основные положения атомно-молекулярной теории задолго до появления точных экспериментальных доказательств реального существования атомов и молекул. В историю химической науки вошли теоретические обобщения А.Л. Лавуазье, Д.У. Гиббса, Д.И. Менделеева и других выдающихся ученых. Периодический закон и периодическая система элементов, законы химического равновесия и теория химического строения неотделимы сейчас от новых представлений о химии.

Значительный вклад в развитие химии внес выдающийся русский ученый А.М. Бутлеров. В 1861 г. он создал теорию строения органических соединений, которая позволила привести в систему огромное число органических веществ и без которой не мыслимы были бы современные успехи в создании новых полимерных материалов.

Теории химической связи, созданные в XX веке, позволяют описать все тонкости взаимоотношений частиц, входящих в состав вещества. Открыты законы, управляющие течением химических процессов. Теперь экспериментаторы и технологи имеют возможность выбрать самый простой и эффективный способ осуществления любой химической реакции. У химии появился прочный фундамент, рожденный в союзе с математикой и физикой. Химия превратилась в точную науку. Необыкновенные успехи практической химии, опиравшейся на глубокое теоретическое постижение химических явлений, были достигнуты за сравнительно недолгое время, отделяющее нас от эпохи Ломоносова. Разгаданы, например, разнообразные стадии химического процесса, позволившего Природе превратить органические вещества в полезные для нас сегодня нефть и газ. Эта важная для современной промышленности реакция происходила с участием микроорганизмов и длилась многие сотни и тысячи лет. Удалось не только понять, но и воссоздать этот процесс. Ученые Московского университета разработали установку, в которой под благотворным влиянием света ламп в неглубоком бассейне с питательным раствором, содержащим органические вещества и микроорганизмы, происходит ускоренно - в течение нескольких дней и месяцев - получение искусственных нефти и газа.

Химия наших дней способна и на более неожиданные превращения. Разработан промышленный химический аппарат - высокий цилиндр, в верхнюю часть которого подается измельченная зеленая травяная масса. Внутри колонны особые биологические соединения - ферменты, ускоряющие химические реакции, по программе, заданной учеными, преобразуют непрерывно поступающую массу в... молоко. К этим «чудесам» мы привыкли так же быстро, как к полетам в космос. Не существует, вероятно, сферы человеческой деятельности, где не применялись бы изделия из материалов, появившихся на свет благодаря таланту и кропотливому труду нескольких поколений химиков. По своим свойствам они часто превосходят химические творения Природы. Эти материалы незаметно и прочно вошли в наш быт, но удивление людей, впервые их увидевших, вполне понятно. В начале семидесятых годов нашего века любознательные и вездесущие туристы обнаружили в глухом углу бескрайних сибирских лесов семью, прожившую вдали от городов и сел несколько десятков лет. Что же поразило отшельников больше всего среди вещей, принесенных туристами? Прозрачная пластмассовая пленка! «Стекло, а мнется»,- восхищенно сказал седобородый глава семьи, ощупывая и разглядывая на свет полиэтиленовую пленку - один из многих синтетических материалов, придуманных химиками для облегчения и улучшения нашего хозяйства и быта. Материалов, ставших полезной и незаметной частью повседневной жизни людей. Химия сейчас способна получать вещества с заранее намеченными свойствами: морозостойкие и жаропрочные, твердые и мягкие, жесткие и эластичные, любящие влагу и влагонепроницаемые, сплошные и пористые, чувствительные к воздействию малейших следов посторонних примесей или инертные по отношению к сильнейшим химическим влияниям.

Появление внутри полупроводника одного постороннего атома примеси на миллион атомов основного вещества изменяет его свойства до неузнаваемости: полупроводник начинает чувствовать свет и проводить электрический ток. Химики разработали методы полной очистки полупроводников от примесей, создали способы введения в их состав малого количества примесей, придумали приборы, сигнализирующие о появлении в веществе «чужеродных» атомов. Ученые умеют синтезировать материалы, стабильные и неизменные даже при длительном воздействии солнечного света и тепла, холода и влаги.

Химические открытия происходят в лабораториях всего мира, где рождаются новые сложные соединения. Известный французский химик М. Бертло с гордостью указывал на внутреннюю общность химии и искусства, которая коренится в их творческой природе. Химия, как и искусство, сама создает объекты для изучения и своих дальнейших исследований. И эта особенность, по мнению М. Бертло, отличает химию от других естественных и гуманитарных наук. Без глубокого понимания химических законов нельзя всесторонне и полно объяснить явления, изучаемые биологами и физиками, археологами и ботаниками, геологами и зоологами.

В современной химии отдельные ее области - неорганическая химия, органическая химия, физическая химия, аналитическая химия, химия полимеров стали в значительной степени самостоятельными науками. На стыке химии и других областей знания возникли такие дочерние, родственные науки, как:

биохимия - наука, которая изучает входящие в состав организмов химические вещества, их структуру, распределение, превращения и функции. Первые сведения по биохимии связаны с хозяйственной деятельностью человека (обработка растительного и животного сырья, использование различных типов брожения и т. п.) и медициной. Принципиальное значение для развития биохимии имел первый синтез природного вещества - мочевины (Ф. Велер, 1828 г.), подорвавший представления о «жизненной силе», участвующей якобы в синтезе различных веществ организмом. Используя достижения общей, аналитической и органической химии, биохимия в 19 веке сформировалась в самостоятельную науку. Внедрение в биологию идей и методов физики и химии и стремление объяснить такие биологические явления, как наследственность, изменчивость, мышечное сокращение и др., строением и свойствами биополимеров привело в середине 20 века к выделению из биохимии молекулярной биологии. Потребности народного хозяйства в получении, хранении и обработке различных видов сырья привели к развитию технической биохимии. Наряду с молекулярной биологией, биофизикой, биоорганической химией биохимию включают в комплекс наук - физико-химическую биологию;

агрохимия - наука о химических процессах в почве и растениях, минеральном питании растений, применении удобрений и средств химической мелиорации почв; основа химизации сельского хозяйства. Сформировалась во 2-й половине 19 века. Становление агрохимии связано с именами А. Тэера, Ю. Либиха, Д. И. Менделеева, Д. Н. Прянишникова и др. Развивается на основе достижений агрономии и химии;

геохимия - наука, изучающая химический состав Земли, распространенность в ней химических элементов и их стабильных изотопов, закономерности распределения химических элементов в различных геосферах, законы поведения, сочетания и миграции (концентрации и рассеяния) элементов в природных процессах. Термин «геохимия» введен К. Ф. Шенбейном в 1838 г. Основоположники геохимии - В. И. Вернадский, В. М. Гольдшмидт, А. Е. Ферсман; первая крупная сводка по геохимии (1908 г.) принадлежит Ф. У. Кларку (США). Геохимия включает: аналитическую геохимию, физическую геохимию, геохимию литосферы, геохимию процессов, региональную геохимию, гидрогеохимию, радиогеохимию, изотопную геохимию, радиогеохронологию, биогеохимию, органическую геохимию, геохимию ландшафта, геохимию литогенеза. Геохимия - одна из теоретических основ поисков полезных ископаемых; и другие. На законах химии базируются такие технические науки, как химическая технология, металлургия.

Окруженная науками-сестрами и науками-дочерьми, химия продолжает развиваться. Она помогает нам понять самих себя, позволяет постичь очень многие происходящие в мире сложные процессы.

Химия и охрана окружающей среды

Все чаще возникает и совсем другая проблема: быстрее и бесследнее растворить или разъять на отдельные простые элементы материалы, ставшие уже ненужными человеку. Некоторые стойкие химические вещества, особенно искусственные полимеры, образованные очень большими молекулами, сохраняются в земле десятки и сотни лет, не разрушаясь. Химики разрабатывают сейчас синтетические ткани, пленки, волокна, пластмассы из созданных в лаборатории полимеров, подобных крахмалу или клетчатке, образуемых в растениях. По окончании срока их полезной службы эти полимеры будут быстро и легко распадаться, не загрязняя окружающую среду. Химия с каждым днем полнее и разнообразнее использует богатства Земли, хотя уже давно пора начать их экономить. Ученым все время необходимо вспоминать предостережение древнеримского философа Сенеки: «Как считали наши предки, поздно быть бережливым, когда осталось на донышке. Да и к тому же остается там не только мало, но и самое скверное». Мы должны беречь нашу Землю, мы стольким ей обязаны...

Больше внимания стали обращать ученые и на чистоту воздуха, которым дышит все живое на Земле. Атмосфера Земли - не просто механическая смесь газов. В окружающей Землю газовой оболочке происходят быстрые химические реакции, и некоторые промышленные выбросы в атмосферу могут привести к необратимым и нежелательным изменениям в хрупком балансе разнородных, но очень важных для нас составляющих воздуха. Советский ученый В. Л. Тальрозе справедливо отметил однажды, как ничтожно малы массы веществ, образующих жизненно необходимую растениям, животным и человеку газовую оболочку Земли: «Слой вещества, создающий давление всего в один килограмм на квадратный сантиметр,- вот та среда, в которой мы живем и работаем, которая проводит звуки к нашему уху, пропускает свет Солнца. Десять миллиграммов углекислого газа из каждого килограмма этого вещества, взаимодействуя с солнечным светом, непрерывно поддерживают жизнь на Земле, 300 микрограмм озона защищают эту жизнь от губительного ультрафиолета, миллионная микрограмма электронов создает возможность общаться по радио. Эта среда, которая позволяет нам летать друг к другу, которой мы дышим, наконец, она тоже живет, живет физически: это не только бурный воздушный океан, но и газовый химический реактор». Химики научились создавать новые вещества и даже сумели обогнать Природу, получив материалы, в которых соединилось несоединимое. Сейчас ученые исследуют способность и умение Природы поддерживать мудрое равновесие между противоположными процессами: отнимая у Земли ее минеральные богатства, они стараются сохранить в неприкосновенности чистоту рек, озер, морей, прозрачность воздуха и благоухающий запах трав.

алхимия химия лабораторный естественный

Заключение

Химия оказалась в центре важных и сложных физических процессов. Химические реакции происходят не только в окружающем нас мире, но и в тканях, клетках, сосудах человеческого тела. Ученые XX века обнаружили, что именно химия помогает человеку различать запахи и цвета, позволяет быстро откликаться на едва уловимые перемены, происходящие в Природе. Зрительный пигмент родопсин улавливает световые лучи, и мы видим многообразие красок вокруг. Пахучие травы и растения рассылают во все стороны летучие органические молекулы, попадающие на чувствительные центры в органах обоняния живых существ, передавая тончайшие запахи Природы. В ответ на любое внешнее раздражение мозг человека посылает по нервным волокнам сигнал тревоги или радости, действия или успокоения. В организме человека нервные волокна, руководящие нашим движением, и мышцы, осуществляющие его, разделены зазором шириной не более 50 нанометров. Это расстояние в 1000 раз меньше толщины человеческого волоса. Окончания нервных волокон выделяют органическое вещество - ацетилхолин, который передает химический сигнал мышцам любого органа, совершая прыжок через пространство, отделяющее волокна от мышц.

Бурные химические процессы протекают внутри далеких звезд и в термоядерных реакторах, созданных учеными. Непрерывно идет химическое взаимодействие атомов и молекул в растениях и в недрах Земли, на поверхности водных просторов и в толще горных хребтов. Природа многое доверила химии и не ошиблась: химия оказалась ее верным союзником и трудолюбивым помощником.

Не может существовать и развиваться без химии ни одна из областей современных естественных наук.

Впереди у химии - и радости свершений, и трудности преодолений.

Химия к ним готова. В этот далекий, интересный поход она отправляется вместе с лучшим другом - неуемной, беспокойной, ищущей человеческой мыслью.

Список литературы

1. Габриелян О. С. Химия. 8 класс: Учеб. для общеобразоват. Учеб. Заведений. - 4-е изд., стереотип. - М.: Дрофа, 2000. - 208 с.: ил.

2. Колтун М. М. Мир химии: Научно-художественная лит-ра / Оформ. Б. Чупрыгин. - М.: Дет. лит., 1988.- 303 с.: ил., фотоил.

3. Концепции современного естествознания: Сер. «Учебники и учебные пособия» / Под ред. С. И. Самыгина. - Ростов н/Д: «Феникс», 1997. - 448 с.

4. Современная мультимедиа-энциклопедия «Большая энциклопедия Кирилла и Мефодия 2004» / © «Кирилл и Мефодий» 2002, 2003, с изменениями и дополнениями, © «МультиТрейд», 2004.

Размещено на Allbest.ru

...

Подобные документы

    Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат , добавлен 20.11.2006

    Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат , добавлен 11.03.2009

    Теоретическая основа аналитической химии. Спектральные методы анализа. Взаимосвязь аналитической химии с науками и отраслями промышленности. Значение аналитической химии. Применение точных методов химического анализа. Комплексные соединения металлов.

    реферат , добавлен 24.07.2008

    Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

    реферат , добавлен 20.05.2014

    От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

    реферат , добавлен 05.06.2008

    Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация , добавлен 04.10.2013

    История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.

    реферат , добавлен 02.12.2002

    Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат , добавлен 30.10.2009

    Основные функции химии. Свойства моющих и чистящих средств. Использование химии в здравоохранении и образовании. Обеспечение роста производства, продление сроков сохранности сельхозпродукции и повышение эффективности животноводства при помощи химии.

    презентация , добавлен 20.12.2009

    Химия как одна их важнейших наук для человечества. Основные периоды развития науки. Символика алхимии. Становление технической химии и ятрохимии. Таблица атомных масс Дальтона. Открытие электрона и радиоактивности. Структурная и физическая химия.