» » Химические свойства белков химия. Физические свойства белков. Функции белков в организме

Химические свойства белков химия. Физические свойства белков. Функции белков в организме

№1. Белки: пептидная связь, их обнаружение.

Белки – макромолекулы линейных полиамидов, образованных а-аминокислотами в результате реакции поликонденсации в биологических объектах.

Белки – это высокомолекулярные соединения, построенные из аминокислот . В создание белков участвует 20 аминокислот. Они связываются между собой в длинные цепи, которые образуют основу белковой молекулы большой молекулярной массы.

Функции белков в организме

Сочетание своеобразных химических и физических свойств бел­ков обеспечивает именно этому классу органических соединений центральную роль в явлениях жизни.

Белки имеют следующие биологические свойства, или осуществ­ляют следующие основные функции в живых организмах:

1. Каталитическая функция белков. Все биологические катализа­торы - ферменты являются белками. В настоящее время охарактеризо­вано тысячи ферментов, многие из них выделены в кристалличе­ской форме. Почти все ферменты - мощные катализаторы, повышающие скорости реакций, по крайней мере, в миллион раз. Эта функция белков является уникальной, не свойственной другим полимерным молекулам.

2. Питательная (резервная функция белков). Это, прежде всего белки, предназначенные для питания развивающегося зародыша: казеин молока, овальбумин яиц, запасные белки семян растений. Ряд других белков, несомненно, используется в организме в качестве источника аминокислот, которые, в свою очередь, являются предшественниками биологически активных веществ, регулирующих процесс обмена веществ.

3. Транспортная функция белков. Транспорт многих небольших молекул и ионов осуществляется специфическими белками. Например, дыхательная функция крови, а именно перенос кислорода, выполняется молекулами гемоглобина - белка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови. Ряд других сывороточ­ных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соот­ветствующие органы.

4. Защитная функция белков. Основную функцию защиты вы­полняет иммуннологическая система, которая обеспечивает синтез спе­цифических защитных белков - антител - в ответ на поступление в орга­низм бактерий, токсинов или вирусов (антигенов). Антитела связывают антигены, взаимодействуя с ними, и тем самым нейтрализуют их биоло­гическое действие и сохраняют нормальное состояние организма. Свер­тывание белка плазмы крови - фибриногена - и образование сгустка кро­ви, предохраняющего от потери крови при ранениях - еще один пример защитной функции белков.

5. Сократительная функция белков. В акте мышечного сокраще­ния и расслабления участвует множество белков. Главную роль в этих процессах играют актин и миозин - специфические белки мышечной тка­ни. Сократительная функция присуща также и белкам субклеточных структур, что обеспечивает тончайшие процессы жизнедеятельности кле­ток,

6. Структурная функция белков. Белки с такой функцией зани­мают первое место среди других белков тела человека. Широко распро­странены такие структурные белки, как коллаген в соединительной тка­ни; кератин в волосах, ногтях, коже; эластин - в сосудистых стенках и др.

7. Гормональная (регуляторная) функция белков. Обмен веществ в организме регулируется разнообразными механизмами. В этой регуляцииважное место занимают гормоны, вырабатываемые железами внут­реннейсекреции. Ряд гормонов представлен белками, или полипептидами, например гормоны гипофиза, поджелудочной железы и др.

Пептидная связь

Формально образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот.

С химической точки зрения белки - это вы­сокомолекулярные азотсодержащие органические соединения (полиамиды), молекулы которых построены из остатков аминокислот. Мономерами белков служат α-аминокислоты, общим признаком которых является наличие карбок­сильной группы -СООН и аминогруппы -NH 2 у второго углеродного атома (α-углеродный атом):

Исходя из результатов изучения продуктов гидролиза белков и выдвинутых А.Я. Данилевским идей о роли пептидных связей -CO-NH- в построении белковой молекулы, немецкий ученый Э.Фишер предложил в начале XX века пептидную теорию строения белков. Согласно этой тео­рии, белки представляют собой линейные полимеры α-аминокислот, свя­занных пептидной связью - полипептиды:

В каждом пептиде один концевой аминокислотный остаток имеет свободную α-аминогруппу (N-конец), а другой - свободную α-карбок­сильную группу (С-конец). Структуру пептидов принято изображать, на­чиная с N-концевой аминокислоты. При этом аминокислотные остатки обозначаются символами. Например: Ala-Tyr-Leu-Ser-Tyr- - Cys. Этой записью обозначен пептид, в котором N-концевой α-аминокислотой яв­ ляется аланин, а С-концевой - цистеин. При чтении такой записи окончания названий всех кислот, кроме последних меняются на - "ил": аланил-тирозил-лейцил-серил-тирозил- -цистеин. Длина пептидной цепи в пептидах и белках, встречающихся в организме, колеблется от двух до сотен и тысяч аминокислотных остатков.

№2. Классификация простых белков.

К простым (протеинам) относят белки, дающие при гидролизе только аминокислоты.

    Протеиноиды ____простые белки животного происхождения, нерастворимые вводе, растворах солей, разбавленных кислотах и щелочах. Выполняют главным образом опорные функции (например, Коллаген, кератин

    протамины – положительно заряженные ядерные белки, с молекулярной массой 10-12 kDa. Примерно на 80% состоят из щелочных аминокислот, что дает им возможность взаимодействовать с нуклеиновыми кислотами посредством ионных связей. Принимают участие в регуляции генной активности. Хорошо растворимы в воде;

    гистоны – ядерные белки, играющие важную роль в регуляции генной активности. Они найдены во всех эукариотических клетках, и разделены на 5 классов, различающихся по молекулярной массе и аминокислотному. Молекулярная масса гистонов находится в интервале от 11 до 22 kDa, а различия в аминокислотном составе касаются лизина и аргинина, содержание которых варьирует от 11 до 29% и от 2 до 14% соответственно;

    проламины – не растворимы в воде, но растворимы в 70% спирте, особенности хим.строения – много пролина, глутаминовой кислоты нет лизина,

    глутелины – растворимы в щелочных растворах,

    глобулины – белки, не растворимые в воде и в полунасыщенном растворе сернокислого аммония, но растворимые в водных растворах солей, щелочей и кислот. Молекулярная масса – 90-100 kDa;

    альбумины – белки животных и растительных тканей, растворим в воде и солевых растворах. Молекулярнаяя масса равна 69 kDa;

    склеропротеины – белки опорных тканей животных

В качестве примеров простых белков могут служить фиброин шелка, яичный сывороточный альбумин, пепсин и др.

№3. Способы выделения и осаждения (очистки) белков.



№4. Белки как полиэлектролиты. Изоэлектрическая точка белка.

Белки являются амфотерными полиэлектролитами, т.е. прояв­ляют как кислотные, так и основные свойства. Это обусловлено наличи­ем в молекулах белков аминокислотных радикалов, способных к иониза­ции, а также свободных α-амино- и α-карбоксильных групп на концах пептидных цепей. Кислотные свойства белку придают кислые аминокис­лоты (аспарагиновая, глутаминовая), а щелочные свойства - основные аминокислоты (лизин, аргинин, гистидин).

Заряд белковой молекулы зависит от ионизации кислых и основ­ных групп аминокислотных радикалов. В зависимости от соотношения отрицательных и положительных групп молекула белка в целом приобре­тает суммарный положительный или отрицательный заряд. При подкислении раствора белка степень ионизации анионных групп снижается, а катионных повышается; при подщелачивании - наоборот. При опреде­ленном значении рН число положительно и отрицательно заряженных групп становится одинаковым, возникает изоэлектрическое состояние белка (суммарный заряд равен 0). Значение рН, при котором белок нахо­дится в изоэлектрическом состоянии, называют изоэлектрической точкой и обозначают pI, аналогично аминокислотам. Для большинства белков pI лежит в пределах 5,5-7,0, что свидетельствует о некотором преоблада­нии в белках кислых аминокислот. Однако есть и щелочные белки, на­пример, сальмин - основной белок из молок семги (pl=12). Кроме того, есть белки, у которых pI имеет очень низкое значение, например, пепсин - фермент желудочного сока (pl=l). В изоэлектрической точке белки очень неустойчивые и легко выпадают в осадок, обладая наименьшей растворимостью.

Если белок не находится в изоэлектрическом состоянии, то в электрическом поле его молекулы будут перемещаться к катоду или аноду, в зависимости от знака суммарного заряда и со скоростью, про­порциональной его величине; в этом заключается сущность метода элек­трофореза. Этим методом можно разделять белки с различным значени­ем pI.

Белки хотя и обладают свойствами буфера, но емкость их при физиологических значениях рН ограничена. Исключение составляют бел­ки, содержащие много гистидина, так как только радикал гистидина об­ладает буферными свойствами в интервале рН 6-8. Таких белков очень мало. Например, гемоглобин, содержащий почти 8% гистидина, является мощным внутриклеточным буфером в эритроцитах, поддерживая рН кро­ви на постоянном уровне.

№5. Физико-химические свойства белков.

Белки имеют различные химические, физические и биологиче­ские свойства, которые определяются аминокислотным составом и прост­ранственной организацией каждого белка. Химические реакции белков очень разнообразны, они обусловлены наличием NH 2 -, СООН-групп и радикалов различной природы. Это реакции нитрования, ацилирования, алкилирования, этерификации, окисления-восстановления и другие. Белки обладают кислотно-основными, буферными, коллоидными и осмотиче­скими свойствами.

Кислотно-основные свойства белков

Химические свойства. При слабом нагревании водных растворов белков происходит денатурация. При этом образуется осадок.

При нагревании белков с кислотами происходит гидролиз, при этом образуется смесь аминокислот.

Физико-химические свойства белков

    Белки имеют высокий молекулярный вес.

    Заряд белковой молекулы. Все белки имеют хоть одну свободную -NH и - СООН группы.

Белковые растворы - коллоидные растворы с разными свойствами. Белки бывают кислыми и основными. Кислые белки содержат много глу и асп, у которых есть дополнительные карбоксильные и меньше аминогрупп. В щелочных белках много лиз и арг. Каждая молекула белка в водном растворе окружена гидратной оболочкой, так как у белков за счет аминокислот есть много гидрофильных группировок (-СООН, -ОН, -NH 2 , -SH). В водных растворах белковая молекула имеет заряд. Заряд белка в воде может меняться в зависимости от РН.

Осаждение белков. У белков есть гидратная оболочка, заряд, препятствующий склеиванию. Для осаждения необходимо снять гидратную оболочку и заряд.

1.Гидратация. Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание белка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности белковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), аминные (NH2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидратная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектрической точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность меняется.

Реакции осаждения делят на два вида.

    Высаливание белков: (NH 4)SO 4 - снимается только гидратная оболочка, белок сохраняет все виды своей структуры, все связи, сохраняет нативные свойства. Такие белки можно затем вновь растворить и использовать.

    Осаждения с потерей нативных свойств белка - процесс необратимый. С белка снимается гидратная оболочка и заряд, нарушаются различные свойства в белке. Например соли меди, ртути, мышьяка, железа, концентрированные неорганические кислоты - HNO 3 , H 2 SO 4 , HCl, органические кислоты, алкалоиды - танины, йодистая ртуть. Добавление органических растворителей понижает степень гидратации и приводит к осаждению белка. В качестве таких растворителей используют ацетон. Осаждают белки также с помощью солей, например, сульфата аммония. Принцип этого метода основан на том, что при повышении концентрации соли в растворе происходит сжатие ионных атмосфер, образуемых противоионами белка, что способствует сближению их до критического расстояния, на котором межмолекулярные силы ван-дер-ваальсова притяжения перевешивают кулоновские силы отталкивания противоионов. Это приводит к слипанию белковых частиц и их выпадению в осадок.

При кипячении молекулы белков начинают хаотично двигаться, сталкиваются, снимается заряд, уменьшается гидратная оболочка.

Для обнаружения белков в растворе применяются:

    цветные реакции;

    реакции осаждения.

Методы выделения и очистки белков.

    гомогенизация - клетки растираются до однородной массы;

    экстракция белков водными или водно-солевыми растворами;

  1. высаливание;

    электрофорез;

    хроматография: адсорбция, расщепление;

    ультрацентрифугирование.

Структурная организация белков.

    Первичная структура - определяется последовательностью аминокислот в пептидной цепочке, стабилизируется ковалентными пептидными связями (инсулин, пепсин, химотрипсин).

    Вторичная структура - пространственная структура белка. Это либо -спираль, либо -складчатость. Создаются водородные связи.

    Третичная структура - глобулярные и фибриллярные белки. Стабилизируют водородные связи, электростатические силы (СОО-, NН3+), гидрофобные силы, сульфидные мостики, определяются первичной структурой. Глобулярные белки - все ферменты, гемоглобин, миоглобин. Фибриллярные белки - коллаген, миозин, актин.

    Четвертичная структура - имеется только у некоторых белков. Такие белки построены из нескольких пептидов. Каждый пептид имеет свою первичную, вторичную, третичную структуру, называются протомерами. Несколько протомеров соединяются вместе в одну молекулу. Один протомер не функционирует как белок, а только в соединении с другими протомерами.

Пример: гемоглобин = -глобула + -глобула - переносит О 2 в совокупности, а не по раздельности.

Белок может ренатурировать. Для этого необходимо очень короткое воздействие агентов.

6) Способы обнаружения белков.

Белки – высокомолекулярные биологические полимеры, структурными (мономерными) звеньями которых служат -аминокислоты. Аминокислоты в белках соединены друг с другом пептидной связью,образование которой происходит за счет карбоксильной группы, стоящей у -углеродного атома одной аминокислоты и -аминной группы другой аминокислоты с выделением молекулы воды. Мономерные звенья белков называют остатками аминокислот.

Пептиды, полипептиды и белки отличаются не только количеством, составом но и последовательностью аминокислотных остатков, физико-химическими свойствами и функциями, выполняемыми в организме. Молекулярная масса белков варьирует от 6 тыс. до 1 млн. и более. Химические и физические свойства белков обусловлены химической природой и физико-химическими свойствами радикалов, входящих в них остатков аминокислот. Способы обнаружения и количественного определения белков в биологических объектах и продуктах питания, а также выделения их из тканей и биологических жидкостей основаны на физических и химических свойствах этих соединений.

Белки при взаимодействии с некоторыми химическими веществами дают окрашенные соединения . Образование этих соединений происходит при участии радикалов аминокислот, их специфических групп или пептидных связей. Цветные реакции позволяют установитьналичие белка в биологическом объекте или растворе и доказать присутствиеопределенных аминокислот в белковой молекуле . На основе цветных реакций разработаны некоторые методы количественного определения белков и аминокислот.

Универсальными считают биуретовую и нингидриновую реакции , так как их дают все белки.Ксантопротеиновая реакция, реакция Фоля и др. являются специфическими, так как они обусловлены радикальными группами определенных аминокислот в молекуле белка.

Цветные реакции позволяют установить наличие белка в исследуемом материале и присутствие определенных аминокислот в его молекулах.

Биуретовая реакция . Реакция обусловлена наличием в белках, пептидах, полипептидахпептидных связей , которые в щелочной среде образуют сионами меди (II) комплексные соединения, окрашенные вфиолетовый (с красным или с синим оттенком) цвет . Окраска обусловлена наличием в молекуле не менее двух групп-CO-NH- , связанных непосредственно между собой или при участии атома углерода или азота.

Ионы меди (II) соединяются двумя ионными связями с группами =С─О ˉ и четырьмя координационными связями с атомами азота (=N―).

Итенсивность окраски зависит от количества белка в растворе. Это позволяет использовать данную реакцию для количественного определения белка. Цвет окрашенных растворов зависит от длины полипептидной цепи. Белки дают сине-фиолетовое окрашивание; продукты их гидролиза (поли- и олигопептиды) – красную или розовую окраску. Биуретовую реакцию дают не только белки, пептиды и полипептиды но и биурет (NH 2 -CO-NH-CO-NH 2) , оксамид (NH 2 -CO-CO-NH 2), гистидин.

Образующееся в щелочной среде комплексное соединение меди (II) с пептидными группами имеет следующее строение:

Нингидриновая реакция . В этой реакции растворы белка, полипептидов, пептидов и свободных α-аминокислот при нагревании с нингидрином дают синее, сине-фиолетовое или розово-фиолетовое окрашивание. Окраска в этой реакции развивается за счет α-аминогруппы.


Очень легко реагируют с нингидрином -аминокислоты. Наряду с ними сине-фиолетовый Руэмана образуют также белки, пептиды, первичные амины, аммиак и некоторые другие соединения. Вторичные амины, например пролин и оксипролин, дают желтую окраску.

Нингидриновую реакцию широко используют для обнаружения и количественного определения аминокислот.

Ксантопротеиновая реакция. Эта реакция указывает на наличие в белках остатков ароматических аминокислот – тирозина, фенилаланина, триптофана. Основана на нитровании бензольного кольца радикалов этих аминокислот с образованием нитросоединений, окрашенных в желтый цвет (греческое «Ксантос» – желтый). На примере тирозина эту реакцию можно описать в виде следующих уравнений.

В щелочной среде нитропроизводные аминокислот образуют соли хиноидной структуры, окрашенные в оранжевый цвет. Ксантопротеиновую реакцию дают бензол и его гомологи, фенол и другие ароматические соединения.

Реакции на аминокислоты, содержащие тиоловую группу в восстановленном или окисленном состоянии (цистеин, цистин).

Реакция Фоля. При кипячении со щелочью от цистеина легко отщепляется сера в виде сероводорода, который в щелочной среде образует сульфид натрия:

В связи с этим реакции определения тиолсодержащих аминокислот в растворе подразделяют на два этапа:

    Переход серы из органического состояния в неорганическое

    Обнаружение серы в растворе

Для выявления сульфида натрия используют ацетат свинца, который при взаимодействии с гидроксидом натрия превращается в его плюмбит:

Pb(CH 3 COO) 2 + 2NaOH Pb(ONa) 2 + 2CH 3 COOH

В результате взаимодействия ионов серы и свинца образуется сульфид свинца черного или бурого цвета:

Na 2 S + Pb (ONa ) 2 + 2 H 2 O PbS (черный осадок) + 4 NaOH

Для определения серусодержащих аминокислот к исследуемому раствору добавляют равный объем гидроксида натрия и несколько капель раствора ацетата свинца. При интенсивном кипячении в течение 3-5 минут жидкость окрашивается в черный цвет.

Наличие цистина может быть определено с помощью этой реакции, так как цистин легко восстанавливается в цистеин.

Реакция Миллона:

Это реакция на аминокислоту тирозин.

Свободные фенольные гидроксилы молекул тирозина при взаимодействии с солями дают соединения ртутной соли нитропроизводного тирозина, окрашенной в розовато-красный цвет:

Реакция Паули на гистидин и тирозин . Реакция Паули позволяет обнаружить в белке аминокислоты гистидин и тирозин, которые образуют с диазобензолсульфоновой кислотой комплексные соединения вишнево-красного цвета. Диазобензолсульфоновая кислота образуется в реакции диазотирования при взаимодействии сульфаниловой кислоты с нитритом натрия в кислой среде:

К исследуемому раствору прибавляют равный объем кислого раствора сульфаниловой кислоты (приготовленного с использованием соляной кислоты) и двойной объем раствора нитрита натрия, тщательно перемешивают и сразу прибавляют соду (карбонат натрия). После перемешивания смесь окрашивается в вишнево-красный цвет при условии наличия гистидина или тирозина в исследуемом растворе.

Реакция Адамкевича-Гопкинса-Коля (Шульца - Распайля) на триптофан (реакция на индоловую группу). Триптофан реагирует в кислой среде с альдегидами, образуя окрашенные продукты конденсации. Реакция протекает за счет взаимодействия индольного кольца триптофана с альдегидом. Известно, что из глиоксиловой кислоты в присутствии серной кислоты образуется формальдегид:

Р
астворы, содержащие триптофан, в присутствии глиоксиловой и серной кислот дают красно-фиолетовое окрашивание.

Глиоксиловая кислота всегда присутствует в небольшом количестве в ледяной уксусной кислоте. Поэтому реакцию можно проводить, используя уксусную кислоту. При этом к исследуемому раствору добавляют равный объем ледяной (концентрированной) уксусной кислоты и осторожно нагревают до растворения осадка.После охлаждения к смеси осторожно по стенке (во избежание смешивания жидкостей) добавляют объем концентрированной серной кислоты, равный добавленному объему глиоксиловой кислоты. Через 5-10 минут на границе раздела двух слоев наблюдают образование красно-фиолетового кольца. Если перемешать слои, содержимое посуды равномерно окрасится в фиолетовый цвет.

К

онденсация триптофана с формальдегидом:

Продукт конденсации окисляется до бис-2-триптофанилкарбинола, который в присутствии минеральных кислот образует соли, окрашенные в сине-фиолетовый цвет:

7) Классификация белков. Способы исследования аминокислотного состава.

Строгой номенклатуры и классификации белков до сих пор не существует. Названия белков дают по случайным признакам, чаще всего принимая во внимание источник выделения белка или же учитывая рас­творимость его в тех или иных растворителях, форму молекулы и др.

Классификация белков проводится по составу, по форме частиц, по растворимости, по аминокислотному составу, по проис­хождению и т.д.

1. По составу белки делят на две большие груп­пы: простые и сложные белки.

К простым (протеинам) относят белки, дающие при гидролизе только аминокислоты (протеиноиды, протамины, гистоны, проламины, глутелины, глобулины, альбумины). В качестве примеров простых белков могут служить фиброин шелка, яичный сывороточный альбумин, пепсин и др.

К сложным (к протеидам) относят белки, составленные из про­стого белка и добавочной (простетической) группы небелковой природы. Группу сложных белков делят на несколько подгрупп в зависимости от характера небелкового компонента:

Металлопротеиды, содержащие в своем составе металлы (Fe, Си, Mg и др.), связанные непосредственно с полипептидной цепью;

Фосфопротеиды - содержат остатки фосфорной кислоты, которые сложноэфирными связями присоединены к молекуле белка по месту гидроксильных групп серина, треонина;

Гликопротеиды - их простетическими группами являются угле­воды;

Хромопротеиды - состоят из простого белка и связанного с ним окрашенного небелкового соединения, все хромопротеиды биологически очень активны; в качестве простетических групп в них могут быть произ­водные порфирина, изоаллоксазина и каротина;

Липопротеиды - простетическая группа липиды - триглицериды (жиры) и фосфатиды;

Нуклеопротеиды - белки, состоящие из простого белка и соеди­ненной с ним нуклеиновой кислоты. Эти белки играют колоссальную роль в жизнедеятельности организма и будут рассмотрены ниже. Они входят в состав любой клетки, некоторые нуклеопротеиды существуют в природе в виде особых частиц, обладающих патогенной активностью (вирусы).

2. По форме частиц - белки делят на фибриллярные (нитеподобные) и глобулярные (сферические) (см. стр 30).

3. По растворимости и особенностям аминокислотного состава выделяют следующие группы простых белков:

Протеиноиды - белки опорных тканей (костей, хрящей, связок, сухожилий, волос, ногтей, кожи и т.д.). Это в основном фибриллярные белки с большой молекулярной массой (> 150000 Да), нерастворимые в обычных растворителях: воде, солевых и водно-спиртовых смесях. Они растворяются только в специфических растворителях;

Протамины (простейшие белки) - белки, растворимые в воде и содержащие 80-90% аргинина и ограниченный набор (6-8) других амино­кислот, представлены в молоках различных рыб. Вследствие высокого содержания аргинина имеют основные свойства, их молекулярная масса сравнительно мала и примерно равна 4000-12000 Да. Они являются бел­ковым компонентом в составе нуклеопротеидов;

Гистоны - хорошо растворимы в воде и разбавленных растворах кислот (0,1Н), отличаются высоким содержанием аминокислот: аргинина, лизина и гистидина (не менее 30%) и поэтому обладают основными свойствами. Эти белки в значительных количествах содержатся в ядрах клеток в составе нуклеопротеидов и играют важную роль в регуляции обмена нуклеиновых кислот. Молекулярная масса гистонов невелика и равна 11000-24000 Да;

Глобулины - белки, нерастворимые в воде и солевых растворах с концентрацией соли более 7%. Глобулины полностью осаждаются при 50%-ном насыщении раствора сульфатом аммония. Эти белки отличают­ся высоким содержанием глицина (3,5%), их молекулярная масса > 100000 Да. Глобулины - слабокислые или нейтральные белки (р1=6-7,3);

Альбумины - белки, хорошо растворимые в воде и крепких со­левых растворах, причем концентрация соли (NH 4) 2 S0 4 не должна пре­вышать 50 % от насыщения. При более высокой концентрации альбуми­ны высаливаются. По сравнению с глобулинами эти белки содержат гли­цина в три раза меньше и имеют молекулярную массу, равную 40000-70000 Да. Альбумины имеют избыточный отрицательный заряд и кислые свойства (pl=4,7) из-за большого содержания глутаминовой кислоты;

Проламины - группа растительных белков, содержащаяся в клейковине злаковых растений. Они растворимы только в 60-80%-ном водном растворе этилового спирта. Проламины имеют характерный ами­нокислотный состав: в них много (20-50%) глутаминовой кислоты и пролина (10-15%), в связи с чем они и получили свое название. Их молеку­лярная масса более 100000 Да;

Глютелины - растительные белки нерастворимые в воде, рас­творах солей и этаноле, но растворимы в разбавленных (0,1Н) растворах щелочей и кислот. По аминокислотному составу и молекулярной массе сходны с проламинами, но аргинина содержат больше, а пролина мень­ше.

Способы исследования аминокислотного состава

Под действием ферментов пищеварительных соков белки расщепляются на аминокислоты. Были сделаны два важных вывода: 1) в состав белков входят аминокислоты; 2) методами гидролиза может быть изучен химический, в частности амнокислотный, состав белков.

Для изучения аминокислотного состава белков пользуются сочетанием кислотного (НСl), щелочного [Ва(ОН) 2 ] и, реже, ферментативного гидролиза или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных α-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии либо в виде коротких пептидов или комплексов с другими органическими веществами.

Первый этап в определении первичной структуры белков заключается в качественной и количественной оценке аминокислотного состава данного индивидуального белка. Необходимо помнить, что для исследования нужно иметь определённое количество чистого белка, без примесей других белков или пептидов.

Кислотный гидролиз белка

Для определения аминокислотного состава необходимо провести разрушение всех пептидных связей в белке. Анализируемый белок гидролизуют в 6 мол/л НС1 при температуре около 110 °С в течение 24 ч. В результате такой обработки разрушаются пептидные связи в белке, а в гидролизате присутствуют только свободные аминокислоты. Кроме того, глутамин и аспарагин гидролизуются до глутаминовой и аспарагиновой кислот (т.е. разрывается амидная связь в радикале и от них отщепляется аминогруппа).

Разделение аминокислот с помощью ионообменной хроматографии

Смесь аминокислот, полученных кислотным гидролизом белков, разделяют в колонке с катионообменной смолой. Такая синтетическая смола содержит прочно связанные с ней отрицательно заряженные группы (например, остатки сульфоновой кислоты -SO 3 -), к которым присоединены ионы Na + (рис. 1-4).

В катионообменник вносят смесь аминокислот в кислой среде (рН 3,0), где аминокислоты в основном представляют катионы, т.е. несут положительный заряд. Положительно заряженные аминокислоты присоединяются к отрицательно заряженным частицам смолы. Чем больше суммарный заряд аминокислоты, тем прочнее её связь со смолой. Так, аминокислоты лизин, аргинин и гистидин наиболее прочно связываются с катионообменником, а аспарагиновая и глутаминовая кислоты - наиболее слабо.

Высвобождение аминокислот из колонки осуществляют вымыванием (элюированием) их буферным раствором с увеличивающейся ионной силой (т.е. с увеличением концентрации NaCl) и рН. При увеличении рН аминокислоты теряют протон, в результате уменьшается их положительный заряд, а следовательно и прочность связи с отрицательно заряженными частицами смолы.

Каждая аминокислота выходит из колонки при определённом значении рН и ионной силы. Собирая с нижнего конца колонки раствор (элюат) в виде небольших порций, можно получить фракции, содержащие отдельные аминокислоты.

(подробнее «гидролиз» см вопрос №10)

8) Химические связи в структуре белка.


9) Понятие об иерархии и структурной организации белков. (см. вопрос №12)

10) Гидролиз белка. Химизм реакции (ступенчатость, катализаторы, реагенты, условия протекания реакции) – полное описание гидролиза.

11) Химические превращения белков.

Денатурация и ренатурация

При нагревании растворов белков до 60-80% или при действии реагентов, разрушающих нековалентные связи в белках, происходит разрушение третичной (четвертичной) и вторичной структуры белковой молекулы, она принимает в большей или меньшей степени форму беспорядочного случайного клубка. Этот процесс называют денатурацией. В качестве денатурирующих реагентов могут быть кислоты, щелочи, спирты, фенолы, мочевина, гуанидинхлорид и др. Сущность их действия в том, что они образуют водородные связи с =NH и =СО - группами пептидного остова и с кислотными группами радикалов аминокислот, подменяя собственные внутримолекулярные водородные связи в белке вследствие чего вторичная и третичная структуры изменяются. При денатурации падает растворимость белка, он "свертывается" (например, при варке куриного яйца), утрачивается биологическая активность белка. На этом основано, например, применение водного раствора карболовой кислоты (фенола) в качестве антисептика. В определенных условиях при медленном охлаждении раствора денатурированного белка происходит ренатурация - восстановление исходной (нативной) конформации. Это подтверждает тот факт, что характер укладки пептидной цепи определяется первичной структурой.

Процесс денатурации отдельной белковой молекулы, приводящий к распаду её «жёсткой» трёхмерной структуры, иногда называют плавлением молекулы. Практически любое заметное изменение внешних условий, например, нагревание или существенное изменение pH приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

Денатурация часто приводит к тому, что в коллоидном растворе белковых молекул происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит, например, как образование «белка» при жарке яиц.

Ренатурация - процесс, обратный денатурации, при котором белки возвращают свою природную структуру. Нужно отметить, что не все белки способны ренатурировать; у большинства белков денатурация необратима. Если при денатурации белка физико-химические изменения связаны с переходом полипептидной цепи из плотно упакованного (упорядоченного) состояния в беспорядочное, то при ренатурации проявляется способность белков к самоорганизации, путь которой предопределён последовательностью аминокислот в полипептидной цепи, то есть её первичной структурой, детерминированной наследственной информацией. В живых клетках данная информация, вероятно, является решающей для преобразования неупорядоченной полипептидной цепи во время или после её биосинтеза на рибосоме в структуру нативной молекулы белка. При нагревании двухцепочечных молекул ДНК до температуры около 100°C водородные связи между основаниями разрываются, и комплементарные цепи расходятся - ДНК денатурирует. Однако при медленном охлаждении комплементарные цепи могут вновь соединяться в регулярную двойную спираль. Эта способность ДНК к ренатурации используется для получения искусственных гибридных молекул ДНК.

Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-химических и биологических свойств при физиологических значениях температуры и рН среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. Таким образом, под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.

Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению количества свободных функциональных SH-групп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). При денатурации белка, вызванной 8М мочевиной или другим агентом, разрушаются в основном нековалентные связи (в частности, гидрофобные взаимодействия и водородные связи). Дисульфидные связи в присутствии восстанавливающего агента меркаптоэтанола разрываются, в то время как пептидные связи самого остова полипептидной цепи не затрагиваются. В этих условиях развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры (рис.)

Денатурация белковой молекулы (схема).

а - исходное состояние; б - начинающееся обратимое нарушение молекулярной структуры; в - необратимое развертывание полипептидной цепи.

Денатурация и ренатурация рибонуклеазы (по Анфинсену).

а - развертывание (мочевина + меркаптоэтанол); б - повторное свертывание.

1. Гидролиз белков: H+

[− NH2─CH─ CO─NH─CH─CO − ]n +2nH2O → n NH2 − CH − COOH + n NH2 ─ CH ─ COOH

│ │ ‌‌│ │

Аминокислота 1 аминокислота 2

2. Осаждение белков:

а) обратимое

Белок в растворе ↔ осадок белка. Происходит под действием растворов солей Na+, K+

б) необратимое (денатурация)

При денатурации под действием внешних факторов (температура; механическое воздействие – давление, растирание, встряхивание, ультразвук; действия химических агентов – кислот, щелочей и др.) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т.е её нативной пространственной структуры. Первичная структура, а, следовательно, и химический состав белка не меняются.

При денатурации изменяются физические свойства белков: снижается растворимость, теряется биологическая активность. В тоже время увеличивается активность некоторых химических групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

Например, альбумин - яичный белок - при температуре 60-70° осаждается из раствора (свертывается), теряя способность растворяться в воде.

Схема процесса денатурации белка (разрушение третичной и вторичной структур белковых молекул)

3. Горение белков

Белки горят с образованием азота, углекислого газа, воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев

4. Цветные (качественные) реакции на белки:

а) ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца):

Белок + HNO3 (конц.) → желтое окрашивание

б) биуретовая реакция (на пептидные связи):

Белок + CuSO4 (насыщ) + NaOH (конц) → ярко-фиолетовое окрашивание

в) цистеиновая реакция (на остатки аминокислот, содержащих серу):

Белок + NaOH + Pb(CH3COO)2 → Черное окрашивание

Белки являются основой всего живого на Земле и выполняют в организмах многообразные функции.

Высаливание белков

Высаливанием называется процесс выделения белков из водных растворов нейтральными растворами концентрированных солей щелочных и щелочноземельных металлов. При добавлении больших концентраций солей к раствору белка происходит дегидратация белковых частиц и снятие заряда, при этом белки выпадают в осадок. Степень выпадения белков в осадок зависит от ионной силы раствора осадителя, размера частиц белковой молекулы, величины ее заряда, гидрофильности. Разные белки осаждаются при различных концентрациях солей. Поэтому в осадках, полученных путем постепенного повышения концентрации солей, отдельные белки находятся в различных фракциях. Высаливание белков является обратимым процессом, и после удаления соли белок вновь приобретает природные свойства. Поэтому высаливанием пользуются в клинической практике при разделении белков сыворотки крови, а также при изолировании, очистке различных белков.

Добавляемые анионы и катионы разрушают гидратную белковую оболочку белков, являющуюся одним из факторов устойчивости белковых растворов. Чаще всего применяются растворы сульфатов Na и аммония. Многие белки отличаются по размеру гидратной оболочки и величине заряда. Для каждого белка есть своя зона высаливания. После удаления высаливающего агента белок сохраняет свою биологическую активность и физико-химические свойства. В клинической практике применяется метод высаливания для разделения глобулинов (при добавлении 50% раствора сульфата аммония (NH4)2SO4 выпадает осадок) и альбуминов (при добавлении 100% раствора сульфата аммония (NH4)2SO4 выпадает осадок).

На величину высаливания оказывают влияние:

1) природа и концентрация соли;

2) рН-среды;

3) температура.

Главную роль при этом играют валентности ионов.

12) Особенности организации первичной, вторичной, третичной структуры белка.

В настоящее время экспериментально доказано существование четырёх уровней структурной организации белковой молекулы: первич­ной, вторичной, третичной и четвертичной структуры.

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Прежде чем рассказать про свойства белков, стоит дать краткое определение данному понятию. Это высокомолекулярные органические вещества, которые состоят из соединенных пептидной связью альфа-аминокислот. Белки являются важной частью питания человека и животных, поскольку не все аминокислоты вырабатываются организмом - некоторые поступают именно с едой. Каковы же их свойства и функции?

Амфотерность

Это первая особенность белков. Под амфотерностью подразумевается их способность проявлять как кислотные, так и основные свойства.

Белки в своей структуре имеют несколько видов химических группировок, которые способны ионизировать в растворе Н 2 О. К таковым относятся:

  • Карбоксильные остатки. Глутаминовая и аспарагиновая кислоты, если быть точнее.
  • Азотсодержащие группы. ε-аминогруппа лизина, аргининовый остаток CNH(NH 2) и имидазольный остаток гетероциклической альфа-аминокислоты под названием гистидин.

У каждого белка имеется такая особенность, как изоэлектрическая точка. Под данным понятием понимают кислотность среды, при которой поверхность или молекула не имеет электрического заряда. При таких условиях сводится к минимуму гидратация и растворимость белка.

Показатель определяется соотношением основных и кислых аминокислотных остатков. В первом случае точка приходится на щелочную область. Во втором - на кислую.

Растворимость

По данному свойству белки подразделяются на небольшую классификацию. Вот какими они бывают:

  • Растворимыми . Их называют альбуминами. Они умеренно растворяются в концентрированных соляных растворах и сворачиваются при нагревании. Эта реакция называется денатурацией. Молекулярная масса альбуминов составляет около 65 000. В них нет углеводов. А вещества, которые состоят из альбумина, именуются альбуминоидами. К таковым относится яичный белок, семена растений и сыворотка крови.
  • Нерастворимыми . Их называют склеропротеинами. Яркий пример - кератин, фибриллярный белок с механической прочностью, уступающей только хитину. Именно из этого вещества состоят ногти, волосы, рамфотека птичьих клювов и перьев, а также рога носорога. Еще в эту группу белков включены цитокератины. Это структурный материал внутриклеточных филаментов цитоскелета клеток эпителия. Еще к нерастворимым белкам относят фибриллярный белок под названием фиброин.
  • Гидрофильными . Они активно взаимодействуют с водой и впитывают ее. К таковым относятся белки межклеточного вещества, ядра и цитоплазмы. В том числе пресловутый фиброин и кератин.
  • Гидрофобными . Они отталкивают воду. К ним относятся белки, являющиеся составляющими биологических мембран.

Денатурация

Так называется процесс видоизменения белковой молекулы под воздействием определенных дестабилизирующих факторов. При этом аминокислотная последовательность остается той же. Но белки теряют их естественные свойства (гидрофильность, растворимость и другие).

Стоит отметить, что любое весомое изменение внешних условий способно привести к нарушениям структур белка. Чаще всего денатурацию провоцирует повышение температуры, а также оказываемое на белок воздействие щелочи, сильной кислоты, радиации, соли тяжелых металлов и даже определенных растворителей.

Интересно, что нередко денатурация приводит к тому, что частицы белка агрегатируются в более крупные. Ярким примером является, например, яичница. Всем ведь знакомо, как в процессе жарки белок образуется из прозрачной жидкости.

Еще следует рассказать о таком явлении, как ренатурация. Этот процесс обратен денатурации. Во время него белки возвращаются к природной структуре. И это действительно возможно. Группа химиков из США и Австралии нашла способ, с помощью которого можно ренатурировать сваренное вкрутую яйцо. Уйдет на это всего несколько минут. А потребуется для этого мочевина (диамид угольной кислоты) и центрифугирование.

Структура

О ней необходимо сказать в отдельности, раз речь идет о значении белков. Всего выделяют четыре уровня структурной организации:

  • Первичная . Подразумевается последовательность остатков аминокислот в цепи полипептидов. Главная особенность - это консервативные мотивы. Так называются устойчивые сочетания остатков аминокислот. Они есть во многих сложных и простых белках.
  • Вторичная . Имеется в виду упорядочивание какого-либо локального фрагмента цепи полипептидов, которое стабилизируют водородные связи.
  • Третичная . Так обозначается пространственное строение цепи полипептидов. Состоит данный уровень из некоторых вторичных элементов (их стабилизируют разные типы взаимодействий, где гидрофобные являются важнейшими). Здесь в стабилизации участвуют ионные, водородные, ковалентные связи.
  • Четвертичная . Ее еще называют доменной или субъединичной. Данный уровень состоит из взаимного расположения цепей полипептидов в составе цельного белкового комплекса. Интересно, что в состав белков с четвертичной структурой входят не только идентичные, но еще и отличающиеся цепочки полипептидов.

Данное деление было предложено датским биохимиком по имени К. Линдстрем-Ланг. И пусть считается, что оно устарело, пользоваться им все равно продолжают.

Типы строения

Рассказывая про свойства белков, следует также отметить, что эти вещества делятся на три группы в соответствии с типом строения. А именно:

  • Фибриллярные белки. Они имеют нитевидную вытянутую структуру и большую молекулярную массу. Большинство из них не растворяется в воде. Структура этих белков стабилизируется взаимодействиями между полипептидными цепями (они состоят как минимум из двух остатков аминокислот). Именно фибриллярные вещества образуют полимер, фибриллы, микротрубочки и микрофиламенты.
  • Глобулярные белки. Вид структуры обуславливает их растворимость в воде. А общая форма молекулы отличается сферичностью.
  • Мембранные белки. Строение этих веществ имеет интересную особенность. У них есть домены, которые пересекают клеточную мембрану, но их части выступают в цитоплазму и межклеточное окружение. Эти белки играют роль рецепторов - передают сигналы и отвечают за трансмембранную транспортировку питательных веществ. Важно оговориться, что они весьма специфичны. Каждый белок пропускает лишь определенную молекулу или сигнал.

Простые

О них тоже можно рассказать чуть подробнее. Простые белки состоят лишь из цепей полипептидов. К ним относятся:

  • Протамин . Ядерный низкомолекулярный белок. Его присутствие является защитой ДНК от действия нуклеаз - ферментов, атакующих нуклеиновые кислоты.
  • Гистоны . Сильноосновные простые белки. Они сосредоточены в ядрах клеток растений и животных. Принимают участие в «упаковке» ДНК-нитей в ядре, а еще в таких процессах, как репарация, репликация и транскрипция.
  • Альбумины . О них уже говорилось выше. Самые известные альбумины - сывороточный и яичный.
  • Глобулин . Участвует в свертывании крови, а также в других иммунных реакциях.
  • Проламины . Это запасные белки злаков. Названия у них всегда разные. У пшеницы они именуются птиалинами. У ячменя - гордеинами. У овса - авснинами. Интересно, что проламины делятся на свои классы белков. Их всего две: S-богатые (с содержанием серы) и S-бедные (без нее).

Сложные

Что касательно сложных белков? Они содержат простетические группы или те, в которых нет аминокислот. К ним относятся:

  • Гликопротеины . В их состав входят углеводные остатки с ковалентной связью. Эти сложные белки - важнейший структурный компонент клеточных мембран. К ним относятся также многие гормоны. А еще гликопротеины эритроцитовых мембран определяют группу крови.
  • Липопротеины . Состоят из липидов (жироподобных веществ) и играют роль «транспорта» данных веществ в крови.
  • Металлопротеиды . Эти белки в организме имеют огромное значение, так как без них не протекает обмен железа. В состав их молекул входят ионы металлов. А типичными представителями данного класса являются трансферрин, гемосидерин и ферритин.
  • Нуклеопротеиды . Состоят из РКН и ДНК, не имеющих ковалентной связи. Яркий представитель - хроматин. Именно в его составе реализуется генетическая информация, репарируется и реплицируется ДНК.
  • Фосфопротеины . Их составляют остатки фосфорной кислоты, связанные ковалентно. В качестве примера можно привести казеин, который изначально содержится в молоке, как соль кальция (в связанном виде).
  • Хромопротеиды . У них простое строение: белок и окрашенный компонент, относящийся к простетической группе. Они принимают участие в клеточном дыхании, фотосинтезе, окислительно-восстановительных реакциях и т. д. Также без хромопротеидов не происходит аккумулирование энергии.

Обмен веществ

Выше уже было многое рассказано про физико-химические свойства белков. Об их роли в обмене веществ тоже нужно упомянуть.

Есть аминокислоты, являющиеся незаменимыми, поскольку они не синтезируются живыми организмами. Млекопитающие сами получают их из пищи. В процессе ее переваривания белок разрушается. Начинается этот процесс с денатурации, когда его помещают в кислотную среду. Затем - гидролиз, в котором участвуют ферменты.

Определенные аминокислоты, которые в итоге получает организм, участвуют в процессе синтеза белков, свойства которых необходимы для его полноценного существования. А оставшаяся часть перерабатывается в глюкозу - моносахарид, являющийся одним из основных источников энергии. Белок очень важен в условиях диет или голодания. Если он не будет поступать вместе с едой - организм начнет «есть себя» - перерабатывать собственные белки, особенно мускульные.

Биосинтез

Рассматривая физико-химические свойства белков, нужно заострить внимание и на такой теме, как биосинтез. Эти вещества формируются на основе той информации, которая закодирована в генах. Любой белок - это уникальная последовательность остатков аминокислот, определяемая геном, кодирующим его.

Как это происходит? Ген, кодирующий белок, переносит информацию с ДНК на РНК. Это называется транскрипцией. В большинстве случаев синтез затем происходит на рибосомах - это важнейший органоид живой клетки. Данный процесс именуется трансляцией.

Есть еще так называемый нерибосомный синтез. Его тоже стоит упомянуть, раз речь идет о значении белков. Этот вид синтеза наблюдается у некоторых бактерий и низших грибов. Процесс осуществляется посредством высокомолекулярного белкового комплекса (известен как NRS-синтаза), и рибосомы в этом участия не принимают.

И, конечно же, существует еще химический синтез. С его помощью можно синтезировать короткие белки. Для этого используются методы вроде химического лигирования. Это противоположность пресловутого биосинтеза на рибосомах. Таким же методом удается получить ингибиторы определенных ферментов.

К тому же благодаря химическому синтезу можно вводить в состав белков те остатки аминокислот, которые в обычных веществах не встречаются. Допустим те, у боковых цепей которых есть флюоресцентные метки.

Стоит оговориться, что методы химического синтеза не безупречны. Есть определенные ограничения. Если в белке содержится более 300 остатков, то искусственно синтезированное вещество, скорее всего, получит неправильную структуру. А это отразится на свойствах.

Вещества животного происхождения

Их рассмотрению необходимо уделить особое внимание. Животный белок - это вещество, содержащийся в яйцах, мясе, молочных продуктах, птице, морепродуктах и рыбе. В них имеются все аминокислоты, необходимые организму, в том числе и 9 незаменимых. Вот целый ряд важнейших функций, которые выполняет животный белок:

  • Катализ множества химических реакций. Данное вещество запускает их и ускоряет. За это «ответственны» ферментативные белки. Если в организм не будет поступать их достаточное количество, то окисление и восстановление, соединение и разрыв молекулярных связей, а также транспортировка веществ не будут протекать полноценно. Интересно, что лишь малая часть аминокислот вступают в различного рода взаимодействия. И еще меньшее количество (3-4 остатка) непосредственно задействовано в катализе. Все ферменты делят на шесть классов - оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Каждый из них отвечает за ту или иную реакцию.
  • Формирование цитоскелета, образующего структуру клеток.
  • Иммунная, химическая и физическая защита.
  • Транспортировка важных компонентов, необходимых для роста и развития клеток.
  • Передача электрических импульсов, важных для работы всего организма, поскольку без них невозможно взаимодействие клеток.

И это далеко не все возможные функции. Но даже так понятна значимость данных веществ. Синтез белка в клетках и в организме невозможен, если человек не будет употреблять в пищу его источники. А ими является мясо индейки, говядина, баранина, крольчатина. Еще много белка содержится в яйцах, сметане, йогурте, твороге, молоке. Также активировать синтез белка в клетках организма можно, добавив в свой рацион ветчину, субпродукты, колбасу, тушенку и телятину.

Цель урока : сформировать понятие о белке, его структуре, физических и химических свойствах.

Ход урока

I. Организационный момент

II. Актуализация знаний

(Ученикам заранее предлагается повторить тему «Аминокислоты».)

Два ученика работают у доски.

Задание 1. Напишите формулы 2-аминопропановой кислоты (аланина) и 3-метил-2-аминобутановой кислоты (валина). Какие еще названия для этих кислот вы можете предложить?

Задание 2. Напишите формулу 2-аминоэтановой кислоты. Какие еще названия этой кислоты вам известны? Составьте дипептид из двух остатков этой кислоты. Укажите место пептидной связи.

Фронтальная беседа.

– Какие две функциональные группы входят в состав аминокислот?
– Что представляют собой аминокислоты с точки зрения кислотно-основных свойств? За счет каких функциональных групп реализуются эти свойства?
– Дайте понятие пептидной связи.
– Могут ли аминокислоты образовывать водородные связи? За счет каких групп атомов?
– Какие вещества называются полимерами? Приведите примеры известных вам полимеров.

III. Постановка познавательной задачи

Учащиеся, работавшие у доски, отчитываются о выполненном задании.

На доске изображен дипептид, состоящий из двух остатков глицина, и приведены формулы двух аминокислот: аланина и валина.

    Может ли образоваться дипептид из разных по составу аминокислот? (Слайд 1.) Для того чтобы ответить на этот вопрос, обратите внимание на место пептидной связи в дипептиде.

Ответ . В образовании пептидной связи принимают участие аминогруппа одной аминокислоты и карбоксильная группа другой аминокислоты; боковые радикалы аминокислот не участвуют в образовании дипептида.

    Возможно ли дальнейшее присоединение аминокислот к этому веществу? Ответ обоснуйте.

Ответ . Присоединение возможно, т.к. у молекулы дипептида имеются свободные карбоксильная группа (С-конец) и аминогруппа (N-конец). Цепь может расти с обеих сторон (слайд 2).

    Сколько вариантов соединения вы можете предложить?

Ответ. Два. Когда аминокислота глицин стоит на первом месте и когда аминокислота глицин стоит на втором месте (слайд 3).

Ответ . Белки – это линейные биологические полимеры, состоящие из -аминокислот.

Запишите это определение в своих рабочих листках.

    Перед вами две полипептидные цепочки. Какой из пептидов может входить в состав белка и почему? (Слайд 4.)

Ответ . Первый, потому что он образован -аминокислотами.

    За счет каких связей образуется первичная структура белка?

Ответ. Первичная структура образуется за счет пептидных связей.

Запишите это в таблицу в рабочем листке.

Но белок гораздо более сложная макромолекула, чем линейная полипептидная цепочка. Помимо первичной структуры белка необходимо рассматривать вторичную, третичную, а в некоторых случаях и четвертичную структуры. В образовании вторичной структуры белка огромную роль играют водородные связи. Водородные связи образуются электроотрицательными атомами (кислородом, азотом и др.), с одним из которых связан атом водорода, причем все три атома находятся на одной прямой.

    Некоторые белки образуют четвертичную структуру, осуществляемую также за счет водородных связей, гидрофильно-гидрофобных взаимодействий и электростатических сил притяжения. Некоторые белки, имеющие четвертичную структуру, состоят из иона металла и белковой части, образованной несколькими белковыми цепями (разными или одинаковыми по первичной структуре) (слайд 7). Запишите в рабочие листки.

Белки осуществляют свои функции правильно только при наличии соответствующей третичной (и четвертичной, если таковая имеется) структур.

Физические свойства белков

Белки – высокомолекулярные соединения, т.е. это вещества с высокой молекулярной массой. Молекулярная масса белков составляет от 5 тыс. до миллионов а.е.м. (инсулин – 6500 Да; белок вируса гриппа – 32 млн Да).

Растворимость белков в воде зависит от их функций. Молекулы фибриллярных белков вытянуты в длину, нитеобразны и склонны группироваться одна возле другой с образованием волокон. Это основной строительный материал для тканей сухожилий, мускульных и покровных. Такие белки в воде нерастворимы.

Прочность белковых молекул просто поразительна! Человеческий волос прочнее меди и может соперничать со специальными видами стали. Пучок волос площадью 1 см 2 выдерживает вес в 5 т, а на женской косе из 200 тыс. волосинок можно поднять груженый КамАЗ весом 20 т.

Глобулярные белки свернуты в клубочки. В организме они выполняют ряд биологических функций, требующих их подвижности. Поэтому глобулярные белки растворимы в воде либо в растворах солей, кислот или оснований. Из-за большого размера молекул образуются растворы, называемые коллоидными. (Демонстрация растворения альбумина в воде. )

Химические свойства белков

Белки участвуют в не совсем обычных химических реакциях, т.к. они являются полимерными молекулами. Посмотрите в свои рабочие карточки и ответьте на следующие вопросы.

    Какая связь является более прочной: пептидная или водородная?

Ответ. Пептидная, т.к. эта связь относится к ковалентной химической связи.

    Какие структуры белков будут разрушаться быстрее и легче?

Ответ. Четвертичная (если таковая имеется), третичная и вторичная. Первичная структура будет сохраняться дольше других, т.к. она образована более прочными связями.

Денатурация – это разрушение белка до первичной структуры, т.е. пептидные связи сохраняются (слайд 8).

Демонстрация опыта. В 5 небольших пробирок налить по 4 мл раствора альбумина. Первую пробирку нагреть в течение 6–10 с (до помутнения). Во вторую пробирку добавить 2 мл 3М HCl. В третью – 2 мл 3М NaOH. В четвертую – 5 капель 0,1 М AgNO 3 . В пятую – 5 капель 0,1 М NaNO 3 .

После проведения опыта учащиеся заполняют пробелы в определении понятия «денатурация» на рабочих листках.

    Будут ли белки после денатурации проявлять свои специфические свойства?

Ответ . Большинство белков при денатурации утрачивают активность, т.к. белки проявляют свои специфические свойства только при наличии третичной и четвертичной структур.

    Как вы полагаете, можно ли разрушить первичную структуру белка?

Ответ. Можно. Это происходит в организме при переваривании белковой пищи.

Одно из самых важных свойств белков – способность к гидролизу. При гидролизе белка происходит разрушение первичной структуры.

    Какие вещества образуются при полном гидролизе белка?

Ответ . -аминокислоты.

Демонстрация опыта (заложенного перед уроком). В две пробирки наливают по 2 мл раствора куриного белка, в одну из них добавляют 1 мл насыщенного раствора фестала (таблетку предварительно освобождают от гладкой оболочки). Фестал – это ферментный препарат, облегчающий пищеварение, куда входят липаза (расщепляет жиры), амилаза (расщепляет углеводы), протеаза (расщепляет белки). Обе пробирки помещают в водяную баню при температуре 37–40 °С. В течение 30 мин продолжается процесс «переваривания» белка. По окончании нагревания в обе пробирки добавляют по 2 мл насыщенного раствора сульфата аммония или любого другого реагента, вызывающего денатурацию белка. В первой пробирке (контроль) образуется обильный белый осадок – белок денатурирует. Во второй пробирке (опыт) таких явлений не наблюдается – произошел гидролиз белка, а аминокислоты и пептиды с небольшой молекулярной массой не свертываются.

На основе результатов опыта заполните пропуски в определении понятия «гидролиз» на рабочих листках.

    Какое значение для нашего организма имеет гидролиз белков и где он происходит?

Ответ . Получение аминокислот для нужд организма в результате процессов пищеварения начинается в желудке, заканчивается в двенадцатиперстной кишке.

Цветные реакции – качественные реакции на белки:

а) биуретовая реакция (демонстрация опыта );
б) ксантопротеиновая реакция (демонстрация опыта ).

Заполните рабочие листки (обратите внимание на условия протекания этих реакций, это понадобится для проведения опытов на следующем уроке).

Рабочий листок

Тема: «Белки. Строение и свойства»

Белки ____________________________________________________________________
__________________________________________________________________________

Типы структур белка

Название структуры

Схема строения

Тип химической связи

Примечания

Первичная

§3 по учебнику «Общая биология» под ред. Д.К. Беляева; §27 по учебнику Габриелян О.С. «Химия, 10-й класс».

БЕЛКИ (протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и разнообразные функции. Большинство белков – ферменты, катализирующие химические реакции. Многие гормоны, регулирующие физиологические процессы, тоже являются белками. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы. К белкам относятся антитела, которые связывают и нейтрализуют токсичные вещества. Некоторые белки, способные реагировать на внешние воздействия (свет, запах), служат в органах чувств рецепторами, воспринимающими раздражение. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторные функции.

В первой половине 19 в. многие химики, и среди них в первую очередь Ю.фон Либих, постепенно пришли к выводу, что белки представляют собой особый класс азотистых соединений. Название «протеины» (от греч.

protos – первый) предложил в 1840 голландский химик Г.Мульдер. ФИЗИЧЕСКИЕ СВОЙСТВА Белки в твердом состоянии белого цвета, а в растворе бесцветны, если только они не несут какой-нибудь хромофорной (окрашенной) группы, как, например, гемоглобин. Растворимость в воде у разных белков сильно варьирует. Она изменяется также в зависимости от рН и от концентрации солей в растворе, так что можно подобрать условия, при которых один какой-нибудь белок будет избирательно осаждаться в присутствии других белков. Этот метод «высаливания» широко используется для выделения и очистки белков. Очищенный белок часто выпадает в осадок из раствора в виде кристаллов.

В сравнении с другими соединениями молекулярная масса белков очень велика – от нескольких тысяч до многих миллионов дальтон. Поэтому при ультрацентрифугировании белки осаждаются, и притом с разной скоростью. Благодаря присутствию в молекулах белков положительно и отрицательно заряженных групп они движутся с разной скоростью и в электрическом поле. На этом основан электрофорез – метод, применяемый для выделения индивидуальных белков из сложных смесей. Очистку белков проводят и методом хроматографии.

ХИМИЧЕСКИЕ СВОЙСТВА Строение. Белки – это полимеры, т.е. молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, роль которых играют у них a -аминокислоты. Общая формула аминокислот где R – атом водорода или какая-нибудь органическая группа.

Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа,

NH 2 , и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a -атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты:
После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия.

Карбоксильная группа и амидная группа (или сходная с ней имидная – в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или «боковой цепи», которая обозначена выше буквой

R . Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью.

Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера

– цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок. Оптическая активность. У всех аминокислот, за исключением глицина, к a -атому углерода присоединены четыре разные группы. С точки зрения геометрии, четыре разные группы могут быть присоединены двумя способами, и соответственно есть две возможные конфигурации, или два изомера, относящиеся друг к другу, как предмет к своему зеркальному отражению, т.е. как левая рука к правой. Одну конфигурацию называют левой, или левовращающей (L ), а другую – правой, или правовращающей (D ), поскольку два таких изомера различаются направлением вращения плоскости поляризованного света. В белках встречаются только L -аминокислоты (исключение составляет глицин; он может быть представлен лишь одной формой, поскольку у него две из четырех групп одинаковы), и все они обладают оптической активностью (поскольку имеется только один изомер). D -аминокислоты в природе редки; они встречаются в некоторых антибиотиках и клеточной оболочке бактерий. Последовательность аминокислот. Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов.

В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях.

Сложные белки. Белки, состоящие из одних только аминокислот, называют простыми. Часто, однако, к полипептидной цепи бывают присоединены атом металла или какое-нибудь химическое соединение, не являющееся аминокислотой. Такие белки называются сложными. Примером может служить гемоглобин: он содержит железопорфирин, который определяет его красный цвет и позволяет ему играть роль переносчика кислорода.

В названиях большинства сложных белков содержится указание на природу присоединенных групп: в гликопротеинах присутствуют сахара, в липопротеинах – жиры. Если от присоединенной группы зависит каталитическая активность фермента, то ее называют простетической группой. Нередко какой-нибудь витамин играет роль простетической группы или входит в ее состав. Витамин А, например, присоединенный к одному из белков сетчатки, определяет ее чувствительность к свету.

Третичная структура. Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка – третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы « дышит» – колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (– S–S–) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль.

Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей.

У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования – волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные («отталкивающие воду») аминокислоты скрыты внутри глобулы, а гидрофильные («притягивающие воду») находятся на ее поверхности.

Многие белки – это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок.

Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок – фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель «ключа и замка», объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями.

Белки у разных видов организмов. Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках.

Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с – дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами.

Денатурация. Синтезированная молекула белка, складываясь, приобретает свойственную ей конфигурацию. Эта конфигурация, однако, может разрушиться при нагревании, при изменении рН, под действием органических растворителей и даже при простом взбалтывании раствора до появления на его поверхности пузырьков. Измененный таким образом белок называют денатурированным; он утрачивает свою биологическую активность и обычно становится нерастворимым. Хорошо знакомые всем примеры денатурированного белка – вареные яйца или взбитые сливки. Небольшие белки, содержащие всего лишь около сотни аминокислот, способны ренатурировать, т.е. вновь приобретать исходную конфигурацию. Но большинство белков превращается при этом просто в массу спутанных полипептидных цепей и прежнюю конфигурацию не восстанавливает.

Одна из главных трудностей при выделении активных белков связана с их крайней чувствительностью к денатурации. Полезное применение это свойство белков находит при консервировании пищевых продуктов: высокая температура необратимо денатурирует ферменты микроорганизмов, и микроорганизмы погибают.

СИНТЕЗ БЕЛКОВ Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены. См . также НАСЛЕДСТВЕННОСТЬ; НУКЛЕИНОВЫЕ КИСЛОТЫ. Активация ферментов. Синтезированная из аминокислот полипептидная цепь – это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент. Метаболический кругооборот. После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются.

Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте.

Период полураспада у разных белков различен – от нескольких часов до многих месяцев. Единственное исключение – молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже.

Синтетические белки. Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки. См . также ГЕННАЯ ИНЖЕНЕРИЯ. БЕЛКИ И ПИТАНИЕ Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей. Зеленые растения синтезируют из СО 2 , воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет. Потребность в белках. Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено. Азотистый баланс. В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка.

Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка.

Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г.

Незаменимые аминокислоты. До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, – важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, «незаменимые», аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.)

Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных.

Питательная ценность белков. Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно . Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи. Синтетические белки в рационе. Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, – после переваривания и всасывания – превращаются в животные белки. К корму скота можно добавить мочевину – дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка. В США этот метод играет важную роль как один из способов получения белка. ЛИТЕРАТУРА Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека , тт. 1–2. М., 1993
Албертс Б., Брей Д., Льюс Дж. и др. Молекулярная биология клетки , тт. 1–3. М., 1994