» » Майкл фарадей и рождение физики поля. Опыты, эксперименты, теория, практика, решения задач Экспериментальное открытие магнитного действия электрического тока

Майкл фарадей и рождение физики поля. Опыты, эксперименты, теория, практика, решения задач Экспериментальное открытие магнитного действия электрического тока

Открытие гальванического элемента было важным этапом в развитии физики. С этого времени начинают изучать электрический ток и его действия.

Первые исследования были посвящены изучению химического действия тока. При этом была установлена тесная связь электрических и химических явлений.

В 1800 году англичане Никольсон и Карлейль разложили воду с помощью электрического тока на водород и кислород, а в 1807 году английский химик Хемфри Дэви (1778-1829), разлагая электрическим током едкие щелочи, открыл новые элементы - калий и натрий, а в следующем году - кальций.

В первые два десятилетия XIX века были получены результаты и в изучении теплового и светового действий тока, а также первые результаты в установлении законов постоянного тока.

Ряд заслуг в этом направлении принадлежит русскому физику и химику Василию Владимировичу Петрову (1761-1834).

В 1805 году он опубликовал результаты своих исследований по электричеству в книге «Известия о Гальвани – Вольтовых опытах». Источником электрического тока в опытах Петрова служила огромная для того времени гальваническая батарея. Построенная им батарея, состояла из 4200 цинковых и медных кружков, которые были уложены горизонтально в четыре ряда в деревянном ящике и разделялись бумажными прокладками, пропитанными нашатырем.

Петров проделал много опытов, изучая химическое, а также тепловое действие электрического тока. В одном из опытов он впервые наблюдал электрическую дугу.

Изучая химическое, тепловое и другие действия тока, Петров сделал некоторые выводы, относящиеся к законам постоянного тока. Так, например, он считал, что проводники обладают различной проводимостью и что свойства проводника определяют вместе с особенностями самой батареи действие тока в цепи. При этом он подчеркивал, что чем больше сечение проводника, тем сильнее действие «Гальвани – Вольтовской жидкости».

Исследования Петрова не были известны за границей. Частично это объясняется тем, что все свои работы Петров печатал только на русском языке. Поэтому, в частности, приоритет открытия электрической дуги был полностью приписан Дэви, опубликовавшему свои опыты с электрической дугой в 1812 году.

Исследовать магнитное действие электрического тока начинают после открытия датским ученым Хансом Кристианом Эрстедом (1777-1851) действия электрического тока на магнитную стрелку.

Уже задолго до открытия Эрстеда были известны факты, указывающие на существовании связи между электричеством и магнетизмом. Еще в XVII в. были известны случаи перемагничения стрелки компаса во время ударов молнии. В XVIII в. после установления электрической природы молнии были сделаны попытки намагнитить железо, пропуская через него разряд лейденской банки, а позже- ток от гальванической батареи. Однако эти попытки не привели к каким-либо определенным результатам.

Открытие Эрстеда, сделанное им в 1819 году и опубликованное в 1820 году, заключалось в следующем. Эрстед обнаружил, что если возле магнитной стрелки поместить прямолинейный проводник, направление которого совпадает с направлением магнитного меридиана, и пропустить через него электрический ток, то магнитная стрелка отклоняется. Величину момента силы, действующего на магнитную стрелку под влиянием электрического тока, Эрстед не определил. Он только отметил, что угол, на который отклоняется стрелка под действием тока, зависит от расстояния между ней и током, а также, говоря современным языком, от силы тока (во времена Эрстеда еще не было установлено понятие силы тока).

Теоретические соображения Эрстеда по поводу сделанного им открытия не отличались достаточной ясностью. Он говорил, что в окружающих точках пространства возникает «электрический конфликт», который имеет вокруг проводника вихревой характер. Статью, в которой впервые сообщалось об этом открытии, Эрстед называет «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку».

Открытие Эрстеда вызвало большой интерес и послужило толчком к новым исследованиям. В том же 1820 г. были получены новые результаты.

Так, Доминик Франсуа Араго (1786-1853) показал, что проводник с током действует на железные предметы, которые при этом намагничиваются.

Французские физики Ж.Б.Био и Ф.Савар установили закон действия прямолинейного проводника с током на магнитную стрелку. Поместив магнитную стрелку около прямолинейного проводника с током и наблюдая изменение периода колебаний этой стрелки в зависимости от расстояния до проводника, они установили, что сила, действующая на магнитный полюс со стороны прямолинейного проводника с током, направлена перпендикулярно проводнику и прямой, соединяющей проводник с полюсом, а ее величина обратно пропорциональна этому расстоянию.

Этот результат был проанализирован, и после введения понятия элемента тока был установлен закон, известный под названием закона Био-Савара-Лапласа.

Новый важный результат в области электромагнетизма был получен в 1820 году французом Андре Мари Ампером (1775-1836).

К этому времени Ампер был уже известным ученым, имел ряд трудов по математике, физике и химии. Ампер чрезвычайно заинтересовался открытием Эрстеда. Прежде всего, оно натолкнуло его на мысль о возможности сведения магнитных явлений к электрическим и исключении представления о специальной магнитной жидкости. Вскоре Ампер уже докладывал о своих новых гипотезах и говорил об опытах, которые должны их подтвердить.

Ампер провел свои теоретические и экспериментальные исследования одновременно с работами Био и Савара, и даже на несколько месяцев раньше. 18 сентября 1820 году он сообщил Парижской Академии наук о своем открытии пондеромоторных взаимодействий токов, которые он назвал электродинамическими. Точнее говоря, в этом своем первом докладе Ампер назвал эти действия «вольтаическими притяжениями и отталкиваниями», но потом стал именовать их «притяжениями и отталкиваниями электрических токов». В 1822 году он ввел термин «электродинамический». Ампер был плодовитым и искусным изобретателем неологизмов. Именно ему мы обязаны такими словами, как электростатический, реофор, соленоид , и многими другими.

В конце 1820 – начале 1821 года им было сделано более десяти докладов. В них Ампер сообщал как о своих экспериментальных исследованиях, так и о теоретических соображениях. Ампер показал на опыте взаимодействие двух прямолинейных проводников с током, взаимодействие двух замкнутых токов и т. д. Он также демонстрировал взаимодействие соленоида и магнита; эквивалентное поведение соленоида и магнитной стрелки в поле земного магнетизма и ряд других опытов. Свойства магнита он объяснял наличием в нем токов, а взаимодействие магнитов - взаимодействием этих токов. Сначала Ампер считал эти токи макроскопическими, несколько позже он пришел к гипотезе молекулярных токов.

В 1826 году был издан основной труд Ампера «Теория электродинамических явлений, выведенная исключительно из опыта». В этой книге Ампер систематически изложил свои исследования по электродинамике и, в частности, привел вывод закона взаимодействия элементов токов.

В заключение обзора работ Ампера следует отметить, что он ввел понятие «сила тока ». Амперу также принадлежит идея создания прибора для измерения силы тока (амперметра). Наконец, следует указать, что Ампер высказал идею электромагнитного телеграфа, которая затем была реализована на практике.

Важным достижением электродинамики первой половины XIX в. было установление законов цепи постоянного тока. В середине 20-х годов исследованием цепи постоянного электрического тока занялся немецкий физик Георг Симон Ом (1787-1854).

Прежде всего, Ом экспериментально установил, что величина электрического тока зависит от длины проводников, их сечения и от числа гальванических элементов, включенных в цепь.

Для измерения силы тока Ом использовал простейший гальванометр, представляющий собой крутильные весы, на нити которых была подвешена магнитная стрелка. Под стрелкой располагали проводник, включенный в цепь электрического тока. Когда по проводнику протекал электрический ток, магнитная стрелка отклонялась. Поворачивая головку крутильных весов, приводя стрелку в ее первоначальное положение, Ом измерял момент сил, действующих на маленькую стрелку. Как и Ампер, он считал, что величина этого момента пропорциональна силе тока.

Сначала Ом исследовал зависимость силы тока от длины проводника, включенного в цепь. В качестве источника тока он использовал термоэлемент, состоящий из висмута и меди, открытый Томасом Зеебеком (1170-1831) в 1821 г. Висмутовый стержень bb", имеющий форму буквы П, соединен с медными полосами. Ом нашел, что «сила магнитного действия» тока (сила тока) исследуемого проводника определяется формулой

X=a/(b+x)

где х -длина проводника, а и b - постоянные, причем a зависит от возбуждающей силы термоэлемента (erregende Kraft), а b - от особенностей всего остального участка цепи, включая и термоэлемент.

Ом затем установил, что если в цепь включен не один, а m одинаковых источников тока, то «сила магнитного действия тока »

X=ma /(mb+x)

Ом определил также, как зависит сила тока X в проводнике от его длины и поперечного сечения. Он нашел, что

X=(kw) a / L

где k - коэффициент проводимости проводника (Leitungsvermogen), w - поперечное сечение, а L - длина проводника, а - электрическое напряжение на его концах (Electrische Spannung).

Ом исследовал распределение электрического потенциала "электроскопической силы " вдоль однородного проводника с током. Для этого он применял электрометр, который присоединял к разным точкам проводника, когда одна из точек проводника была заземлена. Наконец, Ом попытался теоретически осмыслить обнаруженные им закономерности. Он исходил из представления об электрическом токе как о течении электричества вдоль проводника и проводил аналогию между электрическим током и потоком теплоты.

Ом надеялся, что его экспериментальные работы откроют ему путь в университет, чего он так желал. Однако статьи прошли незамеченными. Тогда он оставил место преподавателя в кельнской гимназии и отправился в Берлин, чтобы теоретически осмыслить полученные результаты. В 1827 г. в Берлине он опубликовал свой главный труд «Die galvanische Kette, mathematisch bearbeitet » («Гальваническая цепь, разработанная математически »).

Эта теория, при разработке которой вводит понятия и точные определения электродвижущей силы , или «э лектроскопической силы », как ее называет Ом, электропроводности (Starke der Leitung ) и силы тока . Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи.

Теоретические исследования Ома также остались незамеченными, а если кто-нибудь и писал о них, то лишь для того, чтобы высмеять «болезненную фантазию, единственной целью которой является стремление принизить достоинство природы». И лишь лет десять спустя его гениальные работы постепенно начали пользоваться должным признанием: в Германии их оценили Поггендорф и Фехнер, в России - Ленц, в Англии - Уитстон, в Америке - Генри, в Италии - Маттеуччи.

Одновременно с опытами Ома во Франции проводил свои опыты А. Беккерель , а в Англии - Барлоу . Опыты первого особенно замечательны введением дифференциального гальванометра с двойной обмоткой рамки и применением «нулевого» метода измерения. Опыты же Барлоу стоит упомянуть потому, что они экспериментально подтвердили постоянство силы тока во всей цепи. Этот вывод был проверен и распространен на внутренний ток батареи Фехнером в 1831 году, обобщен в 1851 году Рудольфом Кольраушем (1809-1858) на жидкие проводники, а затем еще раз подтвержден тщательными опытами Густава Нидмана (1826-1899).

Густав Роберт Кирхгоф (1824–1887) в работах, относящихся к 1845-1848 годам., уточнил понятие «электроскопической силы». Он установил тождественность понятия этой величины и понятия потенциала в электростатике. Кирхгоф также установил общеизвестные правила для электрических цепей.

Спустя более чем 15 лет после открытия закона Ома был установлен закон, определяющий количество теплоты, выделяемой электрическим током в цепи; он был установлен экспериментально в 1843 англичанином Джеймсом Прескотом Джоулем (1818-1889) и независимо от него петербургским академиком Э. X. Ленцем (1844). В настоящее время его называют законом Джоуля - Ленца.

Открытие явления электромагнитной индукции - важнейшее открытие в области электродинамики. Еще в 1824 году Араго, пытаясь с помощью магнитной стрелки определить присутствие железа в красной меди, обнаружил, что немагнитные вещества тормозят колебательное движение подвешенной магнитной стрелки. Затем он установил, что при вращении медной пластинки возле подвижного магнита последний стремится вращаться в том же направлении, и, наоборот, если вращать магнит, то пластинка в свою очередь стремится следовать за ним.

Опыт Арго сумел объяснить только Майкл Фарадей (1791-1867), открывший явление электромагнитной индукции. Фарадею принадлежит много открытий в области электричества и магнетизма. У Фарадея возникла мысль, что если электрический ток способен вызывать магнитные действия, то и магнетизм должен вызывать электрические явления. В 1823 г. он записывает в своем дневнике эту мысль: «Обратить магнетизм в электричество »; в течение восьми лет он настойчиво работал над поставленной задачей и в 1831 г. решил ее. Впервые явление электромагнитной индукции Фарадей наблюдал на следующем опыте:

«Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были положены в виде спирали между витками первой обмотки, причем металлический контакт был везде устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин.... При замыкании контакта наблюдалось внезапное, но очень слабое действие на гальванометр, и подобнее же слабое действие имело место при размыкании контакта с батареей. »

Проводя дальнейшие экспериментальные исследования, Фарадей открыл, в частности, случай «образования электричества из магнетизма», когда в проволочной катушке возникал электрический ток в результате движения внутри нее магнита.

Первый существенный шаг в направлении детального количественного изучения явления электромагнитной индукции был сделан в 1834 году петербургским академиком Эмилием Христиановичем Ленцем (1804-1865). Ленц изучал, как зависит индукционный ток в проволочной катушке от ее параметров, используя баллистический гальванометр. При этом он получил ряд новых результатов. В частности, установил, что э. д. с., индуцируемая в катушке, пропорциональна числу витков и не зависит от их диаметра и т. д. Самый важный результат, полученный Ленцем, - установление правила, или закона, носящего его имя. В его редакции оно формулируется так:

«Если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении ».

Магнитные явления были известны ещё в древнем мире: компас был изобретён более 4000 лет назад, и к XII веку он стал известен в Европе. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.
Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Х.Эрстеда (1777-1851). В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку (то есть подвижный магнит).
Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».
Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита. У многих возникал вопрос: а существует ли обратное действие, то есть постоянного магнита на проводник с током? Для поиска ответа проделаем опыт.

Положим на стол полосовой магнит, а над ним подвесим прямой жёсткий проводник на гибких проводах, подводящих ток, но дающих вместе с тем возможность проводнику поворачиваться (рис «а»). Как только мы подключим источник тока, проводник развернётся перпендикулярно к магниту (рис «б»). Другой вариант этого же опыта. Гибкий провод подвешен рядом с вертикально закреплённым магнитом (рис «в»). Когда по проводу идёт ток, то на каждый участок провода действует сила, разворачивающая его перпендикулярно к магниту (рис «г»). Поэтому провод и обвивается вокруг магнита, указывая на «круговой» характер магнитного поля.
Французский физик Ф. Араго (1786-1853) провёл серию своих опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только был включён ток, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Так был изобретён электромагнит - устройство, создающее сильное магнитное поле.
Открытие Ф. Араго заинтересовало его соотечественника А.Ампера (1775-1836), и он провёл опыты с параллельными проводниками с токами и обнаружил их взаимодействие (см. рисунок). Ампер показал, что если в проводниках идут токи одинаковых направлений, то такие проводники притягиваются друг к другу (левая часть рисунка). В случае же токов противоположных направлений, их проводники отталкиваются (правая часть рисунка). Как же объяснить такие результаты?

Во-первых, нужно было догадаться, что в пространстве, которое окружает постоянные токи и постоянные магниты, возникают силовые поля, называемые магнитными. Для их графического представления изображают силовые линии - это такие линии, в каждой точке которых магнитная стрелка, помещённая в поле, располагается по касательной к этой линии. Эти линии изображают более «густыми» или более «редкими» в зависимости от значения силы, действующей со стороны магнитного поля.
Во-вторых, нужно было проделать опыты и понять, что силовые линии прямого проводника с током представляют собой концентрические (расходящиеся от общего центра) окружности. Силовые линии можно «увидеть», если проводники пропустить сквозь стекло, на которое насыпать мелкие железные опилки. Более того, нужно было догадаться «приписать» силовым линиям определённое направление в зависимости от направления тока в проводнике. То есть ввести в физику «правило буравчика» или, что то же самое, «правило правой руки», см. рисунок ниже.
В-третьих, нужно было проделать опыты и ввести в физику «правило левой руки», чтобы определять направление силы, действующей на проводник с током, помещённый в магнитное поле, расположение и направление силовых линий которого известно. И лишь после этого, дважды воспользовавшись правилом правой руки и четырежды правилом левой руки, можно было объяснить опыт Ампера.

Силовые линии полей параллельных проводников с током представляют собой концентрические окружности «расходящиеся» вокруг каждого проводника, в том числе туда, где находится второй проводник. Поэтому на него действует магнитное поле, созданное первым проводником, и наоборот: магнитное поле, созданное вторым проводником, достигает первого и действует на него. Направление силовых линий определяется про правилу правой руки, а направление воздействия на проводник - по правилу левой руки.
Остальные, ранее рассмотренные опыты, объясняются аналогично: вокруг магнитов или проводников с током существует магнитное поле, по расположению силовых линий которого можно судить о направлении и величине магнитного поля, а также о том, как оно действует на проводники.

при участии Краюхиной Т.Е. (Нижегородская обл., г. Сергач)

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались показать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнито-статических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam», датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь-долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа.

В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрё-rimentale». В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари {1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

Марио Льецци "История физики"

Марио Льоцци

ОПЫТ ЭРСТЕДА

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались доказать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между "гальваническим флюидом" и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной "Experimenta circa effectum conflictus electrici in acum magneticam" датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь, долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является "силой поворачивающей". Значение этого факта чувствовалось, уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника "электрической материи, соответственно положительной и отрицательной".

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию "магнитных кривых", или "силовых линий". Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, "облепливается железными опилками так, как если б это был магнить", из чего он сделал заключение, что "ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию".

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе "Precis elementaire de physique ехрёrimentale" (2-е изд., II, Париж, 1821, стр. 122). В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари (1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют "первым элементарным законом Лапласа", в значительной мере является открытием Био.

ГАЛЬВАНОМЕТР

Упомянутый уже нами опыт Араго, объяснявшийся многими физиками того времени тем, что провод, по которому проходит ток, намагничивается, был сразу правильно понят Ампером, тотчас же предсказавшим, а затем вскоре и подтвердившим экспериментально, что стальной брусок, помещенный внутри спирали, по которой проходит ток, приобретает постоянную намагниченность. Таким образом, был найден новый метод намагничивания, гораздо более эффективный, простой и удобный, нежели прежние. Но самое главное, этим был дан толчок для создания простого, но очень ценного приспособления - электромагнита, который используется в многочисленных научных и технических приборах. Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783- 1850); этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок. Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785-1838) и американец Джозеф Генри (1797-1878).

За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается. Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле.

Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века. Здесь мы укажем лишь на описанное в 1823 г. "колесо Барлоу", потому что оно представляет собой разновидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса, к его периферии и далее через ртуть течет ток, колесо вращается.

Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779-1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка. Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеровский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком.

Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал "астатический аппарат", как он его назвал, подобный тому, который применял Вассалли Эанди, а еще раньше, в 1797 г., Джон Тремери. Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току.

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел "электромагнитные весы", получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.


Марио Льоцци ОПЫТ ЭРСТЕДА Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это пр