» » Молекулярно кинетическая теория стремится объяснить тепловые процессы. Основные положения МКТ. Строение вещества. Молекула. Три состояния вещества

Молекулярно кинетическая теория стремится объяснить тепловые процессы. Основные положения МКТ. Строение вещества. Молекула. Три состояния вещества

Вещество состоит из частиц.

Молекула - это самая маленькая частица вещества, которая обладает его основными химическими свойствами.

Молекула состоит из атомов. Атом - наименьшая частица вещества, которая не делится при химических реакциях.

Многие молекулы состоят из двух или больше атомов, удерживаемых вместе химическими связями. Некоторые молекулы состоят из сотен тысяч атомов.

Второе положение молекулярно-кинетической теории

Молекулы находятся в непрерывном хаотическом движении. Это движение не зависит от внешних воздействий. Движение происходит в непредсказуемом направлении из-за столкновения молекул. Доказательством является броуновское движение частиц (открыто Р.Броуном 1827г). Частицы помещают в жидкость или газ и наблюдают их непредсказуемое движение из-за соударений с молекулами вещества.


Броуновское движение

Доказательством хаотического движения является диффузия - проникновение молекул одного вещества в промежутки между молекулами другого вещества. Например, запах освежителя воздуха мы ощущаем не только в том месте, где его распылили, но он постепенно перемешивается с молекулами воздуха во всей комнате.

Агрегатное состояние вещества

В газах среднее расстояние между молекулами в сотни раз превышает их размеры. В основном молекулы движутся поступательно и равномерно . После столкновений начинают вращаться.

В жидкостях расстояние между молекулами значительно меньше. Молекулы совершают колебательное и поступательное движения. Молекулы через малые промежутки времени скачкообразно переходят в новые положения равновесия (мы наблюдаем текучесть жидкости).

В твердых телах молекулы колеблются и очень редко перемещаются (только при увеличении температуры).

Третье положение молекулярно-кинетической теории

Между молекулами существуют силы взаимодействия, которые имеют электромагнитную природу . Эти силы позволяют объяснить возникновение сил упругости . Когда вещество сжимают, молекулы сближаются, между ними возникает сила отталкивания, когда внешние силы отдаляют молекулы друг от друга (растягивают вещество), между ними возникает сила притяжения.

Плотность вещества

Это скалярная величина, которая определяется по формуле

Плотность веществ - известные табличные значения

Химические характеристики вещества

Постоянная Авогадро N A - число атомов, содержащихся в 12г изотопа углерода

Изучение молекулярной физики начнем с изучения молекулярно-кинетической теории газов.

Молекулярно-кинетическая теория газов - раздел физики, изучающий их свойства статистическими методами на основе представления об их молекулярном строении и определенном законе взаимодействия между молекулами.

Газ (от греческого chaoc - хаос) - агрегатное состояние вещества, в котором составляющие его атомы и молекулы слабо взаимодействуют и хаотически движутся в результате столкновений друг с другом, занимая весь предоставленный им объем.

Кинетическая теория газов строится на некоторых общих представлениях и опытных фактах. Вначале рассмотрим модель, называемую идеальным газом.

Идеальный газ - это газ молекулы, которого можно рассматривать как материальные точки и для которого можно пренебречь потенциальной энергией взаимодействия молекул по сравнению с их кинетической энергией. Столкновения молекул газа между собой и со стенками сосуда считаются абсолютно упругими.

Некоторые реальные газы близки по своим свойствам к идеальному газу при условиях близких к нормальным (кислород, гелий), а так же при низких давлениях и высоких температурах.

Макроскопическое состояние газа определяется давлением, температурой и объемом. В свою очередь давление, температура и объем являются параметрами, характеризующими макроскопическое состояние системы. Микроскопическое состояние газа определяется положением и скоростями всех его молекул.

Параметры состояния системы могут изменяться. Изменение любого термодинамического параметра называется термодинамическим процессом . Если состояние системы с течением времени не изменяется, то это стационарное состояние . Стационарное состояние системы, не обусловленное внешними процессами, называется равновесным состоянием системы. Уравнение, описывающее равновесное состояние термодинамической системы, называется уравнением состояния .

Основные положения молекулярно-кинетической теории газов

Первое положение молекулярно-кинетической теории - полная хаотичность движения молекул. В газе все направления движения молекул равноправны. Нет ни одного направления, в котором молекулы двигались бы в большем количестве или в котором преобладали бы более быстрые по сравнению с любым другим направлением молекулы.

Второе основное положение - пропорциональность средней скорости молекул корню квадратному их абсолютной температуры. Это положение является результатом опытов.

Третье положение - средние кинетические энергии молекул разных газов, находящихся при одинаковой температуре, равны между собой. Это положение также является результатом опытов.

1.1. Основное уравнение кинетической теории газов

Для вывода этого уравнения предположим, что в сосуде находится идеальный газ. Молекулы газа соударяются друг с другом и со стенками сосуда. Соударения молекул друг с другом приводят только к перераспределению энергии между молекулами. Выделим некоторую элементарную площадку на стенке сосуда и рассчитаем давление газа на нее (Рис.1). При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс
, гдеm - масса молекулы, v - ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме цилиндра с основанием S и высотой vt. Если n - концентрация молекул, то число этих молекул - nSvt. Однако следует учесть, что молекулы движутся к площадке S под разными углами и с различными скоростями. Поскольку движение молекул хаотическое, то его можно заменить движением вдоль трех взаимно перпендикулярных направлений. К тому же поскольку ни одно из направлений не имеет преимуществ перед другими, то в любой момент времени вдоль каждого из них движется 1/3 всех молекул, причем половина из них, т.е. 1/6 в одну сторону, другая половина - в противоположную. Тогда за время t площадку S достигнет число молекул, равное
. При столкновении с площадкойS эти молекулы передадут ей импульс

Тогда давление, оказываемое газом на стенку сосуда, равно


. (1.1.1)

Как уже отмечалось выше, молекулы движутся с различными скоростями v 1, v 2 , …, v n , если в объеме V газа содержится N молекул, то вместо скорости v необходимо учитывать среднюю квадратичную скорость

Тогда уравнение (1.1.1) запишется в виде

(1.1.2)

Уравнение (1.1.2) называют основным уравнением кинетической теории идеальных газов .

П
оскольку концентрацияn=N/V, следовательно

или
,

где Е - средняя кинетическая энергия одной молекулы, Е - кинетическая энергия газа.

Давление пропорционально числу молекул в единице объема и среднему значению кинетической энергии молекул.

Из основного уравнения можно вывести все газовые законы, установленные экспериментально еще в XVIII столетии, для данной массы газа справедливы законы:

Бойля-Мариотта PV=const, при T=const;

Гей-Люссака
при р=const и
приV=const;

Дальтона p=p 1 +p 2 +…+p n ;

Для 1 киломоля идеального газа справедлива формула Клапейрона-Менделеева

, (1.1.4)

где R=8,314 Дж/(мольК) - универсальная газовая постоянная. Для одного моля газа N=N A =6,0210 23 - число Авагадро. Следовательно, число Авогадро это число молекул в моле любого вещества. Количество молекул газа при нормальных условиях (p=1,01310 -5 Па, T=273K), находящихся в единице объема (1м 2), называется числом Лошмидта N L =2,68710 25 м -3 . Оно равняется числу Авогадро, деленному на объем моля газа при нормальных условиях V m =22,4110 -3 м 3 моль -1

Сравнивая выражения (1.1.3) и (1.1.4), получаем

С учетом постоянной Больцмана (k=R/N A =1,3810 -23 Дж/K):


(1.1.5)

Мы получили соотношение, связывающее среднюю кинетическую энергию одной молекулы с температурой.

Температура - физическая величина, характеризующая состояние равновесия термодинамической системы и пропорциональная средней кинетической энергии хаотического движения частиц, составляющих систему.

При приведении в контакт веществ, с различными температурами, т.е. кинетическими энергиями частиц, имеет место теплообмен - выравнивание температур.

Для измерения температуры используют зависимость физических свойств веществ от температуры (контактную разность потенциалов, тепловое расширение, зависимость электрического сопротивления, излучательную способность и т.д.).

Из уравнения (1.1.4) можно рассмотреть связь между температурой, давлением и объемом для заданной массы идеального газа

где m - масса газа,

 - молярная масса газа,

 - число молей,

N- число молекул в данном объеме газа.

Поскольку для двух различных состояний одной массы газа p 1 V 1 =NkT 1 и p 2 V 2 =NkT 2 , имеем
т.е.
(1.1.6)

Термодинамическая температура прямо пропорциональна произведению объема на давление (для заданной массы газа).

В качестве примера применения уравнения Менделеева - Клапейрона рассмотрим процесс изменения температуры и давления при постоянном объеме V=const (изохорический процесс). В этом случае удобно воспользоваться зависимостью давления от плотности и температуры

, (1.1.7)

где =m/ - плотность газа (кг/м 3).

График изохорического процесса в координатах р,Т (рис.1.1.2) представляет собой прямые, проходящие через начало координат. Из зависимости (1.1.7) и графика следует, что большей плотности (или концентрации n) соответствует большее давление. С другой стороны, большему объему V (при постоянной массе m) соответствует меньший угол наклона прямой к оси абсцисс - обратная зависимость.

Пример 1. Определить температуру, при которой 4м 2 газа создают давление 1,510 5 Па, если при нормальных условиях газ занимает объем 5м 3 .

Решение. В нормальных условиях V 1 =5 м 3 , р 1 =1атм=101325 Па, Т 1 =273К, необходимо найти Т 2 при V 2 =4м 3 , р 2 =1,510 5 Па. Согласно (5) имеем

откуда

Пример2. Сколько молекул вы вдыхаете, если при одном вдохе получаете 1л воздуха?

Решение. Объем одного киломоля равен 22,4м 3 , значит 1л воздуха равен 110 -3 /22,4=4,510 -5 кмоль. Таким образом, 1л воздуха содержит 4,510 -5 6,0210 26 =2,710 22 молекул.

Пример3. Что тяжелее 1м 3 сухого воздуха или 1м 3 влажного воздуха при одинаковых температурах и давлениях?  возд. =29 кг/кмоль,  воды =18 кг/кмоль.

Решение. Средняя масса молекулы сухого воздуха больше, чем у водяного пара. Число молекул в обоих случаях одинаково, но во влажном воздухе часть молекул заменена более легкими молекулами воды, следовательно, 1м 3 сухого воздуха тяжелее, чем 1м 3 влажного.

Пример4. Как изменится давление данной массы газа при постоянном объеме, если температуру газа увеличить в 2 раза и каждая молекула при этом распадется на два атома?

Решение.
, так какN и T увеличиваются в 2 раза, то давление увеличится в 4 раза.

Пример5. Показать, что
.

Решение. Рассмотрим четыре молекулы, скорости которых различны и равны 1,2,3 и 4м/c. Квадрат среднего значения
равен

,

а средняя квадратичная скорость равна

Если скорости отдельных молекул равны +1, -2, -3, +4 м/c, то
, а

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

§ 2. Молекулярная физика. Термодинамика

 Основные положения молекулярно-кинетической теории (МКТ) заключаются в следующем.
 1. Вещества состоят из атомов и молекул.
 2. Атомы и молекулы находятся в непрерывном хаотическом движении.
 3. Атомы и молекулы взаимодействуют между собой с силами притяжения и отталкивания
 Характер движения и взаимодействия молекул может быть разным, в связи с этим принято различать 3 агрегатных состояния вещества: твёрдое, жидкое и газообразное . Наиболее сильно взаимодействие между молекулами в твёрдых телах. В них молекулы расположены в так называемых узлах кристаллической решётки, т.е. в положениях, при которых равны силы притяжения и отталкивания между молекулами. Движение молекул в твёрдых телах сводится к колебательному около этих положений равновесия. В жидкостях ситуация отличается тем, что, поколебавшись около каких-то положений равновесия, молекулы часто их меняют. В газах молекулы далеки друг от друга, поэтому силы взаимодействия между ними очень малы и молекулы движутся поступательно, изредка сталкиваясь между собой и со стенками сосуда, в котором они находятся.
Относительной молекулярной массой M r называют отношение массы m o молекулы к 1/12 массы атома углерода m oc:

Количество вещества в молекулярной физике принято измерять в молях.
Молем ν называется количество вещества, в котором содержится столько же атомов или молекул (структурных единиц), сколько их содержится в 12 г углерода. Это число атомов в 12 г углерода называется числом Авогадро :

Молярная масса M = M r · 10 −3 кг/моль - это масса одного моля вещества. Количество молей в веществе можно рассчитать по формуле

Основное уравнение молекулярно-кинетической теории идеального газа:

где m 0 - масса молекулы; n - концентрация молекул; - средняя квадратичная скорость движения молекул.

2.1. Газовые законы

Уравнение состояния идеального газа - уравнение Менделеева-Клапейрона:

Изотермический процесс (закон Бойля-Мариотта):
Для данной массы газа при неизменной температуре произведение давления на его объём есть величина постоянная:

В координатах p − V изотерма - гипербола, а в координатах V − T и p − T - прямые (см. рис. 4)

Изохорный процесс (закон Шарля):
Для данной массы газа при неизменном объёме отношение давления к температуре в градусах Кельвина есть величина постоянная (см. рис. 5).

Изобарный процесс (закон Гей-Люссака):
Для данной массы газа при неизменном давлении отношение объёма газа к температуре в градусах Кельвина есть величина постоянная (см. рис. 6).

Закон Дальтона :
Если в сосуде находится смесь нескольких газов, то давление смеси равно сумме парциальных давлений, т.е. тех давлений, которые каждый газ создавал бы в отсутствии остальных.

2.2. Элементы термодинамики

Внутренняя энергия тела равна сумме кинетических энергий беспорядочного движения всех молекул относительно центра масс тела и потенциальных энергий взаимодействия всех молекул друг с другом.
Внутренняя энергия идеального газа представляет собой сумму кинетических энергий беспорядочного движения его молекул; так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия обращается в нуль.
 Для идеального одноатомного газа внутренняя энергия

Количеством теплоты Q называют количественную меру изменения внутренней энергии при теплообмене без совершения работы.
Удельная теплоёмкость - это количество теплоты, которое получает или отдаёт 1 кг вещества при изменении его температуры на 1 К

Работа в термодинамике:
работа при изобарном расширении газа равна произведению давления газа на изменение его объёма:

Закон сохранения энергии в тепловых процессах (первый закон термодинамики):
изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Применение первого закона термодинамики к изопроцессам:
а) изотермический процесс T = const ⇒ ∆T = 0.
В этом случае изменение внутренней энергии идеального газа

Следовательно: Q = A.
Всё переданное газу тепло расходуется на совершение им работы против внешних сил;

б) изохорный процесс V = const ⇒ ∆V = 0.
В этом случае работа газа

Следовательно, ∆U = Q.
Всё переданное газу тепло расходуется на увеличение его внутренней энергии;

в) изобарный процесс p = const ⇒ ∆p = 0.
В этом случае:

Адиабатным называется процесс, происходящий без теплообмена с окружающей средой:

В этом случае A = −∆U , т.е. изменение внутренней энергии газа происходит за счёт совершения работы газа над внешними телами.
 При расширении газ совершает положительную работу. Работа A, совершаемая внешними телами над газом, отличается от работы газа только знаком:

Количество теплоты, необходимое для нагревания тела в твёрдом или жидком состоянии в пределах одного агрегатного состояния, рассчитывается по формуле

где c - удельная теплоёмкость тела, m - масса тела, t 1 - начальная температура, t 2 - конечная температура.
Количество теплоты, необходимое для плавления тела при температуре плавления, рассчитывается по формуле

где λ - удельная теплота плавления, m - масса тела.
Количество теплоты, необходимое для испарения , рассчитывается по формуле

где r - удельная теплота парообразования, m - масса тела.

Для того чтобы превратить часть этой энергии в механическую, чаще всего пользуются тепловыми двигателями. Коэффициентом полезного действия теплового двигателя называют отношение работы A, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Французский инженер С. Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. КПД такой машины

 В воздухе, представляющем из себя смесь газов, наряду с другими газами находятся водяные пары. Их содержание принято характеризовать термином «влажность». Различают абсолютную и относительную влажность.
Абсолютной влажностью называют плотность водяных паров в воздухе - ρ ([ρ] = г/м 3). Можно характеризовать абсолютную влажность парциальным давлением водяных паров - p ([p] = мм. рт. столба; Па).
Относительная влажность (ϕ) - отношение плотности водяного пара, имеющегося в воздухе, к плотности того водяного пара, который должен был бы содержаться в воздухе при этой температуре, чтобы пар был насыщенным. Можно измерять относительную влажность как отношение парциального давления водяного пара (p) к тому парциальному давлению (p 0), которое имеет насыщенный пар при этой температуре:

Основные положения молекулярно-кинетической теории.

Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества.

МКТ базируется на трех основных положениях:

1. Все вещества состоят из частиц - молекул, атомов и ионов.

2. Частицы вещества беспрерывно и беспорядочно движутся.

3. Частицы вещества взаимодействуют друг с другом.

Беспорядочное (хаотичное) движение атомов и молекул в веществе называют тепловым движением, потому что скорость движения частиц увеличивается с ростом температуры. Экспериментальным подтверждением непрерывного движения атомов и молекул в веществе является броуновское движение и диффузия.

Частицы вещества.

Все вещества и тела в природе состоят из атомов и молекул - групп атомов. Такие большие тела называются макроскопическими. Атомы и молекулы относятся к микроскопическим телам. Современные приборы (ионные проекторы, туннельные микроскопы) позволяют видеть изображения отдельных атомов и молекул.
Основа строения вещества - атомы. Атомы тоже имеют сложную структуру, они состоят из элементарных частиц - протонов, нейтронов, входящих в состав ядра атома, электронов, а также других элементарных частиц.
Атомы могут объединяться в молекулы, а могут быть вещества, состоящие только из атомов. Атомы в целом электронейтральны. Атомы, имеющие избыток или недостаток электронов называются ионами. Бывают положительные и отрицательные ионы.

На иллюстрации показаны примеры разных веществ, имеющих строение соответственно в виде атомов, молекул и ионов.

Силы взаимодействия между молекулами.

На очень малых расстояниях между молекулами действуют силы отталкивания. Благодаря этому молекулы не проникают друг в друга и куски вещества никогда не сжимаются до размеров одной молекулы. Молекула - это сложная система, состоящая из отдельных заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, но между ними на малых расстояниях действуют значительные электрические силы: происходит взаимодействие электронов и атомных ядер соседних молекул. Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия практически не сказываются. Силы между электрически нейтральными молекулами являются короткодействующими. На расстояниях, превышающих 2 - 3 диаметра молекул, действуют силы притяжения. По мере уменьшения расстояния между молекулами сила притяжения сначала увеличивается, а затем начинает убывать и убывает до нуля, когда расстояние между двумя молекулами становится равным сумме радиусов молекул. При дальнейшем уменьшении расстояния электронные оболочки атомов начинают перекрываться, и между молекулами возникают быстро нарастающие силы отталкивания.

Идеальный газ. Основное уравнение МКТ.

Известно, что частицы в газах, в отличие от жидкостей и твердых тел, располагаются друг относительно друга на расстояниях, существенно превышающих их собственные размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше энергии межмолекулярного взаимодействия. Для выяснения наиболее общих свойств, присущих всем газам, используют упрощенную модель реальных газов - идеальный газ. Основные отличия идеального газа от реального газа:

1. Частицы идеального газа - сферические тела очень малых размеров, практически материальные точки.
2. Между частицами отсутствуют силы межмолекулярного взаимодействия.
3. Соударения частиц являются абсолютно упругими.

Реальные разреженные газы действительно ведут себя подобно идеальному газу. Воспользуемся моделью идеального газа для объяснения происхождения давления газа. Вследствие теплового движения, частицы газа время от времени ударяются о стенки сосуда. При каждом ударе молекулы действуют на стенку сосуда с некоторой силой. Складываясь друг с другом, силы ударов отдельных частиц образуют некоторую силу давления, постоянно действующую на стенку. Понятно, что чем больше частиц содержится в сосуде, тем чаще они будут ударяться о стенку сосуда, и тем большей будет сила давления, а значит и давление. Чем быстрее движутся частицы, тем сильнее они ударяют в стенку сосуда. Мысленно представим себе простейший опыт: катящийся мяч ударяется о стенку. Если мяч катится медленно, то он при ударе подействует на стенку с меньшей силой, чем если бы он двигался быстро. Чем больше масса частицы, тем больше сила удара. Чем быстрее движутся частицы, тем чаще они ударяются о стенки сосуда. Итак, сила, с которой молекулы действуют на стенку сосуда, прямо пропорциональна числу молекул, содержащихся в единице объема (это число называется концентрацией молекул и обозначается n), массе молекулы m o , среднему квадрату их скоростей и площади стенки сосуда. В результате получаем: давление газа прямо пропорционально концентрации частиц, массе частицы и квадрату скорости частицы (или их кинетической энергии). Зависимость давления идеального газа от концентрации и от средней кинетической энергии частиц выражается основным уравнением молекулярно-кинетической теории идеального газа. Мы получили основное уравнение МКТ идеального газа из общих соображений, но его можно строго вывести, опираясь на законы классической механики. Приведем одну из форм записи основного уравнения МКТ:
P=(1/3)· n· m o · V 2 .

Основные итоги.