Химические свойства веществ выявляются в разнообразных химических реакциях.
Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называются химическими реакциями . Часто встречается и такое определение: химической реакцией называется процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).
Химические реакции записываются посредством химических уравнений и схем, содержащих формулы исходных веществ и продуктов реакции. В химических уравнениях, в отличие от схем, число атомов каждого элемента одинаково в левой и правой частях, что отражает закон сохранения массы.
В левой части уравнения пишутся формулы исходных веществ (реагентов), в правой части — веществ, получаемых в результате протекания химической реакции (продуктов реакции, конечных веществ). Знак равенства, связывающий левую и правую часть, указывает, что общее количество атомов веществ, участвующих в реакции, остается постоянным. Это достигается расстановкой перед формулами целочисленных стехиометрических коэффициентов, показывающих количественные соотношения между реагентами и продуктами реакции.
Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции. Если химическая реакция протекает под влиянием внешних воздействий (температура, давление, излучение и т.д.), это указывается соответствующим символом, как правило, над (или «под») знаком равенства.
Огромное число химических реакций может быть сгруппировано в несколько типов реакций, которым присущи вполне определенные признаки.
В качестве классификационных признаков могут быть выбраны следующие:
1. Число и состав исходных веществ и продуктов реакции.
2. Агрегатное состояние реагентов и продуктов реакции.
3. Число фаз, в которых находятся участники реакции.
4. Природа переносимых частиц.
5. Возможность протекания реакции в прямом и обратном направлении.
6. Знак теплового эффекта разделяет все реакции на: экзотермические реакции, протекающие с экзо -эффектом — выделение энергии в форме теплоты (Q>0, ∆H <0):
С +О 2 = СО 2 + Q
и эндотермические реакции, протекающие с эндо -эффектом — поглощением энергии в форме теплоты (Q<0, ∆H >0):
N 2 +О 2 = 2NО — Q.
Такие реакции относят к термохимическим .
Рассмотрим более подробно каждый из типов реакций.
Классификация по числу и составу реагентов и конечных веществ
1. Реакции соединения
При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:
Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.
Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:
СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,
так и относиться к числу окислительно-восстановительных:
2FеСl 2 + Сl 2 = 2FеСl 3 .
2. Реакции разложения
Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:
А = В + С + D.
Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.
Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:
t o | ||
4HNO 3 | = | 2H 2 O + 4NO 2 O + O 2 O. |
2AgNO 3 = 2Ag + 2NO 2 + O 2 ,
(NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.
Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.
Реакции разложения в органической химии носят название крекинга :
С 18 H 38 = С 9 H 18 + С 9 H 20 ,
или дегидрирования
C 4 H 10 = C 4 H 6 + 2H 2 .
3. Реакции замещения
При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:
А + ВС = АВ + С.
Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:
2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,
Zn + 2НСl = ZnСl 2 + Н 2 ,
2КВr + Сl 2 = 2КСl + Вr 2 ,
2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .
Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:
СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,
Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,
Иногда эти реакции рассматривают как реакции обмена :
СН 4 + Сl 2 = СН 3 Сl + НСl.
4. Реакции обмена
Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:
АВ + СD = АD + СВ.
Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами — оксидами, основаниями, кислотами и солями:
ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,
AgNО 3 + КВr = АgВr + КNО 3 ,
СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.
Частный случай этих реакций обмена — реакции нейтрализации :
НСl + КОН = КСl + Н 2 О.
Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:
NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,
Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,
СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .
5. Реакции переноса.
При реакциях переноса атом или группа атомов переходит от одной структурной единицы к другой:
АВ + ВС = А + В 2 С,
А 2 В + 2СВ 2 = АСВ 2 +АСВ 3 .
Например:
2AgCl + SnCl 2 = 2Ag + SnCl 4 ,
H 2 O + 2NO 2 = HNO 2 + HNO 3 .
Классификация реакций по фазовым признакам
В зависимости от агрегатного состояния реагирующих веществ различают следующие реакции:
1. Газовые реакции
H 2 + Cl 2 | 2HCl. |
2. Реакции в растворах
NaОН(р-р) + НСl(p-p) = NaСl(p-p) + Н 2 О(ж)
3. Реакции между твердыми веществами
t o | ||
СаО(тв) +SiO 2 (тв) | = | СаSiO 3 (тв) |
Классификация реакций по числу фаз.
Под фазой понимают совокупность однородных частей системы с одинаковыми физическими и химическими свойствами и отделенных друг от друга поверхностью раздела.
Все многообразие реакций с этой точки зрения можно разделить на два класса:
1.Гомогенные (однофазные) реакции. К ним относят реакции, протекающие в газовой фазе, и целый ряд реакций, протекающих в растворах.
2.Гетерогенные (многофазные) реакции. К ним относят реакции, в которых реагенты и продукты реакции находятся в разных фазах. Например:
газожидкофазные реакции
CO 2 (г) + NaOH(p-p) = NaHCO 3 (p-p).
газотвердофазные реакции
СO 2 (г) + СаО(тв) = СаСO 3 (тв).
жидкотвердофазные реакции
Na 2 SO 4 (р-р) + ВаСl 3 (р-р) = ВаSО 4 (тв)↓ + 2NaСl(p-p).
жидкогазотвердофазные реакции
Са(НСО 3) 2 (р-р) + Н 2 SО 4 (р-р) = СО 2 (r) +Н 2 О(ж) + СаSО 4 (тв)↓.
Классификация реакций по типу переносимых частиц
1. Протолитические реакции.
К протолитическим реакциям относят химические процессы, суть которых заключается в переносе протона от одних реагирующих веществ к другим.
В основе этой классификации лежит протолитическая теория кислот и оснований, в соответствии с которой кислотой считают любое вещество, отдающее протон, а основанием — вещество, способное присоединять протон, например:
К протолитическим реакциям относят реакции нейтрализации и гидролиза.
2. Окислительно-восстановительные реакции.
К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ. Например:
Zn + 2H + → Zn 2 + + H 2 ,
FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,
Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.
3. Лиганднообменные реакции.
К таковым относят реакции, в ходе которых происходит перенос электронной пары с образованием ковалентной связи по донорно-акцепторному механизму. Например:
Cu(NO 3) 2 + 4NH 3 = (NO 3) 2 ,
Fe + 5CO = ,
Al(OH) 3 + NaOH = .
Характерной особенностью лиганднообменных реакций является то, что образование новых соединений, называемых комплексными, происходит без изменения степени окисления.
4. Реакции атомно-молекулярного обмена.
К данному типу реакций относятся многие из изучаемых в органической химии реакций замещения, протекающие по радикальному, электрофильному или нуклеофильному механизму.
Обратимые и необратимые химические реакции
Обратимыми называют такие химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ.
Для обратимых реакций уравнение принято записывать следующим образом:
Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция, например:
СН 3 СООН + С 2 Н 5 ОН СН 3 СООС 2 Н 5 + Н 2 О.
Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании:
2КСlО 3 → 2КСl + ЗО 2 ,
или окисление глюкозы кислородом воздуха:
С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О.
Химические элементы, из которых состоит живая и неживая природа, находятся в постоянном движении, потому что непрерывно изменяются вещества, которые состоят из этих элементов.
Химические реакции (от лат. реакция - противодействие, отпор) - это ответное действие веществ на воздействие других веществ и физических факторов (температуры, давления, излучения и др.).
Однако такому определению соответствуют также и физические изменения, происходящие с веществами, - кипение, плавление, конденсация и др. Поэтому необходимо уточнить, что химические реакции - это процессы, в результате которых разрушаются старые химические связи и возникают новые и, как следствие, - из исходных веществ образуются новые вещества.
Химические реакции непрерывно происходят как внутри нашего организма, так и в окружающем нас мире. Бесчисленное множество реакций принято классифицировать по различным признакам. Давайте вспомним из курса 8 класса признаки, с которыми вы уже знакомы. Для этого обратимся к лабораторному опыту.
Лабораторный опыт № 3
Замещение железом меди в растворе сульфата меди (II)
Налейте в пробирку 2 мл раствора сульфата меди (II) и поместите в него канцелярскую кнопку или скрепку. Что наблюдаете? Запишите уравнения реакции в молекулярной и ионной формах. Рассмотрите окислительно-восстановительные процессы. На основе молекулярного уравнения отнесите эту реакцию к той или иной группе реакций на основании следующих признаков:
Теперь проверьте себя. CuSO 4 + Fe = FeSO 4 + Сu.
|
Мы подошли к очень важному понятию в химии - «скорость химической реакции». Известно, что одни химические реакции протекают очень быстро, другие - за значительные промежутки времени. При добавлении раствора нитрата серебра к раствору хлорида натрия практически мгновенно выпадает белый творожистый осадок:
AgNO 3 + NaCl = NaNO 3 + AgCl↓.
С огромными скоростями протекают реакции, сопровождающиеся взрывом (рис. 11, 1). Наоборот, медленно растут в каменных пещерах сталактиты и сталагмиты (рис. 11, 2), корродируют (ржавеют) стальные изделия (рис. 11, 3), разрушаются под действием кислотных дождей дворцы и статуи (рис. 11, 4).
Рис. 11.
Химические реакции, протекающие с огромными скоростями (1) и очень медленно (2-4)
Под скоростью химической реакции понимают изменение концентрации реагирующих веществ в единицу времени:
V p = C 1 - C 2 /t. |
В свою очередь, под концентрацией понимают отношение количества вещества (как вы знаете, оно измеряется в молях) к объёму, которое оно занимает (в литрах). Отсюда нетрудно вывести единицу измерения скорости химической реакции - 1 моль/(л с).
Изучает скорость химической реакции особый раздел химии, который называют химической кинетикой.
Знание её закономерностей позволяет управлять химической реакцией, заставляя её протекать быстрее или медленнее.
От каких же факторов зависит скорость химической реакции?
1. Природа реагирующих веществ . Обратимся к эксперименту.
Лабораторный опыт № 4
Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами
Налейте в две пробирки по 1-2 мл соляной кислоты и поместите: в 1-ю - гранулу цинка, во 2-ю - кусочек железа такого же размера. Природа какого реагента оказывает влияние на скорость взаимодействия кислоты с металлом? Почему? Запишите уравнения реакций в молекулярной и ионной формах. Рассмотрите их с позиции окисления-восстановления.
Далее поместите в две другие пробирки по одинаковой грануле цинка и прилейте к ним растворы кислот одинаковой концентрации: в 1-ю - соляной кислоты, во 2-ю - уксусной. Природа какого реагента оказывает влияние на скорость взаимодействия кислоты с металлом? Почему? Запишите уравнения реакций в молекулярной и ионной формах. Рассмотрите их с позиции окисления-восстановления. |
2. Концентрация реагирующих веществ . Обратимся к эксперименту.
Лабораторный опыт № 5
Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации
Нетрудно сделать вывод: чем выше концентрация реагирующих веществ, тем выше и скорость взаимодействия между ними.
Концентрацию газообразных веществ для гомогенных производственных процессов повышают, увеличивая давление. Например, так поступают при производстве серной кислоты, аммиака, этилового спирта.
Фактор зависимости скорости химической реакции от концентрации реагирующих веществ учитывается не только на производстве, но и в других областях жизнедеятельности человека, например в медицине. Больным с заболеваниями лёгких, у которых скорость взаимодействия гемоглобина крови с кислородом воздуха низкая, облегчают дыхание с помощью кислородных подушек.
3. Площадь соприкосновения реагирующих веществ . Эксперимент, иллюстрирующий зависимость скорости химической реакции от этого фактора, может быть выполнен с помощью следующего опыта.
Лабораторный опыт № 6
Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ
Для гетерогенных реакций: чем больше площадь соприкосновения реагирующих веществ, тем выше скорость реакции .
В этом вы могли убедиться на личном опыте. Чтобы разжечь костёр, вы под дрова подкладывали мелкие щепочки, а под них - скомканную бумагу, от которой и загорался весь костёр. Наоборот, тушение пожара водой заключается в уменьшении площади соприкосновения горящих предметов с воздухом.
На производстве этот фактор учитывают специально, используют так называемый кипящий слой. Твёрдое вещество для повышения скорости реакции измельчают почти до состояния пыли, а затем через него пропускают снизу второе вещество, как правило газообразное. Прохождение его через мелкораздробленное твёрдое вещество создаёт эффект кипения (отсюда и название метода). Кипящий слой используется, например, при производстве серной кислоты и нефтепродуктов.
Лабораторный опыт № 7
Моделирование «кипящего слоя»
4. Температура . Обратимся к эксперименту.
Лабораторный опыт № 8
Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты различной температуры
Нетрудно сделать вывод: чем выше температура, тем больше скорость реакции.
Первый лауреат Нобелевской премии голландский химик Я. X. Вант-Гофф сформулировал правило:
На производстве используются, как правило, высокотемпературные химические процессы: при выплавке чугуна и стали, варке стекла и мыла, производстве бумаги и нефтепродуктов и т. д. (рис. 12).
Рис. 12.
Высокотемпературные химические процессы: 1 - выплавка чугуна; 2 - варка стекла; 3 - производство нефтепродуктов
Пятый фактор, от которого зависит скорость химической реакции, - катализаторы. С ним вы познакомитесь в следующем параграфе.
Новые слова и понятия
- Химические реакции и их классификация.
- Признаки классификации химических реакций.
- Скорость химической реакции и факторы, от которых она зависит.
Задания для самостоятельной работы
- Что такое химическая реакция? В чём суть химических процессов?
- Дайте полную классификационную характеристику следующих химических процессов:
- а) горению фосфора;
- б) взаимодействию раствора серной кислоты с алюминием;
- в) реакции нейтрализации;
- г) образованию оксида азота (IV) из оксида азота (II) и кислорода.
- На основе личного опыта приведите примеры химических реакций, протекающих с различной скоростью.
- Что такое скорость химической реакции? От каких факторов она зависит?
- Приведите примеры влияния различных факторов на биохимические и производственные химические процессы.
- На основе личного опыта приведите примеры влияния различных факторов на химические реакции, протекающие в повседневной жизни.
- Почему продукты питания хранят в холодильнике?
- Химическую реакцию начали проводить при температуре 100 °С, затем подняли до 150 °С. Температурный коэффициент этой реакции равен 2. Во сколько раз возрастёт скорость химической реакции?
Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:
27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не
Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.
Рассмотрим классификацию химических реакций по различным признакам.
I. По числу и составу реагирующих веществ
Реакции, идущие без изменения состава веществ.
В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:
С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)
В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:
1. Изомеризация алканов.
Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.
2. Изомеризация алкенов.
3. Изомеризация алкинов (реакция А. Е. Фаворского).
CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3
этилацетилен диметнлацетилен
4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).
5. Изомеризация цианита аммония при нагревании.
Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.
Реакции, идущие с изменением состава вещества
Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.
1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество
В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:
1. Получение оксида серы (IV):
S + O 2 = SO - из двух простых веществ образуется одно сложное.
2. Получение оксида серы (VI):
SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.
3. Получение серной кислоты:
SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.
Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:
4NО 2 + O 2 + 2Н 2 O = 4НNO 3
В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:
1. Реакция гидрирования - присоединения водорода:
CH 2 =CH 2 + Н 2 → Н 3 -СН 3
этен → этан
2. Реакция гидратации - присоединения воды.
3. Реакция полимеризации.
2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.
В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:
1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.
2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.
3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.
В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:
1. Реакция дегидратации (отщепления воды) этанола:
С 2 H 5 OH → CH 2 =CH 2 + H 2 O
2. Реакция дегидрирования (отщепление водорода) этана:
CH 3 -CH 3 → CH 2 =CH 2 + H 2
или СН 3 -СН 3 → 2С + ЗН 2
3. Реакция крекинга (расщепления) пропана:
CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4
3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.
В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:
1. Взаимодействие щелочных или щелочноземельных металлов с водой:
2Na + 2Н 2 O = 2NаОН + Н 2
2. Взаимодействие металлов с кислотами в растворе:
Zn + 2НСl = ZnСl 2 + Н 2
3. Взаимодействие металлов с солями в растворе:
Fе + СuSO 4 = FеSO 4 + Сu
4. Металлотермия:
2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr
Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).
С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr
бензол → бромбензол
Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.
В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.
4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями
Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).
В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:
1. Реакция нейтрализации, идущая с образованием соли и воды.
2. Реакция между щелочью и солью, идущая с образованием газа.
3. Реакция между щелочью и солью, идущая с образованием осадка:
СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4
или в ионном виде:
Сu 2+ + 2OН - = Сu(ОН) 2
В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:
1. Реакция, идущая с образованием слабого электролита - Н 2 O:
СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O
2. Реакция, идущая с образованием газа:
2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O
3. Реакция, идущая с образованием осадка:
2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3
2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3
II. По изменению степеней окисления химических элементов, образующих вещества
По этому признаку различают следующие реакции:
1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.
К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:
1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2
2. 2Mg 0 + O 0 2 = Mg +2 O -2
Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.
2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O
В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.
1. Они восстанавливаются в соответствующие спирты:
Альдекиды окисляются в соответствующие кислоты:
2. Реакции, идущие без изменения степеней окисления химических элементов.
К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:
НСООН + CHgOH = НСООСН 3 + H 2 O
III. По тепловому эффекту
По тепловому эффекту реакции делят на экзотермические и эндотермические.
1. Экзотермические реакции протекают с выделением энергии.
К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.
Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.
2. Эндотермические реакции протекают с поглощением энергии.
Очевидно, что к ним будут относиться почти все реакции разложения, например:
1. Обжиг известняка
2. Крекинг бутана
Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:
Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж
N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж
IV. По агрегатному состоянию реагирующих веществ (фазовому составу)
По агрегатному состоянию реагирующих веществ различают:
1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).
2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).
V. По участию катализатора
По участию катализатора различают:
1. Некаталитические реакции, идущие без участия катализатора.
2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.
VI. По направлению
По направлению различают:
1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.
2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.
В органической химии признак обратимости отражают названия - антонимы процессов:
Гидрирование - дегидрирование,
Гидратация - дегидратация,
Полимеризация - деполимеризация.
Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.
VII. По механизму протекания различают:
1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.
Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.
Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д
Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями.
За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:
По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.
2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.
Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.
По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.
VIII. По виду энергии,
инициирующей реакцию, различают:
1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.
Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.
К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.
2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.
Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:
С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O
Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.
3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей
4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.
Рассмотренная выше классификация химических реакций отражена на схеме.
Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.
Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.