» » Основные понятия статистики закон больших чисел кратко. Сущность закона больших чисел и его значение в статистике и экономике. сбор данных

Основные понятия статистики закон больших чисел кратко. Сущность закона больших чисел и его значение в статистике и экономике. сбор данных

Вам предстоит изучить следующие основные вопросы темы:

    Связь статистики с теорией и практикой рыночной экономики

    Задачи статистики

    Понятия и методы статистики

    Закон больших чисел, статистическая закономерность

Занятие 1. Введение

1. История возникновения статистики

Статистика – самостоятельная общественная наука, имеющая свой предмет и метод исследования. Возникла она из практических потребностей общественной жизни. Уже в древнем мире появилась потребность подсчитать численность жителей государства, учитывать людей, пригодных к военному делу, определять количество скота, размеры земельных угодий и другого имущества. Информация такого рода была необходима для сбора налогов, ведения войн и т.п. В дальнейшем, по мере развития общественной жизни, круг учитываемых явлений постепенно расширяется.

Особенно возрос объём собираемой информации с развитием капитализма и мировых хозяйственных связей. Потребности этого периода вынуждали органы государственного управления и капиталистические предприятия собирать для практических нужд обширную и разнообразную информацию о рынках труда и сбыта товаров, сырьевых ресурсов.

В середине XVII-го века в Англии возникло научное направление, получившее название «политические арифметики». Начало этому направлению положили Вильям Пети (1623-1687) и Джон Граунт (1620-1674). «Политические арифметики» на основе изучения информации о массовых общественных явлениях стремились открыть закономерности общественно жизни и, таким образом, отметить на вопросы, возникавшие в связи с развитием капитализма.

Наряду со школой «политических арифметиков» в Англии, в Германии развивалась школа описательной статистики или «государствоведения». Возникновение этой науки относится к 1660 г.

Развитие политической арифметики и государствоведения привело к появлению науки статистики.

Понятие «статистика» происходит от латинского слова «status», которое в переводе означает положение, состояние, порядок явлений.

В научный оборот термин «статистика» ввел профессор Геттингенского университета Готфрид Ахенваль (1719-1772).

В зависимости от объекта изучения статистика как наука подразделяется на социальную, демографическую, экономическую, промышленную, торговую, банковскую, финансовую, медицинскую и т.д. Общие свойства статистических данных, независимо от их природы и методы их анализа рассматриваются математической статистикой и общей теорией статистики.

Предмет статистики . Статистика имеет дело прежде всего с количественной стороной явлений и процессов общественной жизни. Одной из характерных особенностей статистики является то, что при изучении количественной стороны общественных явлений и процессов она всегда отображает качественные особенности исследуемых явлений, т.е. изучает количество в неразрывной связи, единстве с качеством.

Качество в научно-философском понимании – это свойства, присущие предмету или явлению, которые отличают данный предмет или явление от других. Качество – это то, что делает предметы и явления определёнными. Пользуясь философской терминологией, можно сказать, что статистика изучает общественные явления как единство их качественной и количественной определённости, т.е. изучает меру общественных явлений.

Статистическая методология . Важнейшими составными элементами статистической методологии являются:

    массовое наблюдение

    группировка, применение обобщающих (сводных) характеристик;

    анализ и обобщение статистических фактов и обнаружение закономерностей в изучаемых явлениях.

Рассмотрим более подробно эти элементы.

    Чтобы охарактеризовать с количественной стороны любое массовое явление, необходимо сначала собрать информацию о составляющих его элементах. Это достигается при помощи массового наблюдения, осуществляемого на основе выработанных статистической наукой правил и способов.

    Собранные в процессе статистического наблюдения сведения подвергаются в дальнейшем сводке (первичной научной обработке), в процессе которой из всей совокупности обследованных единиц выделяются характерные части (группы).Выделение групп и подгрупп единиц из всей обследованной массы называется в статистике группировкой . Группировка в статистике является основой обработки и анализа собранной информации. Осуществляется она на основе определённых принципов и правил.

    В процессе обработки статистической информации совокупность обследованных единиц и выделенные её части на основе применения метода группировок характеризуются системой цифровых показателей: абсолютных и средних величин, относительных величин, показателей динамики и т.д.

3. Задачи статистики

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Принятие управленческих решений на всех уровнях, от общегосударственного или регионального и до уровня отдельной корпорации или частной фирмы, невозможно без должностного статистического обеспечения.

Именно статистические данные позволяют определить объёмы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.

Статистика – это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороной, количественное выражение закономерностей общественного развития в конкретных условиях места и времени.

Для получения статистической информации органы государственной и ведомственной статистики, а также коммерческие структуры проводят различного рода статистические исследования. Как уже отмечалось, процесс статистического исследования включает три основные стадии: сбор данных, их сводка и группировка, анализ и расчет обобщающих показателей.

От того, как собран первичный статистический материал, как он обработан и сгруппирован, в значительной степени зависят результаты и качество всей последующей работы. Недостаточная проработка программно-методологических и организационных аспектов статистического наблюдения, отсутствие логического и арифметического контроля собранных данных, несоблюдение принципов формирования групп в конечном итоге могут привести к абсолютно ошибочным выводам.

Не менее сложной, трудоёмкой и ответственной является и заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязи между изучаемыми явлениями и процессами.

Используемые на всех стадиях исследования приёмы и методы сбора, обработки и анализа данных являются предметом изучения общей теории статистики, которая является базовой отраслью статистической науки. Разработанная методология применяется в макроэкономической статистики, отраслевых статистиках (промышленности, сельского хозяйства, торговли прочих), статистике населения, социальной статистике, и в других статистических отраслях. Большое значение статистики в обществе объясняется тем, что она представляет собой одно из самых основных, одно из наиболее важных средств, с помощью которых хозяйствующий субъект ведёт учёт в хозяйстве.

Учёт является способом систематического измерения и изучения обобщённых явлений с помощью количественных методов.

На всякое изучение количественных соотношений есть учёт. Различные количественные отношения между явлениями можно представить в виде тех или иных математических формул, и это, само по себе, ещё не будет учётом. Одна из характерных особенностей учёта – подсчёт ОТДЕЛЬНЫХ элементов, ОТДЕЛЬНЫХ единиц, из которых складывается то или иное явление. В учёте используются различные математические формулы, но их применение обязательно связано с подсчётом элементов.

Учёт является средством контроля и обобщения результатов, полученных в процессе обобщённого развития.

Таким образом, статистика выступает важнейшим инструментом познания и использования экономических и других законов общественного развития.

Экономическая реформа ставит качественно новые задачи перед статистической наукой и практикой. В соответствии с государственной программой перехода России на принятую в международной практике систему учёта и статистики реорганизуется система сбора статистической информации и совершенствуется методология анализа рыночных процессов и явлений.

Широко применяемая в мировой практике система национальных счетов (СНС) соответствует особенностям и требования рыночных отношений. Поэтому переход к рыночной экономике позволил внедрить в статистический и бухгалтерский учёт СНС, отражающую функционирование отраслей рыночной экономики.

Это необходимо для комплексного анализа экономики на макроуровне и обеспечения информацией международных экономических организаций, с которыми Россия сотрудничает.

Статистике принадлежит большая роль в информационно-аналитическом обеспечении развития экономической реформы. Единой целью этого процесса является оценка, анализ и прогнозирование состояния и развития экономики на современном этапе.

Понятие о центральной предельной теореме.

Неравенство и теорема Чебышева.

Сущность закона больших чисел и его значение в статистике и экономике.

Тема 8. Закон больших чисел

Под законом больших чисел в теории вероятностей понимается совокупность теорем, в которых устанавливается связь между средним арифметическим достаточно большого числа случайных величин и средним арифметическим их математических ожиданий.

В повседневной жизни, бизнесе, научных исследованиях мы постоянно сталкиваемся с событиями и явлениями с неопределённым исходом. Например, торговец не знает, сколько посетителей придёт к нему в магазин, бизнесмен не знает курс доллара через 1 день или год; банкир – вернут ли ему заём в срок; страховые компании – когда и кому придётся выплачивать страховое вознаграждение.

Развитие любой науки предполагает установление основных закономерностей и причинно-следственных связей в виде определений, правил, аксиом, теорем.

Связующим звеном между теорией вероятностей и математической статистикой являются так называемые предельные теоремы, к которым относится закон больших чисел. Закон больших чисел определяет условия, при которых совокупное воздействие множества факторов приводит к результату, не зависящего от случая. В самом общем виде закон больших чисел сформулировал П.Л.Чебышев. Большой вклад в изучение закона больших чисел внесли А.Н.Колмогоров, А.Я.Хинчин, Б.В.Гнеденко, В.И.Гливенко.

К предельным теоремам относится также так называемая Центральная предельная теорема А.Ляпунова, определяющая условия, при которых сумма случайных величин будет стремиться к случайной величине с нормальным законом распределения. Эта теорема позволяет обосновать методы проверки статистических гипотез, корреляционно-регрессионный анализ и другие методы математической статистики.

Дальнейшее развитие центральной предельной теоремы связано с именами Линденберга, С.Н. Бернштейна, А.Я. Хинчина, П.Леви.

Практическое применение методов теории вероятностей и математической статистики основано на двух принципах, фактически основывающихся на предельных теоремах:

принцип невозможности наступления маловероятного события;

принцип достаточной уверенности в наступлении события, вероятность которого близка к 1.

В социально – экономическом смысле под законом больших чисел понимается общий принцип, в силу которого количественные закономерности, присущие массовым общественным явлениям, отчетливо проявляются лишь в достаточно большом числе наблюдений. Закон больших чисел порожден особыми свойствами массовых социальных явлений. Последние, в силу своей индивидуальности, отличаются друг от друга, а также имеют нечто общее, обусловленное их принадлежностью к определенному виду, классу, к определенным группам. Единичные явления в большей степени подвержены воздействию случайных и несущественных факторов, чем масса в целом. В большом числе наблюдений взаимно погашаются случайные отклонения от закономерностей. В результате взаимопогашения случайных отклонений средние, исчисленные для величин одного и того же вида, становятся типичными, отражающими действие постоянных и существенных факторов в данных условиях места и времени. Тенденции и закономерности, вскрытые с помощью закона больших чисел, - это массовые статистические закономерности.

Важное значение для статистической методологии играет закон больших чисел. В наиболее общем виде он может быть сформулирован следующим образом:

Закон больших чисел — общий принцип в силу которого совокупные действия большого числа случайных факторов приводит при некоторых общих условиях к результату почти независящему от случая.

Закон больших чисел порожден особыми свойствами массовых явлений. Массовые явления последние в свою очередь с одной стороны в силу своей индивидуальности отличаются друг от друга, а с другой имеет нечто общее определяющее их принадлежность к определенному классу.

Единичное явление в большей степени подвержено влиянию случайных и несущественных факторов, чем масса явлений в целом. При определенных условиях значение признака у отдельной единицы можно рассматривать как случайную величину, учитывая, что она подчиняется не только общей закономерности, но и формируется под воздействием условий не зависящих от этой закономерности. Именно по этой причине статистика широко использует средние показатели, одним числом характеризующие всю совокупность. Только при большом числе наблюдений случайные отклонения от основного направления развития уравновешиваются, взаимопогашаются и статистическая закономерность проявляется более отчетливо. Таким образом, сущность закона больших чисел заключается в том, что в числах обобщающих результат массового статистического наблюдения закономерность развития социально-экономических явлений выявляется более отчетливо чем при небольшом по объему статистическому исследованию.

ЗАКОН БОЛЬШИХ ЧИСЕЛ

Экономика. Толковый словарь. - М.: «ИНФРА-М», Издательство «Весь Мир». Дж. Блэк. Общая редакция: д.э.н. Осадчая И.М. . 2000 .

Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б. . Современный экономический словарь. - 2-е изд., испр. М.: ИНФРА-М. 479 с. . 1999 .

Экономический словарь. 2000 .

Смотреть что такое «ЗАКОН БОЛЬШИХ ЧИСЕЛ» в других словарях:

ЗАКОН БОЛЬШИХ ЧИСЕЛ - см. БОЛЬШИХ ЧИСЕЛ ЗАКОН. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

Закон Больших Чисел - принцип, согласно которому количественные закономерности, присущие массовым общественным явлениям, наиболее явным образом проявляются при достаточно большом числе наблюдений. Единичные явления в большей степени подвержены воздействию случайных и… … Словарь бизнес-терминов

ЗАКОН БОЛЬШИХ ЧИСЕЛ - утверждает, что с вероятностью, близкой к единице, среднее арифметическое большого числа случайных величин примерно одного порядка будет мало отличаться от константы, равной среднему арифметическому из математических ожиданий этих величин. Разл.… … Геологическая энциклопедия

закон больших чисел - - [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN law of averageslaw of large numbers … Справочник технического переводчика

Закон больших чисел - в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости … Википедия

закон больших чисел - didžiųjų skaičių dėsnis statusas T sritis fizika atitikmenys: angl. law of large numbers vok. Gesetz der großen Zahlen, n rus. закон больших чисел, m pranc. loi des grands nombres, f … Fizikos terminų žodynas

ЗАКОН БОЛЬШИХ ЧИСЕЛ - общий принцип, в силу к рого совместное действие случайных факторов приводит при нек рых весьма общих условиях к рез ту, почти не зависящему от случая. Сближение частоты наступления случайного события с его вероятностью при возрастании числа… … Российская социологическая энциклопедия

Закон больших чисел - закон, гласящий, что совокупное действие большого числа случайных факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая … Социология: словарь

ЗАКОН БОЛЬШИХ ЧИСЕЛ - статистический закон, выражающий связь статистических показателей (параметров) выборочной и генеральной совокупности. Фактические значения статистических показателей, полученные по некоторой выборке, всегда отличаются от т.н. теоретических… … Социология: Энциклопедия

ЗАКОН БОЛЬШИХ ЧИСЕЛ - принцип, по которому частота финансовых потерь определенного вида может быть предсказана с высокой точностью тогда, когда есть большое количество потерь аналогичных видов … Энциклопедический словарь экономики и права

Закон больших чисел

Взаимодействуя ежедневно в работе или учебе с цифрами и числами, многие из нас даже не подозревают о том, что существует очень интересный закон больших чисел, применяемый, например, в статистике, экономике и даже психолого-педагогических исследованиях. Он относится к теории вероятностей и говорит о том, что среднее арифметическое какой-либо большой выборки из фиксированного распределения близко к математическому ожиданию этого распределения.

Вы, наверное, заметили, что понять сущность этого закона непросто, особенно тем, кто не особо дружит с математикой. Исходя из этого, мы бы хотели рассказать о нем простым языком (насколько это возможно, конечно), чтобы каждый мог хотя бы примерно уяснить для себя, что это такое. Эти знания помогут вам лучше разобраться в некоторых математических закономерностях, стать более эрудированным и положительным образом повлиять на развитие мышления.

Понятия закона больших чисел и его трактовка

Помимо рассмотренного нами выше определения закона больших чисел в теории вероятностей, можно привести и его экономическое толкование. В этом случае он представляет собой принцип, согласно которому частоту финансовых потерь конкретного вида можно предсказать с высокой степенью достоверности тогда, когда наблюдается высокий уровень потерь подобных видов вообще.

Помимо этого, в зависимости от уровня сходимости признаков можно выделить слабый и усиленный законы больших чисел. О слабом речь идет, когда сходимость существует по вероятности, а об усиленном – когда сходимость существует практически во всем.

Если интерпретировать несколько иначе, то следует сказать так: всегда можно найти такое конечное число испытаний, где с любой запрограммированной наперед вероятностью меньше единицы относительная частота появления какого-то события будет крайне мало отличаться от его вероятности.

Таким образом, общую суть закона больших чисел можно выразить так: результатом комплексного действия большого количества одинаковых и независимых случайных факторов будет такой результат, который не зависит от случая. А если говорить еще более простым языком, то в законе больших чисел количественные закономерности массовых явлений будут явно проявляться только при большом их числе (поэтому и называется закон законом больших чисел).

Отсюда можно сделать вывод, что сущность закона состоит в том, что в числах, которые получаются при массовом наблюдении, имеются некоторые правильности, обнаружить которые в небольшом количестве фактов невозможно.

Сущность закона больших чисел и его примеры

Закон больших чисел выражает наиболее общие закономерности случайного и необходимого. Когда случайные отклонения «гасят» друг друга, средние показатели, определенные для одной и той же структуры, приобретают форму типичных. Они отражают действия существенных и постоянных фактов в конкретных условиях времени и места.

Определенные посредством закона больших чисел закономерности сильны только тогда, когда представляют массовые тенденции, и они не могут быть законами для отдельных случаев. Так, вступает в силу принцип математической статистики, говорящий, что комплексное действие ряда случайных факторов способно стать причиной неслучайного результата. И наиболее яркий пример действия данного принципа – это сближение частоты наступления случайного события и его вероятности, когда возрастает количество испытаний.

Давайте вспомним обычное бросание монетки. Теоретически орел и решка могут выпасть с одной и той же вероятностью. Это означает, что если, к примеру, бросить монетку 10 раз, 5 из них должна выпасть решка и 5 – орел. Но каждый знает, что так не происходит практически никогда, ведь соотношение частоты выпадения орла и решки может быть и 4 к 6, и 9 к 1, и 2 к 8 и т.д. Однако с увеличением количества подбрасываний монетки, например, до 100, вероятность того, что выпадет орел или решка, достигает 50%. Если же теоретически проводить бесконечное количество подобных опытов, вероятность выпадения монетки обеими сторонами всегда будет стремиться к 50%.

На то, как именно упадет монетка, влияет огромное число случайных факторов. Это и положение монетки на ладони, и сила, с которой совершается бросок, и высота падения, и его скорость и т.д. Но если опытов много, вне зависимости от того, как воздействуют факторы, всегда можно утверждать, что практическая вероятность близка к вероятности теоретической.

А вот еще один пример, который поможет понять сущность закона больших чисел: предположим, что нам нужно оценить уровень заработка людей в каком-то регионе. Если мы будем рассматривать 10 наблюдений, где 9 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, среднее арифметическое составит 68 тыс. рублей, что, естественно, маловероятно. Но если мы возьмем в расчет 100 наблюдений, где 99 человек получают 20 тыс. рублей, а 1 человек – 500 тыс. рублей, то при расчете среднего арифметического получим 24,8 тыс. рублей, что уже ближе к реальному положению дел. Увеличивая число наблюдений, мы будем заставлять среднее значение стремиться к истинному показателю.

Именно по этой причине для применения закона больших чисел в первую очередь необходимо набрать статистический материал, чтобы получать правдивые результаты, изучая большое число наблюдений. Потому-то и удобно использовать этот закон, опять же, в статистике или социальной экономике.

Подведем итоги

Значение того, что закон больших чисел работает, сложно переоценить для любой области научного знания, и особенно для научных разработок в области теории статистики и методов статистического познания. Действие закона также обладает большим значением и для самих изучаемых объектов с их массовыми закономерностями. На законе больших чисел и принципе математической статистике основываются практически все методы статистического наблюдения.

Но, даже не беря во внимание науку и статистику как таковые, можно смело сделать вывод, что закон больших чисел – это не просто явление из области теории вероятностей, но феномен, с которым мы сталкиваемся практически каждый день в своей жизни.

Надеемся, теперь сущность закона больших чисел стала вам более понятна, и вы сможете легко и просто объяснить его кому-то другому. А если тема математики и теории вероятностей вам интересна в принципе, то рекомендуем почитать о числах Фибоначчи и парадоксе Монти Холла. Также познакомьтесь с приближенными вычислениями в жизненных ситуациях и самыми популярными числами. И, конечно же, обратите внимание на наш курс по когнитивистике, ведь, пройдя его, вы не только овладеете новыми техниками мышления, но и улучшите свои когнитивные способности в целом, в том числе и математические.

1.1.4. Метод статистики

Метод статистики предполагает следующую последовательность действий:

разработка статистической гипотезы,

сводка и группировка статистических данных,

Прохождение каждой стадии связано с использованием специальных методов, объясняемых содержанием выполняемой работы.

1.1.5. Задачи статистики

Разработка системы гипотез, характеризующих развитие, динамику, состояние социально-экономических явлений.

Организация статистической деятельности.

Разработка методологии анализа.

Разработка системы показателей для управления хозяйством на макро- и микроуровне.

Популяризовать данные статистического наблюдения.

1.1.6. Закон больших чисел и его роль в изучении статистических закономерностей

Массовый характер общественных законов и своеобразие их действий предопределяет необходимость исследования совокупных данных.

Закон больших чисел порожден особыми свойствами массовых явлений. Последние в силу своей индивидуальности, с одной стороны, отличаются друг от друга, а с другой – имеют нечто общее, обусловленное их принадлежностью к определенному классу, виду. Причем единичные явления в большей степени подвержены воздействию случайных факторов, нежели их совокупность.

Закон больших чисел в наиболее простой форме гласит, что количественные закономерности массовых явлений отчетливо проявляются лишь в достаточно большом их числе.

Таким образом, сущность его заключается в том, что в числах, получающихся в результате массового наблюдения, выступают определенные правильности, которые не могут быть обнаружены в небольшом числе фактов.

Закон больших чисел выражает диалектику случайного и необходимого. В результате взаимопогашения случайных отклонений средние величины, исчисленные для величины одного и того же вида, становятся типичными, отражающими действия постоянных и существенных фактов в данных условиях места и времени.

Тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного случая.

Проявление действия закона больших чисел можно видеть во многих областях явлений общественной жизни, изучаемых статистикой. Например, средняя выработка на одного работающего, средняя себестоимость единицы изделия, средняя заработная плата и другие статистические характеристики выражают общие для данного массового явления закономерности. Таким образом, закон больших чисел способствует раскрытию закономерностей массовых явлений как объективной необходимости их развития.

1.1.7. Основные категории и понятия статистики: статистическая совокупность, единица совокупности, признак, вариация, статистический показатель, система показателей

Так как статистика имеет дело с массовыми явлениями, то основным понятием является статистическая совокупность.

Статистическая совокупность — это множество объектов или явлений, изучаемых статистикой, которые имеют один или несколько общих признаков и различаются между собой по другим признакам. Так, например, при определении объема розничного товарооборота все предприятия торговли, осуществляющие продажу товаров населению, рассматриваются как единая статистическая совокупность - «розничная торговля».

Е диница совокупности это первичный элемент статистической совокупности, являющийся носителем признаков, подлежащих регистрации, и основой ведущегося при обследовании счета.

Например, при проведении переписи торгового оборудования единицей наблюдения является торговое предприятие, а единицей совокупности — их оборудование (прилавки, холодильные агрегаты и т.д.).

Признак это характерное свойство изучаемого явления, отличающее его от других явлений. Признаки могут быть охарактеризованы рядом статистических величин.

В разных отраслях статистики изучаются разные признаки. Так, например, объектом изучения является предприятие, а его признаками — вид продукции, объем выпуска, численность работающих и т.д. Или объект — отдельный человек, а признаки — пол, возраст, национальность, рост, вес и т.д.

Таким образом, статистических признаков, т.е. свойств, качеств объектов наблюдения очень много. Все их многообразие принято делить на две большие группы: признаки качества и признаки количества.

Качественный признак (атрибутивный) — признак, отдельные значения которого выражаются в виде понятий, наименований.

Профессия - токарь, слесарь, технолог, учитель, врач и т.д.

Количественный признак — признак, определенные значения которого имеют количественные выражения.

Рост — 185, 172, 164, 158.

Вес — 105, 72, 54, 48.

Каждый объект изучения может обладать целым рядом статистических признаков, но от объекта к объекту одни признаки меняются, другие остаются неизменными. Меняющиеся признаки от одного объекта к другому принято называть варьирующими. Именно эти признаки изучаются в статистике, поскольку неизменяющийся признак изучать неинтересно. Предположим, что в вашей группе только мужчины, у всех один признак (пол - мужской) и по этому признаку больше сказать нечего. А если есть и женщины, то уже можно посчитать их процент в группе, динамику изменения численности женщин по месяцам учебного года и др.

Вариация признака — это многообразие, изменяемость величины признака у отдельных единиц совокупности наблюдения.

Вариация признака — пол — мужской, женский.

Вариация з/п — 10000, 100000, 1000000.

Отдельные значения признака называются вариантами этого признака.

Явления и процессы в жизни общества изучаются статистикой посредством статистических показателей.

Статистический показатель — это обобщающая характеристика какого-либо свойства статистической совокупности или ее части. Этим он отличается от признака (свойства, присущего единице совокупности). Например, средний балл за семестр по группе студентов – это статистический показатель. Балл по некоторому предмету конкретного студента — признак.

Система статистических показателей – это совокупность взаимосвязанных между собой статистических показателей, всесторонне отображающих процессы общественной жизни в определенных условиях места и времени.

Закон больших чисел. Статистическая закономерность

Понятие статистики и ее основные положения

Статистика как параметр совокупности

Закон больших чисел. Статистическая закономерность

Мальчик или девочка

Методы исследования применяемые в статистике населения

Список используемой литературы

Словом статистика в середине XVIII в. стали обозначать совокупность разного рода фактических сведений о государствах (от латинского “статус” – государство). К таким сведениям относились данные о численности и движении населения государств, их территориальном делении и административном устройстве, экономики и т.д.

В настоящее время термин “статистика” имеет несколько связанных друг с другом значений. Одно из них близко соответствует изложенному выше. Статистикой часто называют совокупность фактов о той или иной стране. Главные из них систематически публикуются в специальных изданиях по установленной форме.

Однако современную статистику в рассматриваемом смысле этого слова отличает от “государство ведения” прошлых столетий не только в огромной степени выросшем полнота и разносторонность содержащихся в ней сведений. В отношении характера сведений к ней теперь относят только то, что получает количественное выражение. Так, к статистике не относят сведения о том, является ли данное государство монархией или республикой. Какой язык в нем принят в качестве государственного и т.д.

Но к ней относятся количественные данные о численности населения, пользующихся тем или иным языком в качестве своего разговорного. К статистике не относят перечень и расположение на карте отдельных территориальных частей государства, но относят количественные данные о распределении по ним населения, промышленности и т.д.

Общей чертой сведений, составляющих статистику, служит то, что они всегда относятся не к одному единичному (индивидуальному) явлению, а охватывают сводными характеристиками целый ряд таких явлений, или, как говорят, их совокупность . Индивидуальное явление отличается от совокупности своей неразложимостью на самостоятельно существующие и аналогичные друг другу составные элементы. Совокупность же состоит именно из таких элементов. Исчезновение одного из элементов совокупности не уничтожает ее как таковую.

Так, население города остается его населением и после того, как одно из входящих в его состав лиц умерло или переехало в другой.

Разные совокупности и их единицы в реальности сочетаются и переплетаются друг с другом подчас в весьма сложных комплексах. Специфическая черта статистики состоит в том, что во всех случаях ее данные относятся к совокупности. Характеристики отдельных индивидуальных явлений попадают в поле ее зрения лишь в качестве основания для получения сводных характеристик совокупности.

Например, регистрация брака имеет определенное значение для данной индивидуальной пары, вступающей в него, из него для каждого супруга вытекают определенные права и обязанности. К статистике же относятся лишь сводные данные о числе заключенных браков, о составе вступивших в них – по возрасту, по источникам средств существования и др. Индивидуальные случаи бракосочетания интересуют статистику лишь постольку, поскольку на основании сведений о них возможно получить сводные данные.

Статистика как параметр совокупности

В последнее время термин “статистика” стал часто пониматься и в несколько более узком, но зато более точно определенном смысле, связанном с обработкой результатов серии индивидуальных наблюдений.

Представим, что в результате наблюдений мы получили числа x 1 , x 2 . x n . Эти числа рассматриваются как одна из возможных реализаций совокупности n величин в их сочетании.

Статистикой называют некоторый параметр f зависящий от x 1 , x 2 . x n . Поскольку эти величины являются, как отмечено, одной из их возможных реализаций, то и значение данного параметра также оказывается одним из ряда возможных. Следовательно, каждая статистика в этом смысле имеет свое распределение вероятностей (т.е. для любого заданного числа a существует вероятность того, что параметр f окажется не большим, чем a ).

По сравнению с содержанием, вкладываемая в термин “статистика” в смысле, рассмотренном выше, здесь во-первых, имеется в виду его сужение всякий раз до одной величины – параметра, что не исключает совместного рассмотрения нескольких параметров (нескольких статистик) в одной комплексной задаче. Во-вторых, здесь подчеркивается наличие математического правила (алгоритма) получения величины параметра из совокупности результатов наблюдения: вычислить их среднюю арифметическую, взять максимальное из доставленных значений, рассчитать отношение численности некоторой их особой группы к общему числу и т.д.

Наконец в указанном смысле термин “статистика” применяется к параметру, полученному из результатов наблюдений в любой области явлений – общественных и других. Это может быть средняя урожайность, или средняя длина охвата сосен в лесу, или средний результат повторных измерений параллакса некоторой звезды и т.д. в этом смысле термин “статистика” применяется главным образом в математической статистике, которая, как и любой раздел математики, не может быть ограничена той или иной областью явлений.

Под статистикой понимают также процесс ее “ведения”, т.е. процесс собирания и обработки сведений о фактах, необходимых для получения статистики в обоих рассмотренных смыслах.

При этом необходимые для статистики сведения могут собираться с единственной целью получения обобщенных характеристик для массы случаев данного рода, т.е. именно естественно в целях статистики. Таковы, например сведения, собираемые при проведении переписей населения.

Закон больших чисел. Статистическая закономерность.

Главным обобщением опыта исследования любых массовых явлений служат закон больших чисел. Отдельное единичное явление, рассматриваемое как одно из явлений данного рода, содержит в себе элемент случайного: оно могло быть или не быть, быть таким или иным. При соединении же большого числа таких явлений в общих характеристиках всей их массе случайность исчезает в тем большей мере, чем больше соединено единичных явлений.

Математика, в частности теория вероятностей, рассматриваемая в чисто количественном аспекте закон больших чисел, выражает его целой цепью математических теорем. Они показывают, при каких условиях и в какой именно мере можно рассчитывать на отсутствие случайности в охватывающих массу характеристиках, как это связано с численностью входящих в них индивидуальных явлений. Статистика же основывается на этих теоремах в изучении каждого конкретного массового явления.

Закономерность , проявившаяся лишь в большой массе явлений через преодоление свойственной ее единичным элементам случайности, называется статистической закономерностью .

В одних случаях перед статистикой стоит задача измерения ее проявлений, само же ее существование теоретически ясно заранее.

В других случаях закономерность может быть найдена статистикой эмпирически. Этим путем было, например, установлено, что с увеличением дохода семьи в ее бюджете падает процент расходов на питание.

Таким образом всякий раз, когда статистика в исследовании какого-либо явления достигает обобщений и находит действующую в нем закономерность, эта последняя сразу становится достоянием той конкретной науки, к кругу интересов которой принадлежит это явление. Следовательно, в отношении каждой статистика выступает в качестве метода.

Рассматривая результаты массового наблюдения, статистика находит в них черты сходства и различия, соединяет элементы в группы, выявляя при этом различные типы, дифференцируя по этим типам всю подвергнутую наблюдению массу. Результаты наблюдения единичных элементов массы используются, далее для получения характеристик всей совокупности и выделенных в ней особых частей, т.е. для получения обобщающих показателей.

Массовое наблюдение, группировка и сводка его результатов, вычисление и анализ обобщающих показателей – таковы главные черты метода статистики.

Статистика как наука опекает и сводится к математической статистике. В математике задачи характеристики массовых явлений рассматриваются только в чисто количественном аспекте, оторванно от качественного содержания (что обязательно для математики, как науки вообще). Статистика же даже в исследовании общих законов массовых явлений исходит не только из количественных обобщений этих явлений, а прежде всего из механизма возникновения самого массового явления.

В тоже время из сказанного о роли количественного измерения для статистики следует большое значение для нее математических методов вообще, специально приспособленных для решения задач, возникающих при исследовании массовых явлений (теория вероятностей и математической статистики). Более того, роль математических методов здесь настолько велика, что попытка их исключения из курса статистики (ввиду наличия в планах отдельного предмета – математической статистики) существенно обедняет статистику.

Отказ от этой попытки, однако, не должен означать противоположной крайности, а именно поглощения статистикой всей теории вероятностей и математической статистики. Если, например, в математике рассматривается средняя величина для ряда распределения (вероятностей или эмпирических частостей),то статистика так же не может обойти соответствующие приемы, но здесь это один из аспектов, наряду с которым возникает и ряд других (средние общие и групповые, возникновение и роль средних в системе информации, материальное содержание системы весов, хронологические средние, средние и относительные величины и т.д.).

Или другой пример: математическая теория выборки все внимание сосредоточивает на ошибке репрезентативности – для разных систем отбора, разных характеристик и т.д. Системную ошибку, т.е. ошибку не поглощающуюся в средней величине, она заранее исключает, строя свободные от нее так называемые несмещенные оценки. В статистике же едва ли не главным в этом деле вопросом является вопрос о том, как эту системную ошибку избежать.

В исследовании количественной стороны массовых явлений возникает ряд задач математического характера. Для их решения математика разрабатывает соответствующие приемы, но для этого она должна рассматривать их в общем виде, для которого качественное содержание массового явления безразлично. Так проявление закона больших чисел было впервые подмечено именно в социально-экономической области и почти одновременно в азартных играх (само распределение которых объяснилось тем, что они являлись слепком с экономики, в частности развивающихся товарно-денежных отношений). С того момента, однако, когда закон больших чисел становится объектом точного исследования в математике, он получает совершенно общую трактовку, которая не ограничивает его действие какой-либо специальной областью.

На этом основании предмет статистики вообще отграничивается от предмета математики. Разграничения объектов не может означать изгнать из одной науки всего, что попало в поле зрения другой. Было бы, например, неправильно исключить из изложения физики всего связанного с применением дифференциальных уравнений на том основании, что ими занимается математика.

Почему соотношение полов при рождении имеет определенные пропорции, которые на протяжении многих столетий не претерпели существенных наблюдений?

Как это парадоксально не звучит, но именно смерть является основным биологическим условием размножения и воспроизведения новых поколений. Для того чтобы продлить существование вида, его особи должны после себя оставить потомство; в противном случае вид навсегда исчезнет.

Проблема пола (кто родится мальчик или девочка) включает в себя множество вопросов, связанных не только с биологическим развитием, медико-генетическими характеристиками, с демографическими данными, но и в более широком аспекте связаны с психологией пола, с поведением и устремлениями индивидуумов противоположного пола, с гармонией или конфликтами между ними.

Вопрос о том, кто родится – мальчик или девочка – и почему это происходит – всего лишь узкий круг вопросов, вытекающих из более обширной проблемы. Особенно важное теоретическое и практическое имеет выяснение вопроса, почему продолжительность жизни мужчин ниже продолжительности жизни женщин. Это явление распространено не только у человека, но и среди многочисленных видов животного мира.

Объяснить это только, тем, что преобладание мужских особей при рождении обусловлено их повышенной активностью, и как следствие этого – меньшей “жизненностью”, недостаточно. Биологи давно обратили внимание на более короткую продолжительность жизни самцов по сравнению с самками у большинства изученных животных. Продолжительность жизни противопоставляется ее высокому темпу и это находит биологические обоснование.

Английский исследователь А. Комфорт указывает: “ Организм должен пройти через фиксированный ряд обменных процессов или этапов развития, и скорость их прохождения определяет наблюдаемую продолжительность жизни”.

Ч. Дарвин рассматривал меньшую продолжительность жизни у самцов “как естественное и конституционное свойство, обусловленное только полом”.

Возможность рождения ребенка того или иного пола в каждом конкретном случае зависит не только от присущих данному явлению закономерностям, выявленных на большом числе наблюдений, но и от случайных привходящих обстоятельств. Поэтому заранее статистически невозможно определить какого пола будет каждый отдельно родившийся ребенок. Этим и не занимается ни теория вероятностей, не статистика, хотя во многих случаях результат отдельного события представляет большой интерес. Теория вероятностей дает достаточно определенные ответы, когда речь заходит о большой совокупности родившихся. Привходящие, внешние причины случайны, однако их совокупность отражает устойчивые закономерности. При формировании пола, как теперь известно, еще до зачатия, случайные причины могут в одних случаях благоприятствовать возникновению зародышей мужского, и в других – женского пола. Но это проявляется не в каком-то закономерном порядке, а хаотично, беспорядочно. Совокупность факторов, формирующих определенные соотношения полов при рождении, проявляется лишь на достаточно большом количестве наблюдений; и чем их больше, тем ближе приближается теоретическая вероятность к фактическим результатам.

Вероятности рождения мальчиков есть число несколько больше чем 0,5 (близкое 0,51), а девочки – меньше чем 0,5 (близкое 0,49). Этот весьма интересный факт поставил перед биологами и статистами трудную задачу – объяснить причину, почему зарождение и рождение мальчика или девочки не является равновозможными и соответствующими генетическим предпосылкам (менделеевскому закону расщепления по полу).

Удовлетворительного ответа на эти вопросы пока не получено; известно только, что уже с момента зачатия доля мальчиков больше доли девочек и что в период внутриутробного развития эти пропорции постепенно выравниваются и к моменту рождения, не достигая, однако, равновероятностных значений. Мальчиков рождается примерно на 5-6% больше чем девочек.

У большинства видов, для которых биологами были составлены таблицы выживания, смертность среди самцов выше. Генетики это объясняют различием у самок и самцов общего хромосомного комплекса.

Ч. Дарвин рассматривает сформировавшееся численное соотношение полов из представителей различных видов, как результат эволюционного естественного отбора, основанного на принципах полового подбора. Генетические законы формирования пола были открыты позже, и они являются недостающим звеном в теоретических концепциях Ч. Дарвина. Меткие наблюдения Ч. Дарвина заслуживают того, чтобы их здесь привести. Автор замечает, что половой подбор был бы простым делом, если бы самцы численно значительно превосходили самок. Важно знать численное соотношение полов не только при рождении, но и в период зрелости, и это усложняет картину. Относительно людей установлен факт, что мальчиков умирает гораздо больше, чем девочек, перед рождением, во время родов и в первые годы детства.

Можно назвать две большие группы факторов, оказывающих влияние на соотношение смертности по полу и в целом обуславливающих сверхсмертность мужчин. Это экзогенные, т.е. социально-экономические факторы, и эндогенные факторы, связанные с генетической программой жизнеспособности мужского и женского организма. Различия в смертности по полу могут быть объяснены постоянным взаимодействием указанных двух групп факторов. Эти различия повышаются прямо пропорционально увеличению показателя средней продолжительности жизни. На чисто биологические различия в жизнеспособности мужчин и женщин наслаивается воздействие социально-экономических условий жизни, реакция на которые мужского и женского организма различна с точки зрения возможности преодолеть их отрицательное влияние на различных возрастных периодах.

В подавляющем большинстве стран мира, где ведется более или менее надежная и полная регистрация смертности, соотношение показателей по полу подтверждает неоднократно подтвержденная практикой положение о повышении смертности мужчин – закономерность эта, как отмечалось ранее присуща человеческой популяции да и не только ей, но и многим другим биологическим видам.

Статистика населения – наука, изучающая количественные закономерности явлений и процессов, происходящих в населении, в непрерывной связи с их качественной стороной.

Население – объект изучения и демографии, которая устанавливает общие закономерности их развития, рассматривая его жизнедеятельность во всех аспектах: историческом, политическом, экономическом, социальном, юридическом, медицинском и статистическом. При этом надо иметь в виду, что по мере развития знаний об объекте открываются его новые стороны, становящиеся отдельным объектом познания.

Статистика населения изучает свой объект в конкретных условиях места и времени, выявляя все новые формы его движения: естественное, миграционное, социальное.

Под естественным движением населения понимается изменение численности населения ввиду рождений и смертей, т.е. происходящее естественным путем. При этом разумеются так же браки и разводы, поскольку они учитываются в одинаковом порядке с рождениями и смертями.

Миграционное движение , или просто миграция населения, означает перемещения людей через границы отдельных территорий, обычно с переменой места жительства на длительное время или навсегда.

Социальное движение населения понимается как изменение социальных условий жизни населения. Оно выражается в изменении численности и составе социальных групп людей, имеющих общие интересы, ценности и нормы поведения, складывающиеся в рамках исторически определенного общества.

Статистика населения решает ряд задач:

Важнейшая ее задача – определение численности населения. Но часто требуется знать численность населения отдельных континентов и их частей, различных стран, экономических регионов стран, административных регионов. При этом ведется не простой арифметический, а особый – статистический счет – счет категорий населения. Статистически устанавливается число рождений, смертей, браков, случаев прекращения брака, численность прибывших и убывших мигрантов, т.е. определяется объем совокупности.

Вторая задача – установление структуры населения, демографических процессов. Внимание здесь прежде всего обращается на деление населения по полу, возрасту, уровню образования, профессиональному, производственному признаку, по принадлежности к городскому и сельскому.

Структура населения по полу может характеризоваться равной численностью полов, мужским или женским перевесом и степенью этого перевеса.

Структура населения по возрасту может быть может быть представлена однолетними данными и группами возрастов, а так же тенденцией изменения возрастного состава, например постарения или омоложения.

Образовательная структура показывает долю грамотного населения, имеющего определенную степень обучения на разных территориях и разных средах.

Профессиональная – распределение людей по приобретенным в процессе обучения профессиям, по занятиям.

Производственная – по отраслям народного хозяйства.

Территориальное размещение населения или его расселения. Здесь различают степень урбанизации, определение плотности всего населения, различное понимание плотности и его состояния.

Третья задача состоит в изучении взаимосвязей, имеющих место в самом населении между его различными группами и исследование зависимости процессов, происходящих в населении от факторов среды, в которой эти процессы протекают.

Четвертая задача складывается из рассмотрения динамики демографических процессов. При этом характеристика динамики может быть дана как изменение численности населения и как изменение интенсивности процессов, происходящих в населении во времени и пространстве.

Пятая задача – статистика населения открывается при прогнозах его численности и состава на будущее время. Предоставление данных о прогнозе численности населения на ближайшую и далекую перспективу.

Методы исследования применяемые в статистике населения

Метод в самом общем понимании означает способ достижения цели, регулирования деятельности. Метод конкретной науки – совокупность приемов теоретического и практического познания действительности. Для самостоятельной науки обязательно не только наличие особого от других наук предмета исследования, но и существования своих собственных методов изучения этого предмета. Совокупность методов исследования применяемых в какой-либо науке, составляет методологию этой науки.

Поскольку статистика населения является отраслевой статистикой, то основой ее методологии служит статистическая методология.

Важнейший метод, включенный в статистическую методологию – получение информации об изучаемых процессах и явлениях – статистическое наблюдение . Оно служит основой для сбора данных как в текущей статистике, так и при проведении переписей, монографического и выборочного изучения населения. Здесь полное использование положений теоретической статистики об установлении объекта единицы наблюдения, введении понятий о дате и моменте регистрации, программе, организационных вопросах наблюдения, систематизации и публикации его итогов. В статистической методологии заложен и принцип самостоятельности отнесения каждого переписываемого лица к определенной группе – принцип самоопределения.

Следующий этап статистического изучения социально-экономических явлений – определение их структуры, т.е. выделение частей и элементов, составляющих совокупность. Речь идет о методе группировок и классификаций, которые в статистике населения получили название типологических и структурных.

Для познания структуры населения необходимо прежде всего выделение признака группировки и классификации. Любой признак подвергшийся наблюдению, может служить и группировочным. Например по вопросу об отношении к лицу, записанному в переписном листе первым, можно определить структуру переписываемого населения, где представляется вероятным выделить значительное число групп. Этот признак является атрибутивным, поэтому при разработке по нему переписных листов необходимо составить заранее перечень нужных для анализа классификаций (группировок по атрибутивным признакам). При составлении классификаций с большим числом атрибутивных записей заранее обосновывается отнесение к определенным группам. Так, по своему занятию население делится на несколько тысяч видов, которые статистика сводит в определенные классы, что фиксируется в так называемом словаре занятий.

При изучении структуры по количественным признакам возникает возможность использования таких статистических обобщающих показателей, как средняя, мода и медиана, меры расстояния или показателей вариации для характеристики разных параметров населения. Рассматриваемые структуры явлений служит основой изучения связи в них. В теории статистики различаются функциональные и статистические связи. Изучение последних невозможно без разделения совокупности на группы и затем сравнения величины результативного признака.

Группировка по факторному признаку и сопоставление с изменениями признака результативного позволяет установить направление связи: прямая она или обратная, а так же дать представление о ее форме ломаной регресси . Данные группировки позволяют построить систему уравнений, необходимую для нахождения параметров уравнения регрессии и определения тесноты связи при помощи расчета коэффициентов корреляции. Группировки и классификации служат основой для использования дисперсионного анализа связей между показателями движения населения и факторами, их вызывающими.

Широкое использование находят в изучении населения статистические методы исследования динамики , графическое изучение явлений , индексный , выборочный и балансовый . Можно сказать, что статистика населения использует для изучения своего объекта весь арсенал статистических методов и примеров. Кроме того применяются и методы разработанные только для изучения населения. Это методы реального поколения (когорт) и условного поколения . Первый позволяет рассмотреть изменения в естественном движении ровесников (родившихся в одном году) – продольный анализ; второй рассматривает естественное движение сверстников (живущих в одно и то же время) – поперечный анализ.

Интересно применение средних и индексов при учете особенностей и сравнении процессов, происходящих в населении, когда условия для сопоставления данных не равны между собой. Используя различное взвешивание при расчете обобщающих средних величин, разработан метод стандартизации, позволяющий элиминировать влияние разных возрастных характеристик населения.

Теория вероятностей как математическая наука изучает свойства объективного мира при помощи абстракций , суть которых состоит в полном отвлечении от качественной определенности и в выделении их количественной стороны. Абстрагирование – есть процесс мысленного отвлечения от многих сторон свойств предметов и одновременно процесс выделения, вычленения каких-либо интересующих нас сторон, свойств и отношений изучаемых предметов. Применение абстрактных математических методов в статистике населения дает возможность статистического моделирования , происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта.

Наибольшее число моделей применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические . Особое значение в прогнозе населения на будущие периоды имеют модели стационарного и стабильного населения, определяющие сложившийся в данных условиях тип населения.

Если построения моделей экспоненциального и логистического населения использует данные о динамике абсолютной численности населения за прошлый период, то модели стационарного и стабильного населения строятся на основе характеристик интенсивности его развития.

Итак статистическая методология изучения населения имеет в своем распоряжении ряд методов общей теории статистики, математические методы и специальные методы, разработанные в самой статистике населения.

Статистика населения используя рассмотренные выше методы, разрабатывает систему обобщающих показателей, указывает на необходимую информацию, способы их расчета, познавательные возможности этих показателей, условия применения, порядок записи и содержательную интерпретацию.

Велико значение обобщающих статистических показателей в решении важнейших проблем при рассмотрении демографической политики, необходимо для сбалансированного роста населения, в изучении миграции населения, составляющей основу межрайонного перераспределения рабочей силы и достижения равномерности ее распределения.

Поскольку население в определенном аспекте изучают многие другие науки – здравоохранение, педагогика, социология и пр., необходимо использовать опыт этих наук, развивать их методы применительно к нуждам статистики.

Стоящие перед нашей страной задачи обновления должна затронуть и решение демографических проблем. Разработка комплексных программ экономического и социального развития должна включать в себя разделы по демографическим программам их решение должно способствовать развитию населения с наименьшими демографическими потерями.

Список используемой литературы

Кильдишев и др. “Статистика населения с основами демографии” М.: Финансы и Статистика, 1990 г. – 312 с.

Бедный М.С. “Мальчики девочки? Медико — демографический анализ” М.: Статистика, 1980 г. – 120 с.

Андреева Б.М., Вишневский А.Г. “Продолжительность жизни. Анализ и моделирование” М.: Статистика, 1979 г. – 157 с.

Боярский А.Я., Громыко Г.Л. “Общая теория статистики” М.: изд. Московские университеты, 1985 г. – 372 с.

Васильева Э.К. “Социально-демографический портрет студента” М.: Мысль, 1986 г. – 96 с.

Бестужев-Лада И.В. “Мир нашего завтра” М.: Мысль, 1986 г. – 269 с.

Популярное:

  • Основное содержание закона о наследстве Закон о наследстве регулирует особую процедуру, которая обусловливает переход прав и обязанностей, а также имущества умершего гражданина его родственникам или иным лицам, в том числе […]
  • Если не устраивает заведующая детским садом … Вопрос: Добрый день! Г. Калининград. Скажите, пожалуйста, если родителей полностью не устраивает заведующая детским садом, могут ли они требовать от начальника управления образования […]
  • Как составляется заявление иностранного гражданина или лица без гражданства о регистрации по месту жительства Житель другого государства, прибывший в РФ, должен подать в миграционную службу заявление иностранного гражданина или […]
  • Суд по автокредиту – советы адвоката Если вы берете целевой кредит на покупку автомобиля, то купленная вами машина будет оформлена как залог. Грубо говоря, в случае невыплаты автокредита банк имеет право забрать у вас автомобиль […]
  • Президент РФ отменил обязательную установку счетчиков на газ Президент Владимир Путин подписал закон, который вносит поправку в закон № 261-ФЗ "Об энергосбережении. " и отменяет обязательную установку газовых счетчиков в […]
  • ЧТО ВАЖНО ЗНАТЬ О НОВОМ ЗАКОНОПРОЕКТЕ О ПЕНСИЯХ Подписка на новости Письмо для подтверждения подписки отправлено на указанный вами e-mail. 27 декабря 2013 График выплаты пенсий, ЕДВ и иных социальных выплат за январь 2014 года […]
  • Как унаследовать средства пенсионных накоплений наследодателя? Наследодатель при жизни вправе в любое время подать заявление в территориальный орган ПФР и определить конкретных лиц (правопреемников) и доли средств, которые […]
  • Понятие и основные признаки права собственности на природные объекты и ресурсы. ГК, Статья 209. Содержание права собственности. Право владения означает закрепленную законом возможность фактичес­кого обладания природным объектом, […]

Сущность закона больших чисел.

Закон больших чисел.

Тема 2.

Организация государственной статистики в РФ.

Задачи статистики.

Метод статистики.

Отрасли статистики.

Общая теория статистики связана с другими науками.

Общая теория статистики
1. Демографическая (социальная) статистика 2. Экономическая статистика 3. Статистика образования 4. Медицинская статистика 5. Спортивная статистика
2.1 Статистика труда 2.2 Статистика заработной платы 2.3 Статистика мат.-техн. снабжения 2.4 Статистика транспорта 2.5 Статистика связи 2.6 Статистика финансового кредита
2.6.1 Высшие финансовые вычисления 2.6.2 Статистика денежного обращения 2.6.3Статистика валютных курсов Прочие

Статистика также разрабатывает теорию наблюдения.

Метод статистики предполагает следующую последовательность действий:

1. выработка статистической гипотезы,

2. статистическое наблюдение,

3. сводка и группировка статистических данных,

4. анализ данных,

5. интерпретация данных.

Прохождение каждой стадии связано с использованием специальных методов, объясняемых содержанием выполняемой работы.

1. Разработка системы гипотез, характеризующих развитие, динамику, состояние социально-экономических явлений.

2. Организация статистической деятельности.

3. Разработка методологии анализа.

4. Разработка системы показателœей для управления хозяйством на макро- и микроуровне.

5. Сделать данные статистического наблюдения общественно доступными.

Принципы:

1. централизованное руководство,

2. единое организационное строение и методология,

3. неразрывная связь с органами государственного управления.

Система государственной статистики имеет иерархическую структуру, состоящую из федерального, республиканского, краевого, областного, окружного, городского и районного уровней.

Госкомстат имеет управления, отделы, вычислительный центр.

Массовый характер общественных законов и своеобразие их действий предопределяет крайне важно сть исследования совокупных данных.

Закон больших чисел порожден особыми свойствами массовых явлений, которые, с одной стороны, отличаются друг от друга, а с другой – имеют нечто общее, обусловленное их принадлежностью к определœенному классу, виду. Причем единичные явления в большей степени подвержены воздействию случайных факторов, нежели их совокупность.

Закон больших чисел - ϶ᴛᴏ определœение количественных закономерностей массовых явлений, которые проявляются лишь в достаточно большом их числе.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, сущность его состоит по сути в том, что в числах, получающихся в результате массового наблюдения, выступают определœенные правильности, которые не бывают обнаружены в небольшом числе фактов.

Закон больших чисел выражает диалектику случайного и крайне важно го. В результате взаимопогашения случайных отклонений средние величины, исчисленные для величины одного и того же вида, становятся типичными, отражающими действия постоянных и существенных фактов в условиях места и времени.

Тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного случая.

Сущность закона больших чисел. - понятие и виды. Классификация и особенности категории "Сущность закона больших чисел." 2017, 2018.

Министерство образования и науки

Государственное образовательное учреждение

Высшего профессионального образования

«Самарский Государственный Университет»

Юридический факультет

Кафедра__________________

__________________

__________________

КОНТРОЛЬНАЯ РАБОТА

по курсу: «Правовая статистика»

Вариант № 3

Выполнил: студент

3 курса заочного отделения

юридического факультета

09303.30 группы

Несмеянова Дарья Сергеевна

САМАРА 2011

1 Закон больших чисел и его значение в правовой статистике 3

2 Статические таблицы и их виды 6

Задача 1 8

Задача 2 9

Список используемой литературы 10

1 Закон больших чисел и его значение в правовой статистике

В решении важнейшей задачи - установления и количествен­ного выражения закономерностей и взаимозависимости социальных явлений статистическая наука опирается на закон больших чисел (ЗБЧ), смысл которого состоит в том, что правильности и за­кономерности социальных явлении могут быть обнаружены только при их массовом наблюдении.

Конечно, всякая наука, каждая в своей области, имеет дело с мас­совыми явлениями, ибо в законе отражается массовидное, суще­ственное, необходимое. И хотя любая закономерность носит об-ший, а потому массовый характер, но в статистике понятие массовости специфично. Оно становит­ся очевидным, если вспомнить деление закономерностей на ди­намические и статистические. Статистика оперирует не родовыми, а групповыми понятиями, в которых речь идет о сред­них результатах, и то время как в родовых - о каждой входящей в него единице. Поэтому в правовой статистике знание о правонарушаемости как статистической совокупности не есть одновре­менно знание о конкретных преступлениях, входящих в нее. Хо­тя в данном случае статистик имеет дело не с чисто случайными явлениями, а с индивидуальными, которым присущи случайные отклонения.

В этом и заключается специфика статистического количест­венного анализа социальных процессов, в котором проявляется смысл закона больших чисел: сделанные на его основе выводы, обнару­женная тенденция, закономерность относятся к совокупности («большому числу») как таковой. То есть ЗБЧ лежит в основе са­мой логики статистического умозаключения; на основе ЗБЧ вы­является массовая закономерность.

Для статистических закономерностей весьма характерно слож­ное переплетение внутренних и внешних причин, необходимого и случайного.

И эти закономерности образуются отнюдь не в ходе «игры слу­чая», а прежде всего в результате действия внутренних необходи­мых причин. Множество вариаций и случайных отклонений, сглаживаются (элиминируют) именно в массе, что приводит к образованию статистических закономерностей. Проявление такой закономерности и есть результат действия за­кона больших чисел, которое состоит в том, что совокупность боль­шого числа случайных явлений имеет определенные, не завися­щие от случая характеристики, выражаемые количественными показателями. То есть представление о ЗБЧ и его действии нель­зя отрывать от представления о статистической закономерности как формы, в которую облекается закономерность массового яв­ления, изучаемая статистикой с количественной стороны. При­чем ЗБЧ проявляется тем отчетливее, чем крупнее статистичес­кая совокупность.

Массовые закономерности, а вместе с ними и ЗБЧ проявля­ются в самых различных областях действительности. Особенно на­глядны они в демографии, в криминальной статистике. Так, в странах с рыночной экономикой в рабочей среде рождаемость и смертность обратно пропорциональны уровню заработной пла­ты; во всех странах с высокой продолжительностью жизни женщины долговечнее мужчин; смертность мужчин во всех возраст­ных когортах, начиная с детской и кончая самой пожилой, в 2- 3 раза превышает смертность женщин; постоянную величину состав­ляют число браков, половое распределение преступников, мотивов, орудий убийств; обнаруживает­ся значительная устойчивость несчастных случаев в отдельные периоды года и часы суток; по данным русской почтово-телеграфной статистики, констатировалась значительная устойчивость вы­нутых на каждый миллион из почтовых ящиков писем (1906-1910 гг.) без указания адресата (25-27) или без указания места назначе­ния (21-29) и др.В малом числе наблюдений (например, отдельные преступле­ния) случайные факторы не дают возможности обнаружить зако­номерность. Напротив, при суммировании большого числа еди­ничных явлений случайности парализуют друг друга, что позво­ляет установить законы, которые при малых масштабах маскиру­ются индивидуальными отклонениями. Статистическая закономерность - это не особая форма дви­жения материи, а лишь внешнее проявление этого движения в статистических распределениях и обобщающих статистических характеристиках. Статистически установленные правильности в изменениях количественных показателей, повторяемость и ус­тойчивость фактов свидетельствуют лишь о том, что в исследуе­мом массовом явлении заложена известная закономерность, вскрытие которой составляет задачу соответствующей науки (на­пример, криминологии).

Закономерность массового явления, объективные связи, зало­женные в этом явлении, находят свое выражение не в отдельных показателях, а в средней величине, в характере распределения. Сред­няя арифметическая большого числа случайных величин - прак­тически величина не случайная, а необходимая, закономерная. В эТом-то и состоит действие ЗБЧ, если подходить к его трактовке с философско-методологических позиции. Поэтому иногда ЗБЧ называют еще законом средних величин.

Рассмотрение ЗБЧ как одного из законов объективной дейст­вительности вместе с тем исключает его отношение к уровню кон­статированных им обобщающих статистических характеристик. Этот уровень определяется условиями, вытекающими из самой при­роды массового явления. Правильно отмечается, что ЗБЧ не со­здает уровней, а лишь регулирует случайные отклонения от задан­ных природой данного явления уровней1.

Из сказанного ясно, что ЗБЧ основывается на понятии случай­ности и вероятности - уменьшение степени случайности и возрас­тание степени вероятности наличия определенного признака проис­ходит по мере увеличения статистической совокупности. Это может быть проиллюстрировано таким примером: если известно, что на­селение города представлено соотношением 48% мужчин и 52% жен­щин, то небольшая совокупность людей (например, посетителей театра, футбольного матча и т.д.) может значительно отклониться от этих характеристик; если же увеличивать исследуемую совокуп­ность, то последует приближение к указанным характеристикам.

Естественнонаучное обоснование, точная формулировка и ус­ловия применимости ЗБЧ даются в теории вероятностей. Други­ми словами, теория вероятностей является математическим обос­нованием ЗБЧ. С ее помощью вычисляются шансы возможного наступления случайного события.

Вероятность- математическая, числовая характеристика сте­пени возможности появления какого-либо определенного собы­тия в тех или иных определенных, могущих повторяться неогра­ниченное число раз условиях2.

Вероятность обычно обозначается буквой Р. Например, выражение Р(Л) = 0,5 означает, что вероятность наступления события Л равна 0,5.

Вероятность принято классифицировать по следующей шкале:

0,00 - полностью исключено

0,10 - в высшей степени неопределенно.

0,20 - весьма неправдоподобно

0,30-0,40 - неправдоподобно

0,60 - вероятно

0,70 - весьма вероятно

0,80-0,90 - в высшей степени вероятно

1,00 - полностью достоверно.

Таким образом, вероятность получает определенное количест­венное выражение, несмотря на то, что наличие того или иного признака или его колебания является случайным.

Если в урну поместить черный и белый шары, то при выемке одинаково можно обнаружить любой из них. При этом проявля­ется альтернативная изменчивость, которая заключается в возмож­ности лишь двух исходов: из урны можно вынуть только белый шар либо только черный шар. То же происходит и при подбрасывании монеты. Это обстоятельство одинаковой возможности выпада­ния любой стороны монеты называется равновозможностью. Со­бытие называется равновозможным, если нет причин, делающих одно из этих событий более возможным, чем другое. Событие на­зывается несовместимым в том случае, когда появление одного де­лает появление другого невозможным.

При многократном подбрасывании монеты или при многократ­ной выемке шаров из урны образуется совокупность единичных опытов, которая обладает свойствами статистической совокупно­сти. В отдельном опыте результат может быть различным - орел или решка, черный или белый шар, а в совокупности опытов про­является определенная закономерность в соотношении между числом выпавших гербов и решек или числом вынутых черных и бе­лых шаров.

Результат каждого единичного опыта с монетой или шарами также зависит от двух групп факторов: основных, связанных со свой­ствами явления, и случайных, не связанных с этими свойствами. Однако удобством монетной или урновой модели является, во-пер­вых, то, что в ней легко отделить основные причины и свойства явления от побочных; во-вторых, на этой модели легко просле­дить, как действует каждая группа причин и что является резуль­татом действия каждой из них.

В рассматриваемых примерах главное свойство монеты - ее симметричность, в силу чего при подбрасывании шансы на вы­падение герба или решки совершенно равны; главное свойство ур­ны с шарами - соотношение между числом черных и белых ша­ров. Если, например, в урне 100 черных и 100 белых шаров, то при выемке одного шара шансы на появление черного или бе­лого шара совершенно одинаковы, а если в урне в два раза боль­ше черных, чем белых, то соответственно больше и шансов вы­емки черного шара.

Чтобы априори, т.е. до опыта, определить вероятность наступ­ления какого-либо случайного явления, нужно знать число шан­сов, благоприятствующих его наступлению, а также число всех воз­можных шансов (как благоприятствующих, так и неблагоприятствующих). Отношение первой величины ко второй называется математической вероятностью. Она выражается в виде дроби, где в числителе указывается число благоприятствующих шансов, а в знаменателе - число всех возможных шансов. Например, при подбрасывании монеты возможны два исхода. Если считать выпадение орла благоприятным исходом, то вероятность его рав­на 1/2. Если считать благоприятным исходом появление черно­го шара из урны, в которой находится 70 черных шаров и 30 бе­лых шаров, то вероятность благоприятного исхода при выемке од­ного шара равна 70/100, а вероятность неблагоприятного исхода равна 30/100.

Если вероятность благоприятного исхода обозначить р, а ве­роятность неблагоприятного исхода q, то во всех случаях альтер­нативной изменчивости, т.е. когда возможны лишь два исхода, p + q= 1. В опыте с шарами 70/100 + 30/100 = 1, в опыте с монетой 1/2 + 1/2 = 1.

Веро­ятность является оценкой степени объективной возможности то­го или иного результату при отборе на удачу одной единицы из всей совокупности.

Это определение вероятности, данное П.С.Лапласом, являет­ся определением простейшей, так называемой классической веро­ятности, приложимой к весьма узкому кругу явлений. Для мас­совых (например, правонарушений) более подходит статистиче­ское или частотное понятие вероятности, определяемое как по­стоянное число, вокруг которого колеблются частости.

Применение теории вероятностей к социальным явлениям, в ча­стности к преступности, обусловлено наряду с независимостью от­дельных событий (иррегулярностью преступлений) еще и их из­вестной устойчивостью.

Преступность представляет типичную статистическую сово­купность, обладающую относительно устойчивыми характерис­тиками, позволяющими конкретно изучать ее и даже прогнозиро­вать ее изменения. Поэтому «невозможно говорить об определен­ной вероятности преступления как о «незыблемой закономерно­сти». Она меняется вместе с изменением условий. Но пока дей­ствуют данные определенные условия, действует и та или иная оп­ределенная вероятность. Это и дает возможность изучения этих явлений на основе методов математической статистики». Если условия в си­лу определенных причин остаются неизменными, то в среднем ус­тойчиво и число преступлений, что позволяет установить вероятность, с которой они совершаются.

2 Статистические таблицы и их виды

Особое место в статистике занимает табличный метод, который имеет универсальное значение. С помощью статистических таблиц осуществляется представление данных результатов статистического наблюдения, сводки и группировки. Поэтому обычно статистическая таблица определяется как форма компактного наглядного представления статистических данных.

Анализ таблиц позволяет решать многие задачи при изучении изменения явлений во времени, структуры явлений и их взаимосвязей. Таким образом, статистические таблицы выполняют роль универсального средства рационального представления, обобщения и анализа статистической информации.

Внешне статистическая таблица представляет собой систему построенных особым образом горизонтальных строк и вертикальных столбцов, имеющих общий заголовок, заглавия граф и строк, на пересечении которых и записываются статистические данные.

Каждая цифра в статистических таблицах - это конкретный показатель, характеризующий размеры или уровни, динамику, структуру или взаимосвязи явлений в конкретных условиях места и времени, то есть определенная количественно-качественная характеристика изучаемого явления.

Если таблица не заполнена цифрами, то есть имеет только общий заголовок, заглавия граф и строк, то мы имеем макет статистической таблицы. Именно с его разработки и начинается процесс составления статистических таблиц.

Основными элементами статистической таблицы являются подлежащее и сказуемое таблицы.

Подлежащее таблицы - это объект статистического изучения, то есть отдельные единицы совокупности, их группы или вся совокупность в целом.

Сказуемое таблицы - это статистические показатели, характеризующие изучаемый объект.

Подлежащее и показатели сказуемого таблицы должны быть определены очень точно. Как правило подлежащее располагается в левой части таблицы и составляет содержание строк, а сказуемое - в правой части таблицы и составляет содержание граф.