Московская Открытая Социальная Академия
Кафедра математических и общих естественнонаучных дисциплин
Концепции современного естествознания.
Тема реферата:
Структурные уровни организации материи.
Факультета заочного образование
номер группы: ФЭБ-3,6
Руководитель:
Москва 2009
ВВЕДЕНИЕ
I. Структурные уровни организации материи: микро-, макро,- мегамиры
1.1 Современный взгляд на структурную организацию материи
II. Структура и ее роль в организации живых систем
2.1 Система и целое
2.2 Часть и элемент
2.3 Взаимодействие части и целого
III. Атом, человек, Вселенная – длинная цепь усложнений
ЗАКЛЮЧЕНИЕСПИСОК ЛИТЕРАТУРЫ
Введение
Все объекты природы (живой и неживой природы)можно представить в виде системы, обладающими особенностями, характеризующими их уровней организации. Концепция структурных уровней живой материи включает представления системности и связанной с ней организацией целостности живых организмов. Живая материя дискретна, т.е. делится на составные части более низкой организации, имеющие определенные функции. Структурные уровни различаются не только классами сложности, но и по закономерности функционирования. Иерархическая структура такова, что каждый высший уровень не управляет, а включает низший. Диаграмма наиболее точно отражает целостную картину природы и уровень развития естествознания в целом. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц и заканчивается живыми сообществами. Концепция структурных уровней впервые была предложена в 20-х г.г. нашего столетия. В соответствии с ней структурные уровни различаются не только по классам сложностью, но по закономерностям функционирования. Концепция включает в себя иерархию структурных уровней, в которой каждый следующий уровень входит в предыдущий.
Цель данной работы заключается в изучении концепции структурной организации материи.
I. Структурные уровни организации материи: микро-, макрО -, мегамиры
В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система – сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.
Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали – координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали – связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности – это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.
В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.
В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие «уровень организации» в отличие от понятия «структура» включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом.
Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия – мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.
В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией.
Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.
1.1 СОВРЕМЕННЫЕ ВЗГЛЯДЫ НА СТРУКТУРНУЮ ОРГАНИЗАЦИЮ МАТЕРИИ
В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям.
Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.
Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно – статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.
По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.
Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.
Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.
Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.
Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.
Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.
В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:
микромир – мир атомов и элементарных частиц – предельно малых непосредственно ненаблюдаемых объектов, размерность от 10-8 см до 10-16 см, а время жизни – от бесконечности до 10-24 с.
макромир – мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта – пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.
мегамир – мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;
Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.
Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц – в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.
Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.
Геоцентрический мир – эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы – особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир – это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.
Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он
начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить Земля (диаметр 1,28×10+7 м, масса 6×1021 кг). Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.
Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011 м.
Световой год – расстояние, которое проходит свет в течение одного года, а именно 9,46×1015 м.
Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде. Это расстояние равно 206265 а.е. = 3,08×1016 м = 3,26 св. г.
Небесные тела во Вселенной образуют системы различной сложности. Так Солнце и движущиеся вокруг него 9 планет образуют Солнечную систему. Основная часть звезд нашей галактики сосредоточена в диске, видимом с Земли «сбоку» в виде туманной полосы, пересекающей небесную сферу – Млечного Пути.
Все небесные тела имеют свою историю развития. Возраст Вселенной равен 14 млрд. лет. Возраст Солнечной системы оценивается в 5 млрд. лет, Земли – 4,5 млрд. лет.
Еще одна типология материальных систем имеет сегодня достаточно широкое распространение. Это деление природы на неорганическую и органическую, в которой особое место занимает социальная форма материи. Неорганическая материя – это элементарные частицы и поля, атомные ядра, атомы, молекулы, макроскопические тела, геологические образования. Органическая материя также имеет многоуровневую структуру: доклеточный уровень – ДНК, РНК, нуклеиновые кислоты; клеточный уровень – самостоятельно существующие одноклеточные организмы; многоклеточный уровень – ткани, органы, функциональные системы (нервная, кровеносная и др.), организмы (растения, животные); надорганизменные структуры – популяции, биоценозы, биосфера. Социальная материя существует лишь благодаря деятельности людей и включает особые подструктуры: индивид, семья, группа, коллектив, государство, нация и др.
II. СТРУКТУРА И ЕЕ РОЛЬ В ОРГАНИЗАЦИИ ЖИВЫХ СИСТЕМ
2.1СИСТЕМА И ЦЕЛОЕ
Система - это комплекс элементов, находящихся во взаимодействии. В переводе с греческого это целое, составленное из частей, соединение.
Претерпев длительную историческую эволюцию, понятие система с середины XX в. становится одним из ключевых научных понятий.
Первичные представления о системе возникли в античной философии как упорядоченность и ценность бытия. Понятие система сейчас имеет чрезвычайно широкую область применения: практически каждый объект может быть рассмотрен как система.
Каждая система характеризуется не только наличием связей и отношений между образующими ее элементами, но и неразрывным единством с окружающей средой.
Можно выделить различные типы систем:
По характеру связи между частями и целым - неорганические и органические;
По формам движения материи - механические, физические, химические, физико-химические;
По отношению к движению - статистические и динамические;
По видам изменений - нефункциональные, функциональные, развивающиеся;
По характеру обмена со средой - открытые и закрытые;
По степени организации - простые и сложные;
По уровню развития - низшие и высшие;
По характеру происхождения - естественные, искусственные, смешанные;
По направлению развития - прогрессивные и регрессивные.
Согласно одному из определений, целое - это то, у чего не отсутствует ни одна из частей, состоя из которых, оно именуется целым. Целое обязательно предполагает системную организованность его компонентов.
Понятие целого отражает гармоническое единство и взаимодействие частей по определенной упорядоченной системе.
Родственность понятий целого и системы послужило основанием для не совсем верного их полного отождествления. В случае системы мы имеем дело не с отдельным объектом, а с группой взаимодействующих объектов, взаимно влияющих друг на друга. По мере дальнейшего совершенствования системы в сторону упорядоченности ее компонентов, она может перейти в целостность. Понятие целого характеризует не только множественность составляющих компонентов, но и то, что связь и взаимодействие частей являются закономерными, возникающими из внутренних потребностей развития частей и целого.
Поэтому целое есть особого рода система. Понятие целого является отражением внутренне необходимого, органического характера взаимосвязи компонентов системы, причем, иногда изменение одного из компонентов с неизбежностью вызывает то или иное изменение в другом, а нередко и всей системы.
Свойства и механизм целого как более высокого уровня организации по сравнению с организующими его частями не могут быть объяснены только через суммирование свойств и моментов действия этих частей, рассматриваемых изолированно друг от друга. Новые свойства целого возникают в результате взаимодействия его частей, поэтому, чтобы знать целое, надо наряду со знанием особенностей частей знать закон организации целого, т.е. закон объединения частей.
Поскольку целое как качественная определенность является результатом взаимодействия его компонентов, необходимо остановиться на их характеристике. Являясь составляющими системы или целого, компоненты вступают в различные отношения между собой. Отношения между элементами могут быть разделены на «элемент - структура» и «часть - целое». В системе целого наблюдается подчиненность частей целому. Система целого характерна тем, что она может создать недостающие ей органы.
2.2 ЧАСТЬ И ЭЛЕМЕНТ
Элемент - это такой компонент предмета, который может быть безразличен к специфике предмета. В категории структуры могут найти отношение связи и отношения между элементами, безразличными к его специфике.
Часть - это тоже составной компонент предмета, но, в отличие от элемента, часть - это компонент, который не безразличен к специфике предмета как целого (например, стол состоит из частей - крышки и ножек, а также элементов - скрепляющих части шурупов, болтов, которые можно применять для крепления других предметов: шкафов, тумб и т.д.)
Живой организм как целое состоит из многих компонентов. Одни из них будут просто элементами, другие в то же время и частями. Частями являются лишь такие компоненты, которым присущи функции жизни (обмен веществ и т.д.): внеклеточное живое вещество; клетка; ткань; орган; система органов.
Всем им присущи функции живого, все они выполняют свои специфические функции в системе организации целого. Поэтому часть - это такой компонент целого, функционирование которого определено природой, сущностью самого целого.
Кроме частей в организме имеются и другие компоненты, которые сами по себе не обладают функциями жизни, т.е. являются неживыми компонентами. Это элементы. Неживые элементы имеются на всех уровнях системной организации живой материи:
В протоплазме клетки - зерна крахмала, капли жира, кристаллы;
В многоклеточном организме к числу неживых компонентов, не обладающих собственным обменом веществ и способностью к самовоспроизведению, относятся волосы, когти, рога, копыта, перья.
Таким образом, часть и элемент составляют необходимые компоненты организации живого как целостной системы. Без элементов (неживых компонентов) невозможно функционирование частей (живых компонентов). Поэтому только совокупное единство и элементов и частей, т.е. неживых и живых компонентов, составляет системную организацию жизни, ее целостность.
2.2.1 СООТНОШЕНИЕ КАТЕГОРИЙ ЧАСТЬ И ЭЛЕМЕНТ
Соотношение категорий часть и элемент весьма противоречиво. Содержание категории часть отличается от категории элемент: элементами являются все составные компоненты целого, независимо от того, выражается в них специфика целого или нет, а частями являются лишь те элементы, в которых непосредственно выражена специфика предмета как целого, поэтому категория части уже категории элемента. С другой стороны содержание категории части шире категории элемента, так как лишь определенная совокупность элементов составляет часть. И это можно показать применительно к любому целому.
Значит, существуют определенные уровни или границы в структурной организации целого, которые отделяют элементы от частей. В то же время различие между категориями часть и элемент являются весьма относительными, так как они могут взаимопревращаться, например, органы или клетки, функционируя, подвергаются разрушению, значит, из частей превращаются в элементы и наоборот, они снова строятся из неживого, т.е. элементов, и становятся частями. Элементы, не выведенные из организма, могут превращаться в солевые отложения, которые уже являются частью организма, причем довольно нежелательной.
2.3 В ЗАИМОДЕЙСТВИЕ ЧАСТИ И ЦЕЛОГО
Взаимодействие части и целого состоит в том, что одно предполагает другое, они едины и друг без друга существовать не могут. Не бывает целого без части и наоборот: нет частей вне целого. Часть становится частью лишь в системе целого. Часть приобретает свой смысл только благодаря целому, так же как и целое есть взаимодействие частей.
Во взаимодействии части и целого ведущая, определяющая роль принадлежит целому. Части организма не могут самостоятельно существовать. Представляя собой частные приспособительные структуры организма, части возникают в ходе развития эволюции ради целого организма.
Определяющую роль целого по отношению к частям в органической природе как нельзя лучше подтверждают явления автотомии и регенерации. Ящерица, схваченная за хвост, убегает, оставив кончик хвоста. То же самое происходит с клешнями крабов, раков. Автотомия, т.е. самоотсечение хвоста у ящерицы, клешней у крабов и раков, является защитной функцией, способствующей приспособлению организма, выработавшейся в эволюционном процессе. Организм жертвует своей частью в интересах спасения и сохранения целого.
Явление автотомии наблюдается в тех случаях, когда организм способен восстановить утраченную часть. Недостающая часть хвоста у ящерицы вырастает заново (но, правда, один раз). У крабов и раков тоже часто вырастают отломанные клешни. Значит, организм способен сначала потерять часть ради спасения целого, с тем чтобы потом эту часть восстановить.
Явление регенерации еще больше свидетельствует о подчиненности частей целому: целое обязательно требует выполнения в той или иной мере утраченных частей. Современная биология установила, что регенерационной способностью обладают не только низкоорганизованные существа (растения и простейшие), но и млекопитающие.
Существует несколько видов регенерации: восстанавливаются не только отдельные органы, но и целые организмы из отдельных его участков (гидра из кольца, вырезанного из середины ее тела, простейшие, коралловые полипы, кольчатые черви, морские звезды и т.д.). В русском фольклоре нам известен Змей-Горыныч, у которого добры-молодцы отрубали головы, тут же снова выраставшие… В общебиологическом плане регенерация может рассматриваться как способность взрослого организма к развитию.
Однако определяющая роль целого по отношению к частям не означает, что части лишены своей специфики. Определяющая роль целого предполагает не пассивную, а активную роль частей, направленную на обеспечение нормальной жизни организма как целого. Подчиняясь в общем системе целого, части сохраняют относительную самостоятельность и автономность. С одной стороны, части выступают как компоненты целого, а с другой - они сами являются своеобразными целостными структурами, системами со своими специфическими функциями и структурами. В многоклеточном организме из всех частей именно клетки представляют наиболее высокий уровень целостности и индивидуальности.
То, что части сохраняют свою относительную самостоятельность и автономность, позволяет проводить относительную самостоятельность исследования отдельных систем органов: спинного мозга, вегетативной нервной системы, систем пищеварения и т.д., что имеет большое значение для практики. Пример тому - исследование и раскрытие внутренних причин и механизмов относительной самостоятельности злокачественных опухолей.
Относительная самостоятельность частей в большей мере, чем животным, присуща растениям. Им свойственно образование одних частей из других - вегетативное размножение. Каждому, наверное, в своей жизни приходилось видеть привитые, например, на яблоне черенки других растений.
3..АТОМ, ЧЕЛОВЕК, ВСЕЛЕННАЯ - ДЛИННАЯ ЦЕПЬ УСЛОЖНЕНИЙ
В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемого объекта. Ведь структурность – внутренняя расчлененность материального бытия, способ существования материи. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами, применительно к трем основным сферам объективной действительности эти уровни выглядят следующим образом.
СТРУКТУРНЫЕ УРОВНИ МАТЕРИИ | |||
Неорганическая | Общество | ||
1 | Субмикроэлементарный | Биологический макромолекулярный | Индивид |
2 | Микроэлементарный | Клеточный | Семья |
3 | Ядерный | Микроорганический | Коллективы |
4 | Атомарный | Органы и ткани | Большие социальные группы (классы, нации) |
5 | Молекулярный | Организм в целом | Государство (гражданское общество) |
6 | Макроуровень | Популяция | Системы государств |
7 | Мегауровень (планеты, звездно-планетные системы, Галактики) | Биоценоз | Человечество |
8 | Метауровень (метагалактики) | Биосфера | Ноосфера |
Каждая из сфер объективной действительности включает в себя ряд взаимосвязанных структурных уровней. Внутри этих уровней доминирующими являются координационные отношения, а между уровнями – субординационные.
Системное исследование материальных объектов предполагает не только установление способов описания отношений, связей и структуры множества элементов, но и выделения тех из них, которые являются системообразующими, т. е. обеспечивают обособленное функционирование и развитие системы. Системный подход к материальным образованиям предполагает возможность понимания рассматриваемой системы более высокого уровня. Для системы обычно характерна иерархичность строения, т. е. последовательное включение системы более низкого уровня в систему более высокого уровня. Таким образом, в структуру материи на уровне неживой природы (неорганической) входят элементарные частицы, атомы, молекулы (объекты микромира, макротела и объекты мегамира: планеты, галактики, системы метагалактик и т. д.). Метагалактику часто отождествляют со всей Вселенной, но Вселенная понимается в предельно широком смысле этого слова, она тождественна всему материальному миру и движущейся материи, которая может включать в себя множество метагалактик и других космических систем.
Живая природа также структурирована. В ней выделены уровень биологический и уровень социальный. Биологический уровень включает подуровни:
Макромолекул (нуклеиновые кислоты, ДНК, РНК, белки);
Клеточный уровень;
Микроорганический (одноклеточные организмы);
Органов и тканей организма в целом;
Популяционный;
Биоценозный;
Биосферный.
Основными понятиями данного уровня на последних трех подуровнях являются понятия биотоп, биоценоз, биосфера, требующие пояснения.
Биотоп – совокупность (сообщество) одного и того же вида (например, стая волков), которые могут скрещиваться и производить себе подобных (популяции).
Биоценоз – совокупность популяций организмов, при которых продукты жизнедеятельности одних являются условиями существование других организмов, населяющих участок суши или воды.
Биосфера – глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т. п.), образованная в результате взаимодействия биоценозов.
Общая основа жизни на биологическом уровне – органический метаболизм (обмен веществом, энергией и информацией с окружающей средой) проявляется на любом из выделенных подуровней:
На уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;
На уровне экосистем (биоценоза) он состоит из цепи превращения вещества, первоначально ассимилированного организмами производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;
На уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участии факторов космического масштаба.
На определенном этапе развития биосферы возникают особые популяции живых существ, которые благодаря своей способности к труду образовали своеобразный уровень – социальный. Социальная деятельность в структурном аспекте разделяется на подуровни: индивидов, семьи, различных коллективов (производственных), социальных групп и т. д.
Структурный уровень социальной деятельности находится в неоднозначно-линейных связях между собой (например, уровень наций и уровень государств). Переплетение разных уровней в рамках общества порождает представление о господстве случайности и хаотичности в социальной деятельности. Но внимательный анализ обнаруживает наличие в нем фундаментальных структур – главных сфер общественной жизни, которыми являются материально-производственная, социальная, политическая, духовная сферы, имеющие свои законы и структуры. Все они в определенном смысле субординированы в составе общественно-экономической формации, глубоко структурированы и обуславливают генетическое единство общественного развития в целом. Таким образом, любая из трех областей материальной действительности образуется из ряда специфических структурных уровней, которые находятся в строгой упорядоченности в составе той или иной области действительности. Переход от одной области к другой связан с усложнением и увеличением множества образованных факторов, обеспечивающих целостность систем. Внутри каждого из структурных уровней существуют отношения субординации (молекулярный уровень включает атомарный, а не наоборот). Закономерности новых уровней несводимы к закономерностям уровней, на базе которых они возникали, и являются ведущими для данного уровня организации материи. Структурная организация, т.е. системность, является способом существования материи.
Заключение
В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи.
Структурные уровни организации материи строятся по принципу пирамиды: высшие уровни состоят из многочисленного числа низших уровней. Низшие уровни являются основой существования материи. Без этих уровней невозможно дальнейшее построение «пирамиды материи». Высшие (сложные) уровни образуются путём эволюции – постепенно переходя от простого к сложному. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами.
Все объекты живой и неживой природы можно представить в виде определенных систем, обладающих конкретными особенностями и свойствами, характеризующими их уровень организации. С учетом уровня организации можно рассматривать иерархию структур организации материальных объектов живой и неживой природы. Такая иерархия структур начинается с элементарных частиц, представляющих собой первоначальный уровень организации материи, и заканчивается живыми организациями и сообществами - высшими уровнями организации.
Концепция структурных уровней живой материи включает представления системности и связанной с ней органической целостности живых организмов. Однако история теории систем начиналась с механистического понимания организации живой материи, в соответствии с которым все высшее сводилось к низшему: процессы жизнедеятельности - к совокупности физико-химических реакций, а организация организма - к взаимодействию молекул, клеток, тканей, органов и т.п.
Список литературы
1. Данилова В.С. Основные концепции современного естествознания: Учеб. пособие для вузов. – М., 2000. – 256 с.
2. Найдыш В.М. Концепции современного естествознания: Учеб.. Изд. 2-е, перераб. и доп. – М.; Альфа-М; ИНФРА-М, 2004. – 622 с.
3. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. – М., 2003. – 287 с.
4. Концепция современного естествознания: Под ред. Профессора С. И. Самыгина, Серия «Учебники и учебные пособия» -4-е изд., перераб. и доп. – Ростов н/Д: «Феникс».2003 -448c.
5. Дубнищева Т.Я. Концепция современного естествознания.: учебное пособие для студ. вузов/ 6-е изд., исправ. и допол. –М; Издательский центр «Академия», -20006.-608c.
В классическом естествознании, и, прежде всего в естествознании прошлого века, учение о принципах структурной организации материи было представлено классическим атомизмом. Именно на атомизме замыкались теоретические обобщения, берущие начало в каждой из наук. Идеи атомизма служили основой для синтеза знаний и его своеобразной точкой опоры. В наши дни под воздействием бурного развития всех областей естествознания классический атомизм подвергается интенсивным преобразованиям. Наиболее существенными и широко значимыми изменениями в наших представлениях о принципах структурной организации материи являются те изменения, которые выражаются в нынешнем развитии системных представлений.
Общая схема иерархического ступенчатого строения материи, связанная с признанием существования относительно самостоятельных и устойчивых уровней, узловых точек в ряду делений материи, сохраняет свою силу и эвристические значения. Согласно этой схеме дискретные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными при образовании и развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом большая устойчивость и самостоятельность исходных, относительно элементарных объектов обусловливает повторяющиеся и сохраняющиеся свойства, отношения и закономерности объектов более высокого уровня. Это положение едино для систем различной природы.
Структурность и системная организация материи относятся к числу ее важнейших атрибутов, выражают упорядоченность существования материи и те конкретные формы, в которых она проявляется.
Под структурой материи обычно понимают ее строение в макромире, т.е. существование в виде молекул, атомов, элементарных частиц и т.д. Это связано с тем, что человек является макроскопическим существом и для него привычными являются макроскопические масштабы, поэтому понятие структуры ассоциируется обычно с различными микрообъектами.
Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также макроскопические тела, все космические системы мегамира, причем в любых сколь угодно больших пространственно-временных масштабах. С этой точки зрения, понятие «структура» проявляется в том, что она существует в виде бесконечного многообразия целостных систем, тесно взаимосвязанных между собой, а также в упорядоченности строения каждой системы. Такая структура бесконечна в количественном и качественном отношениях.
Проявлениями структурной бесконечности материи выступают:
– неисчерпаемость объектов и процессов микромира;
– бесконечность пространства и времени;
– бесконечность изменений и развития процессов.
Из всего многообразия форм объективной реальности эмпирически доступной всегда остается лишь конечная область материального мира, которая ныне простирается в масштабах от 10 -15 до 10 28 см, а во времени - до 2×10 9 лет.
Структурность и системная организация материи относятся к числу важнейших ее атрибутов. Они выражают упорядоченность существования материи и те ее конкретные формы, в которых она проявляется.
Материальный мир един: мы подразумеваем, что все его части - от неодушевленных предметов до живых существ, от небесных тел до человека как члена общества - так или иначе связаны.
Системой является то, что определенным образом связано между собой и подчинено соответствующим законам.
Упорядоченность множества подразумевает наличие закономерных отношений между элементами системы, которое проявляется в виде законов структурной организации. Внутренняя упорядоченность имеется у всех природных систем, возникающих в результате взаимодействия тел и естественного саморазвития материи. Внешняя характерна для созданных человеком искусственных систем: технических, производственных, концептуальных и т.п.
Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.
Критерием для выделения различных структурных уровней служат следующие признаки:
– пространственно-временные масштабы;
– совокупность важнейших свойств;
– специфические законы движения;
– степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;
– некоторые другие признаки.
Известные в настоящее время структурные уровни материи могут быть выделены по вышеперечисленным признакам в следующие области.
1. Микромир. Сюда относятся:
– частицы элементарные и ядра атомов - область порядка 10 – 15 см;
– атомы и молекулы 10 –8 -10 –7 см.
Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10 -8 до 10 -16 см, а время жизни - от бесконечности до 10 -24 с.
2. Макромир: макроскопические тела 10 –6 -10 7 см.
Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.
Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.
3. Мегамир: космические системы и неограниченные масштабы до 1028 см.
Разные уровни материи характеризуются разными типами связей.
В масштабах 10–13 см - сильные взаимодействия, целостность ядра обеспечивается ядерными силами.
Целостность атомов, молекул, макротел обеспечивают электромагнитные силы.
В космических масштабах - гравитационные силы.
С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 1039 больше, а взаимодействие между нуклонами - составляющими ядро частицами - в 1041 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.
Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.
Говоря о структурности - внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.
В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материального бытия, способ существования материи. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами, применительно к трем основным сферам объективной действительности эти уровни выглядят следующим образом (табл. 1).
Таблица 1 – Структурные уровни материи
Неорганическая природа |
Живая природа |
Общество |
Субмикроэле-ментарный |
Биологический макромолекулярный |
Индивид |
Микроэлементарный |
Клеточный |
Семья |
Ядерный |
Микроорганический |
Коллективы |
Атомарный |
Органы и ткани |
Большие социальные группы (классы, нации) |
Молекулярный |
Организм в целом |
Государство (гражданское общество) |
Макроуровень |
Популяции |
Системы государств |
Мегауровень (планеты, звездно-планетные системы, галактики) |
Биоценоз |
Человечество в целом |
Мегауровень (метагалактики) |
Биосфера |
Ноосфера |
Каждая из сфер объективной действительности включает в себя ряд взаимосвязанных структурных уровней. Внутри этих уровней доминирующими являются координационные отношения, а между уровнями - субординационные.
Системное исследование материальных объектов предполагает не только установление способов описания отношений, связей и структуры множества элементов, но и выделение тех из них, которые являются системообразующими, т.е. обеспечивают обособленное функционирование и развитие системы. Системный подход к материальным образованиям предполагает возможность понимания рассматриваемой системы более высокого уровня. Для системы обычно характерна иерархичность строения, т.е. последовательное включение системы более низкого уровня в систему более высокого уровня.
Таким образом, в структуру материи на уровне неживой природы (неорганической) входят элементарные частицы, атомы, молекулы (объекты микромира, макротела и объекты мегамира: планеты, галактики, системы метагалактик и т.д.). Метагалактику часто отождествляют со всей Вселенной, но Вселенная понимается в предельно широком смысле этого слова, она тождественна всему материальному миру и движущейся материи, которая может включать в себя множество метагалактик и других космических систем.
Живая природа также структурирована. В ней выделены уровень биологический и уровень социальный. Биологический уровень включает подуровни:
– макромолекул (нуклеиновые кислоты, ДНК, РНК, белки);
– клеточный уровень;
– микроорганический (одноклеточные организмы);
– органов и тканей организма в целом;
– популяционный;
– биоценозный;
– биосферный.
Основными понятиями данного уровня на последних трех подуровнях являются понятия биотоп, биоценоз, биосфера, требующие пояснения.
Биотоп - совокупность (сообщество) особей одного и того же вида (например, стая волков), которые могут скрещиваться и воспроизводить себе подобных (популяции).
Биоценоз - совокупность популяций организмов, при которых продукты жизнедеятельности одних являются условиями существования других организмов, населяющих участок суши или воды.
Биосфера – глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т.п.), образованная в результате взаимодействия биоценозов.
Общая основа жизни на биологическом уровне - органический метаболизм (обмен веществом, энергией и информацией с окружающей средой) - проявляется на любом из выделенных подуровней:
– на уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;
– на уровне экосистем (биоценоза) он состоит из цепи превращений вещества, первоначально ассимилированного организмами-производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;
– на уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участи факторов космического масштаба.
На определенном этапе развития биосферы возникают особые популяции живых существ, которые, благодаря своей способности к труду образовали своеобразный уровень - социальный. Социальная действительность в структурном аспекте разделяется на подуровни: индивидов, семьи, различных коллективов (производственных), социальных групп и т.д.
Структурный уровень социальной деятельности находится в неоднозначно-линейных связях между собой (например, уровень наций и уровень государств). Переплетение разных уровней в рамках общества порождает представление о господстве случайности и хаотичности в социальной деятельности. Но внимательный анализ обнаруживает наличие в нем фундаментальных структур - главных сфер общественной жизни, которыми являются материально-производственная, социальная, политическая, духовная сферы, имеющие свои законы и структуры. Все они в определенном смысле субординированы в составе общественно-экономической формации, глубоко структурированы и обуславливают генетическое единство общественного развития в целом.
Таким образом, любая из трех областей материальной действительности образуется из ряда специфических структурных уровней, которые находятся в строгой упорядоченности в составе той или иной области действительности.
Переход от одной области к другой связан с усложнением и увеличением множества образованных факторов, обеспечивающих целостность систем. Внутри каждого из структурных уровней существуют отношения субординации (молекулярный уровень включает атомарный, а не наоборот). Закономерности новых уровней несводимы к закономерностям уровней, на базе которых они возникли, и являются ведущими для данного уровня организации материи. Структурная организация, т.е. системность, является способом существования материи.
2. ТРИ «ОБРАЗА» БИОЛОГИИ. ТРАДИЦИОННАЯ ИЛИ НАТУРАЛИСТИЧЕСКАЯ БИОЛОГИЯ
Можно также говорить о трех магистральных направлениях биологии или, по образному выражению трех образах биологии:
1. Традиционная или натуралистическая биология. Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности – «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку – натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 – 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук, а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается в принципах традиционной биологии, поскольку исследует взаимоотношений организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).
2. Функционально-химическая биология, отражающая сближение биологии с точными физико-химическими науками. Особенность физико-химической биологии – широкое использование экспериментальных методов, которые позволяют исследовать живую материю на субмикроскопическом, надмолекулярном и молекулярном уровнях. Одним из важнейших разделов физико-химической биологии является молекулярная биология – наука изучающая структуру макромолекул, лежащих в основе живого вещества. Биологию нередко называют одной из лидирующих наук 21-го века.
К важнейшим экспериментальным методам, использующимся в физико-химической биологии, относятся метод меченых (радиоактивных) атомов, метолы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования (например, разделение различных аминокислот), использование ЭВМ и др.
3. Эволюционная биология. Это направление биологии изучает закономерности исторического развития организмов. В настоящее время концепция эволюционизма стала, фактически, платформой, на которой происходит синтез разнородного и специализированного знания. В основе современной эволюционной биологии лежит теория Дарвина. Интересно и то, что Дарвину в свое время удалось выявить такие факты и закономерности, которые имеют универсальное значение, т.е. теория созданная им, приложима к объяснению явлений, происходящих не только в живой, но и неживой природе. В настоящее время эволюционный подход взят на вооружение всем естествознанием. Вместе с тем, эволюционная биология – самостоятельная область знания, с собственными проблемами, методами исследования и перспективой развития.
В настоящее время предпринимаются попытки синтеза этих трех направлений («образов») биологии и оформления самостоятельной дисциплины – теоретической биологии.
4. Теоретическая биология. Целью теоретической биологии является познание самых фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи. Здесь разные исследования выдвигают различные мнения по вопросу о том, что должно стать фундаментом теоретической биологии. Рассмотрим некоторые из них:
Аксиомы биологии. Б.М. Медников – видный теоретик и экспериментатор, вывел 4 аксиомы, характеризующие жизнь и отличающие её от «нежизни».
Аксиома 1. Все живые организмы должны состоять из фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение. Наследуется не структура, а описание структуры и инструкция по ее изготовлению. Жизнь на основе только одного генотипа или одного фенотипа невозможна, т.к. при этом нельзя обеспечить ни самовоспроизведения структуры, ни ее самоподдержания. (Д. Нейман, Н. Винер).
Аксиома 2. Генетические программы не возникают заново, а реплицируются матричным способом. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения. Жизнь – это матричное копирование с последующей самосборкой копий (Н.К. Кольцов).
Аксиома 3. В процессе передачи из поколения в поколение генетические программы в результате многих причин изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными. Отбор случайных изменений не только основа эволюции жизни, но и причина ее становления, потому что без мутаций отбор не действует.
Аксиома 4.
В процессе формирования фенотипа случайные изменения генетических программ многократно усиливаются, что делает возможным их селекцию со стороны факторов внешней среды. Из-за усиления в фенотипах случайных изменений эволюция живой природы принципиально непредсказуема (Н.В.Тимофеев-Ресовский).
Э.С. Бауэр (1935г.) выдвинул в качестве основной характеристики жизни принцип устойчивой неравновесности живых систем.
Л. Берталанфи (1932г.) рассматривал биологические объекты как открытые системы, находящиеся в состоянии динамического равновесия.
Э. Щредингер (1945г.), Б.П. Астауров представляли создание теоретической биологии по образу теоретической физики.
С. Лем (1968г.) выдвинул кибернетическую интерпретацию жизни.
5. А.А. Малиновский (1960г.) предлагал в качестве основы теоретической биологии математические и системные методы.
Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком материальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного опыта. Применяя системный подход, естествознание не просто выделяет типы материальных систем, а раскрывает их связь и соотношение.
В науке выделяются три уровня строения материи:
Микромир (элементарные частицы, ядра, атомы, молекулы) - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни - от бесконечности до десяти в минус двадцать четвертой степени сек.
Макромир (макромолекулы, живые организмы, человек, объекты техники и т.д.) - мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.
Мегамир (планеты, звезды, галактика) - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны. Фундаментальные мировые константы определяют масштабы иерархической структуры материи нашего мира. Очевидно, что сравнительно небольшое их изменение и должно приводить к формированию качественно иного мира, в котором стало бы невозможным образование ныне существующих микро-, макро - и мегаструктур и в целом высоко-организованных форм живой материи. Определенные их значения и взаимоотношения между ними, по существу, и обеспечивает структурную устойчивость нашей Вселенной. Поэтому проблема, казалось бы, абстрактных мировых констант имеет глобальное мировоззренческое значение.
Материя
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы.
Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т.д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может. Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета.
Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо.
Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит. Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их "вихря" по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно. Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны. Современная наука выделяет в мире три структурных уровня.
Структурные уровни организации материиМикромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с. Макромир - мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время - в секундах, минутах, часах, годах.
Мегамир - это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро- и мегамиры теснейшим образом взаимосвязаны.
Понятно, что границы микро - и макромира подвижны, и не существует отдельного микромира и отдельного макромира. Естественно, что макрообъекты и мегаобъекты, построены из микрообъектов и в основе макро - и мегаявлений лежат микроявления. Это наглядно видно на примере построения Вселенной из взаимодействующих элементарных частиц в рамках космомикрофизики. На самом деле мы должны понимать, что речь идет лишь о различных уровнях рассмотрения вещества. Микро-, макро - и мегаразмеры объектов соотносятся друг с другом как макро/микро - мега/макро.
В классической физике отсутствовал объективный критерий отличия макро - от микрообъекта. Это отличие ввел М. Планк: если для рассматриваемого объекта минимальным воздействием на него можно пренебречь, то это макрообъекты, если нельзя – это микрообъекты. Из протонов и нейтронов образуются ядра атомов. Атомы объединяются в молекулы. Если двигаться дальше по шкале размеров тел, то далее следует обычные макротела, планеты и их системы, звезды скопления галактик и метагалактик, то есть можно представить переход от микро-, макро - и мега - как в размерах, так и моделях физических процессов.
МикромирДемокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в.Д.И. Менделеев построил систему химических элементов, основанную на их атомном весе. История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.
Ядро имеет положительный заряд, а электроны - отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов - атом электрически нейтрален. Обе эти модели оказались противоречивы.
В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров. Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:
1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;
2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.
В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует. Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.
Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.
МакромирВ истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI-XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов - мельчайших в мире частиц.
Со становления классической механики начинается научный этап изучения природы. Поскольку современные научные представления о структурных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начинать нужно с концепций классической физики.
Формирование научных взглядов на строение материи относится к XVI в., когда Г. Галилеем была заложена основа первой в истории науки физической картины мира - механической. Он открыл закон инерции, и разработал методологию нового способа описания природы - научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования.
И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц - атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.
Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.
Механистический подход к описанию природы оказался необычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области - оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.
Наряду с механической корпускулярной теорией, осуществлялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории. Волновая теория устанавливала аналогию между распространением света и движением волн на поверхности воды или звуковых волн в воздухе. В ней предполагалось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исходя из волновой теории X. Гюйгенс успешно объяснил отражение и преломление света.
Другой областью физики, где механические модели оказались неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток.
М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: "Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии"
Исходя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г. После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. Был открыт качественно новый, своеобразный вид материи. Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.
МегамирМегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15 - 20 млрд. световых лет. Понятия "Вселенная" и "Метагалактика" - очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие "Вселенная" обозначает весь существующий материальный мир; понятие "Метагалактика" - тот же мир, но с точки зрения его структуры - как упорядоченную систему галактик. Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеобразном стыке науки, религии и философии. В основе космологических моделей Вселенной лежат определенные мировоззренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.
В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти такой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился. Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.
Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, т. ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.
Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве. В 1922г. русский математик и геофизик А. А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством. Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.
В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см 3 . В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.
Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”.
Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия.
Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие.
Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы - энергии Вселенной - приходится на фотоны.
Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик. Затем разворачивается грандиозная картина образования структуры Метагалактики.
В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Сторонники инфляционной модели видят соответствие между этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.
Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. Вселенная раздулась от невообразимо малых квантовых размеров 10-33 до невообразимо больших 101000000 см, что на много порядков превосходит размер наблюдаемой Вселенной - 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения. Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос.
В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур - атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения - человека. Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10-30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет. Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.
Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.
Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию. По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные. Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра. Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь. Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро. В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики. Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.
Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии.97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, "звездная субстанция" составляет более чем 99,9% их массы. Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч - самых молодых. Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. На завершающем этапе эволюции звезды превращаются в инертные ("мертвые") звезды.
Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы - так называемые кратные системы состоят из двух, трех, четырех, пяти и больше звезд, обращающихся вокруг общего центра тяжести. Звезды объединены также в еще большие группы - звездные скопления, которые могут иметь "рассеянную" или "шаровую" структуру. Рассеянные звездные скопления насчитывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч. Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц.
К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет вращается в том же направлении и в большинстве случаев в экваториальной плоскости своей планеты. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.
Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливавшихся в газово-пылевых облаках. Это обстоятельство дает основание назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.
Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Эта идея была выдвинута шведским физиком и астрофизиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде - Солнцу, но его магнитное поле остановило падающий газ а различных расстояниях - как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.
Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места. В настоящее время в области фундаментальной теоретической физики разрабатываются концепции, согласно которым объективно существующий мир не исчерпывается материальным миром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выводу: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.
Издавна люди пытались найти объяснение многообразию и причудливости мира. Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим. Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.
Все вышеизложенные революционные открытия в физике перевернули ранее существующие взгляды на мир. Исчезла убежденность в универсальности законов классической механики, ибо разрушились прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. Теперь уже вряд ли можно найти физика, который считал бы, что все проблемы его науки можно решить с помощью механических понятий и уравнений.
Рождение и развитие атомной физики, таким образом, окончательно сокрушило прежнюю механистическую картину мира. Но классическая механика Ньютона при этом не исчезла. По сей день она занимает почетное место среди других естественных наук. С ее помощью, например, рассчитывается движение искусственных спутников Земли, других космических объектов и т.д. Но трактуется она теперь как частный, случай квантовой механики, применимый для медленных движений и больших масс объектов макромира.
Материалистическое понимание субстанции прошло более чем двух тысячелетий период развития. Начало ему было положено с упрощенного представления о праматери, т.е. о чем-то, что предшествовало современной материи, поэтому является субстанцией.
Понятие материя - фундаментальная категория в философии и естествознании. В переводе с латинского materia означает вещество. Первоначальные представления о материи возникли уже в античности, где представители различных философских школ отождествляли ее с материальной субстанцией, лежащей в основе бытия: вода (Фалес), воздух (Анаксимен), огонь (Гераклит), атомы (Демокрит) и т. д.
В средние века материю понимали, в основном, как материал, из которого сделаны вещи. Материя как философская категория не развивалась, хотя мы и находим у Августина Блаженного понятия «материя духовная и телесная».
В XVII - XVIII вв. складывается новое понимание материи, отличное от представлений древних. Был сделан вывод, что материя - не конкретное вещество (земля, огонь, вода, воздух и т.д.), а физическая реальность как таковая. В этот период от философии отпочковываются и получают развитие в качестве самостоятельных отраслей математические, естественные я общественные науки. Наиболее развитыми науками того времени были механика и геометрия, поэтому в воззрениях на материю преобладал механицизм. Материя определяется как совокупность чувственно воспринимаемых тел. Материя отождествляется с веществом, состоящим из неделимых, неизменных атомов, обладающим универсальными свойствами: механической массой, весом, непроницаемостью, инерцией. Все вещественное обладает этими свойствами, а значит, вполне логично перенести эти свойства с конкретных веществ на Вещество как таковое.
В это же время появилось определение материи, данное английским философом Дж. Беркли, классиком субъективного идеализма. В своей работе «Диалог между философом Беркли и материалистом» он вкладывает в уста материалиста понятие материи как реальности, которая воздействует на наши ощущения, но не зависит от них. Беркли, будучи субъективным идеалистом, всю свою философскую энергию направил на борьбу против материализма и его основного понятия - материи, но именно данное им определение материи было использовано французскими материалистами, которые под материей понимали все то, что действует на наши органы чувств. Под этим всем, что действует на наши органы чувств, они подразумевали вещество, представляющее собой совокупность конкретных частиц-атомов, тождественных между собой, обладающих универсальными свойствами. В основании материи-вещества лежат фундаментальные законы мироздания, и прежде всего закон сохранения вещества.
Такое понимание материи было исторически прогрессивным, но и ограниченным. Немецкий философ Ф. Энгельс был первым, кто указал на эту ограниченность. Он считал, что нельзя сводить материю к совокупности конкретных частиц-атомов, поскольку они сами могут иметь сложную структуру. Ему принадлежит определение материи как общего понятия, охватывающего все многообразие вещей.
Ограниченность концепции отождествления материи с веществом стала особенно очевидной для естествознания на рубеже XIX-XX вв. Именно в тот период в физике разразился кризис, связанный с революционными открытиями.
В качестве одного из вариантов выхода из кризиса и дальнейшего развития физики и философии В.И. Ленин предложил новое методологическое основание - новое определение материи: «Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них».
Ленин считал, что необходимо разграничить философское понимание материи и физические представления о ее свойствах и строении, и дал философское определение, заостряя внимание на том, что материя как категория не обозначает ничего, кроме объективной реальности, а значит, что какие бы ни были открыты новые состояния материи, достаточно определить: является ли это открытие объективной реальностью или нет. Далее своим определением он подчеркивал, что материя есть первичная реальность по отношению к нашим ощущениям, так как она существует независимо от них.
Определение Ленина является более диалектичным по сравнению с прежними метафизическими определениями, так как оно открыто для последующих знаний и развития. Но, как любое определение, оно исторически ограничено. Оно, скорее, гносеологично, чем онтологично, ибо сказать, что материя - объективная реальность, - это в содержательном плане ничего не сказать. Данное определение работает против субъективного идеализма, но совершенно не работает против идеализма объективного. Ведь и бог, и мировой разум, и абсолютная идея вписываются в определение объективной реальности для верующего в них человека. Бог является к верующему в конкретном образе, который тот воспринимает с помощью органов чувств.
Но, несмотря на указанные недостатки, в материализме сегодня нет более нового и совершенного определения материи. Наряду с мировоззренческим следует отметить и методологическое значение этого определения для развития естествознания. Идея неисчерпаемости материи, высказанная В.И. Лениным, сейчас является одним из руководящих методологических принципов естественнонаучного исследования. Это особенно ярко проявляется в современных взглядах на строение материи, сложившихся в естественных науках.
Кратко охарактеризуем современные представления о структурной организации материи . Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами. Критериями выделения структурных уровней служат пространственно-временные масштабы, совокупность важнейших свойств и законов изменения, степень относительной сложности, возникшей в процессе исторического развития материи в данной области мира.
Неорганическая природа разбивается на три 1)микро-, 2)макро- и 3)мегамиры, имеющие следующую последовательность структурных уровней: 1) субмикроэлементарный – микроэлементарный (элементарные частицы и полевые взаимодействия) – ядерный – атомарный – молекулярный – 2) уровень макроскопических тел (ряд подуровней) – 3) планеты – звездно-планетные комплексы – галактики – метагалактики.
Живая природа подразделяется на следующие уровни: биологических макромолекул – клеточный уровень – микроорганизменный – органов и тканей – организма в целом – популяционный – биоценозный – биосферный. Общая основа жизни – органический метаболизм (обмен веществом, энергией и информацией со средой) – специфицируется в каждом из выделенных уровней.
Социальная действительность представлена уровнями: индивидов – семьи – коллективов – социальных групп – классов – национальностей и наций – государств и систем государств – общества в целом.
Отметим также, что более высокие уровни системной организации материи возникают в рамках сравнительно небольшого множества явлений предыдущего уровня. Так, из трёх основных групп уровней неорганической природы (микро-, макро- и мегамир) лишь на уровне меньшей части явлений макромира возникает жизнь, точно также социум возникает у представителей единственного биологического вида. Усложнению системной организации материи тем самым сопутствует сужение возможностей его реализации.
Материя. структура и системная организация материи. Системная организация как атрибут материи. Структура материи. Структурные уровни организации материи. структурные уровни различных сфер.
Материя
Клеточный - самостоятельно существующие одноклеточные организмы;
Многоклеточный - органы и ткани, функциональные системы (нервная, кровеносная), организмы: растения и животные;
Организм в целом;
Популяции (биотоп) - сообщества особей одного вида, которые связаны общим генофондом (могут скрещиваться и воспроизводить себе подобных): стая волков в лесу, стая рыб в озере, муравейник, кустарник;
- биоценоз - совокупность популяций организмов, при которых продукты жизнедеятельности одних становятся условиями жизни и существования других организмов, населяющих участок суши или воды. Например, лес: популяции живущих в нем растений, а также животных, грибов, лишайников и микроорганизмов взаимодействуют между собой, образуя целостную систему;
- биосфера - глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т.п.), образованная в результате взаимодействия биоценозов.
Общая основа жизни на биологическом уровне - органический метаболизм (обмен веществом, энергией, информацией с окружающей средой), которая проявляется на любом из выделенных подуровней:
На уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;
На уровне биоценоза он состоит из цепи превращений вещества, первоначально ассимилированного организмами-производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;
На уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участии факторов космического масштаба.
В рамках биосферы начинает развиваться особый тип материальной системы, который образован благодаря способности особых популяций живых существ к труду - человеческое общество. Социальная действительность включает в себя подуровни: индивид, семья, группа, коллектив, социальная группа, классы, нации, государство, системы государств, общество в целом. Общество существует лишь благодаря деятельности людей.
Структурный уровень социальной действительности находится между собой в неоднозначно-линейных связях между собой (например, уровень нации и уровень государства). Переплетение разных уровней структуры общества не означает отсутствия упорядоченности и структурированности общества. В обществе можно выделить фундаментальные структуры - главные сферы общественной жизни: материально-производственная, социальная, политическая, духовная и т.д., имеющие свои законы и структуры. Все они в определенном смысле субординированы, структурированы и обусловливают генетическое единство развития общества в целом.
Таким образом, любая из областей объективной действительности образуется из ряда специфических структурных уровней, которые находятся в строгой упорядоченности в составе той или иной области действительности. Переход от одной области к другой связан с усложнением и увеличением множества образованных факторов, обеспечивающих целостность систем, т.е. эволюция материальных систем происходит в направлении от простого к сложному, от низшего в высшему.
Внутри каждого из структурных уровней существуют отношения субординации (молекулярный уровень включает атомарный, а не наоборот). Всякая высшая форма возникает на основе низшей, включает ее в себя в снятом виде. Это означает, по существу, что специфика высших форм может быть познана только на основе анализа структур низших форм. И наоборот, сущность формы высшего порядка может быть познана только на основе содержания высшей по отношению к ней формы материи.
Закономерности новых уровней не сводимы к закономерностям уровней, на базе которых они возникли, и являются ведущими для данного уровня организации материи. Кроме того, неправомерен перенос свойств высших уровней материи на низшие. Каждый уровень материи обладает своей качественной спецификой. В высшем уровне материи низшие его формы представлены не в «чистом», а в синтезированном («снятом») виде. Например, нельзя перенести законы животного мира на общество, даже если на первый взгляд кажется, что в нем господствует «закон джунглей». Хотя жестокость человека может быть несравненно больше жестокости хищников, тем не менее хищникам незнакомы такие человеческие чувства, как любовь, сострадание.
С другой стороны, безосновательны попытки отыскания на низших уровнях элементов высших уровней. Например, мыслящий булыжник. Это - гипербола. Но были попытки ученых-биологов, в которых они пытались создать обезьянам «человеческие» условия, рассчитывая через сто-двести лет обнаружить в их потомстве антропоида (первобытного человека).
Структурные уровни материи взаимодействуют между собой как часть и целое. Взаимодействие части и целого состоит в том, что одно предполагает другое, они едины и друг без друга существовать не могут. Не бывает целого без части и нет частей вне целого. Часть приобретает свой смысл только благодаря целому, так же как и целое есть взаимодействие частей.
Во взаимодействии части и целого определяющая роль принадлежит целому. Однако это не означает, что части лишены своей специфики. Определяющая роль целого предполагает не пассивную, а активную роль частей, направленную на обеспечение нормальной жизни универсума как целого. Подчиняясь в общем системе целого, части сохраняют свою относительную самостоятельность и автономность. С одной стороны, они выступают как компоненты целого, а с другой - они сами являются своеобразными целостными структурами, системами. Например, факторами, обеспечивающими целостность систем в неживой природе, являются ядерные, электромагнитные и другие силы, в обществе - производственные отношения, политические, национальные и т.д.
Структурная организация, т.е. системность, является способом существования материи.
Литература
1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.
2. Вайнберг С. Открытие субатомных частиц. М., 1986.
3. Вайнберг С. Первые три минуты. М.,1981.
4. Ровинский Р.Е. Развивающаяся Вселенная. М., 1995.
5. Шкловский И.С. Звезды, их рождение и смерть. М.,1975.
6. Философские проблемы естествознания. М., 1985.