Гидроксидами называются сложные вещества, содержащие группировку OH - , которая связана через атом кислорода одинарной химической связью с различными химическими элементами. Подобно оксидам, в зависимости от характера химической связи Э-ОН, гидроксиды подразделяются на основные(основания) (NaOH, Tl(OH), Cu(OH), Mg(OH) 2 , Ba(OH) 2 , Cr(OH) 2) с преимущественно ионной связью, амфотерные (I(OH), Be(OH) 2 , B(OH) 3), Zn(OH) 2 , Fe(OH) 3 , Al(OH) 3) с ионно-ковалентным типом связи и кислотные (кислородсодержащие или оксокислоты) (NO 2 (OH)ÛHNO 3 , PO(OH) 3 ÛH 3 PO 4 , SO 2 (OH) 2 ÛH 2 SO 4 , Te(OH) 6 ÛH 6 TeO 6), ClO 3 (OH)ÛHClO 4 , MnO 2 (OH) 2 ÛH 2 MnO 4 , MnO 3 (OH)ÛHMnO 4) с преимущественно ковалентной связью.
В соответствии с преимущественно ионным характером химической связи Э-ОН основные гидроксиды (основания) при растворении в воде диссоциируют с образованием гидроксид-ионов и катионов, причем, в зависимости от эффективности (степени) диссоциации различают сильные основания (NaOH, Ba(OH) 2), диссоциирующие практически нацело, основания средней силы (Tl(OH), Mg(OH) 2 , Cr(OH) 2) и слабые основания (Сu(OH), Fe(OH) 2), диссоциация которых протекает частично:
NaOH ® Na + + OH - , Fe(OH) 2 Û Fe 2+ + 2OH -
Кислотные гидроксиды (оксокислоты) в водных растворах диссоциируют с образованием ионов гидроксония H 3 O + , которые сокращенно часто изображают в виде катиона водорода H + . Подобно основаниям, кислотные гидроксиды по степени их диссоциации подразделяют на сильные (HNO 3 , HClO 4), средней силы (HAsO 3 , HClO 2) и слабые (HClO, H 5 IO 6) кислоты:
HNO 3 + H 2 O ® H 3 O + + NO 3 - (HNO 3 ® H + + NO 3 -)
HClO + H 2 O H 3 O + + ClO - (HClO ® H + + ClO -)
Kислоты располагаются в порядке убывания их силы (активности) в так называемом ряду активности кислот:
Сильные Средней силы
HI>HBr>HClO 4 >HCl>H 2 SO 4 >HMnO 4 >HNO 3 │>H 2 Cr 2 O 7 >H 2 CrO 4 >H 2 SO 3 >H 3 PO 4 >HF│
Слабые
> HNO 2 > HCOOH > CH 3 COOH > H 2 CO 3 > H 2 S > HClO > HCN > H 3 BO 3 > H 2 SiO 3
Амфотерные гидроксиды в основном плохо растворимы в воде и проявляют как слабые основные, так и кислотные свойства:
OH - + I + Û I(OH), HIO Û IO - + H +
2OH - + Zn 2+ Û Zn(OH) 2 + 2H 2 O Û 2- + 2H +
Образование в процессе диссоциации гидроксидов катионов гидроксония, или гидроксид-ионов определяет важнейшее химическое свойство гидроксидов – реакцию нейтрализации, приводящую к образованию воды и соли при взаимодействии оснований и кислот:
NaOH (Na + OH -) + HNO 3 (H + + NO 3 -) = NaNO 3 (Na + + NO 3 -) + H 2 O
OH - + H + = H 2 O
Обладая кислотно-основной двойственностью, амфотерные гидроксиды в реакциях нейтрализации могут выступать как в качестве основания, так и кислоты:
I(OH) + HClO 4 = IClO 4 + H 2 O
HIO + NaOH = NaIO + H 2 O
Подобно амфотерным оксидам металлов, взаимодействие с основаниями их гидроксидов в водных растворах приводит к образованию солей, содержащих не оксо-, а гидроксокомплексные анионы:
Al(OH) 3 ¯ + 3NaOH = Na 3
Образование же оксосолей происходит при взаимодействии амфотерных гидроксидов со щелочными расплавами:
Al(OH) 3 ¯ + NaOH (расплав) = NaAlO 2 + 2Н 2 О
В зависимости от числа OH - группировок , содержащихся в гидроксиде, кислотные гидроксиды подразделяют на одно- (HNO 3), двух- (H 2 SO 4), трех- (H 3 PO 4) и т.д. основные кислоты, а основные гидроксиды – на одно- (NaOH), двух- (Ca(OH) 2), трех- (Al(OH) 3) кислотные основания.
По растворимости основания делятся на растворимые и нерастворимые. Основания щелочных (Li, Na, K, Rb, Cs) и щелочноземельных (Ca, Sr, Ba) металлов являются растворимыми в воде и называются щелочами .
Систематические названия основных и амфотерных гидроксидов образуются из слова гидроксид и русского названия элемента в родительном падеже с указанием (для элементов с переменной степенью окисления) римскими цифрами в круглых скобках степени окисления элемента:
NaOH – гидроксид натрия, Ca(OH) 2 -гидроксид кальция,
TlOH - гидроксид таллия (I), Fe(OH) 3 –гидроксид железа (III).
Тривиальные названия некоторых гидроксидов, в основном используемые в технической литературе, приведены в приложении 2.
Следует отметить специфику названия водного раствора аммиака, частичная диссоциация которого приводит к образованию в растворе гидроксид-ионов и проявлению слабых основных свойств. Ранее полагали, что в водном растворе аммиак образует гидроксид аммония состава NH 4 OH. Однако в настоящее время установлено, что основной формой существования аммиака в водном растворе является его гидратированные молекулы, которые условно записывают в виде NH 3 ×H 2 O и называют гидрат аммиака. Подобно аммиаку, водные растворы гидразина N 2 H 4 и гидроксиламина NH 2 OH также в основном содержат гидратированные молекулы, которые называют: N 2 H 4 ×H 2 O – гидрат гидразина и NH 2 OH×H 2 O – гидрат гидроксиламина.
Упражнения:
10. Приведите систематические названия гидроксидов, классифицируйте их по кислотности и растворимости: LiOH, Sr(OH) 2 , Cu(OH) 2 , Cd(OH) 2 , Al(OH) 3 , Cr(OH) 3 . Приведите формулы соответствующих им оксидов.
11. Приведите молекулярные и графические формулы гидроксидов: гидроксид железа (III), гидроксид берилия, гидроксид лития, гидроксид хрома (III), гидроксид магния. Какие из данных гидроксидов будут взаимодействовать а) с гидроксидом калия, б) с оксидом бария, в) с соляной кислотой? Написать уравнения реакций.
12. Приведите реакции, демонстрирующие кислотно-основные свойства гидроксидов бария, цинка, калия и хрома (III), а также методы их получения.
Систематические названия кислотных гидроксидов (оксокислот) строятся по правилам номенклатуры для комплексных соединений, которые будут рассмотрены ниже. В тоже время, в отечественной практике широко используются традиционные названия распространенных оксокислот – угольная, серная, фосфорная и т.д. Их применение допустимо, но только для ограниченного круга действительно наиболее распространенных кислот, а в остальных случаях следует применять систематические названия.
Традиционное название оксокислоты состоит из двух слов: названия кислоты, выраженного прилагательным и группового слова кислота.Название кислоты образуется из русского названия кислотообразующего элемента (если в названии элемента есть окончание «й», «о», «а», то оно опускается) с добавлением, в зависимости от степени окисления элемента, различных окончаний (табл. 1.3, 1.4). По традиции H 2 CO 3 называют угольной, а не углеродной кислотой.
В соответствии с менделеевским правилом «четности» для кислотообразующих p-элементов IV-VI группы наиболее характерны степени окисления соответствующие номеру группы N, а также N-2 и N-4.
Как видно из табл. 1.2, для высшей степени окисления элемента N название кислоты образуется добавлением к названию большинства элементов окончаний: -ная, -евая и–овая . Для мышьяка и сурьмы по правилам русского языка используются окончания -янная и–яная . Название кислот со степенью окисления элемента N-2 образуется в основном образуется с помощью окончания –истая (для серы, мышьяка и сурьмы: –нистая , -овистая и – янистая ). Кислоты, образованные элементами с наиболее низкими степенями окисления N-4, имеют окончания –новатистая . Для фосфористой H 2 PHO 3 и фосфорноватистой HPH 2 O 2 кислот, характеризующихся специфическими строением в связи с наличием Р-Н связей, рекомендуется использовать специальные названия – фосфоновая и фосфиновая.
В некоторых случаях происходит образование двух форм кислот , в которых кислотообразующий элемент находится в одинаковой степени окисления. К названию кислоты с бóльшим количеством гидроксо-групп прибавляется приставка орто-, а к названию кислоты с мéньшим числом гидроксо-групп прибавляется приставка мета- .
Таблица 3. Традиционные названия оксокислот р-элементов III-VI группы.
N | Э z+ | Окончание | Название кислоты | |
III | B 3+ | -ная | H 3 BO 3 орто борная , HBO 2 мета борная ,H 2 B 4 O 7 тетра борная | |
Al 3+ | -евая | H 3 AlO 3 орто алюминиевая , HАlO 2 метаалюминевая | ||
IV | C 4+ | -ная | H 2 CO 3 угольная | |
Si 4+ | -евая | H 4 SiO 4 орто кремниевая , H 2 SiO 3 мета кремниевая | ||
Ge 4+ | -евая | H 4 GeO 4 орто германиевая , H 2 GeO 3 мета германиевая | ||
Sn 4+ | -янная | H 4 SnO 4 орто оловянная , H 2 SnO 3 мета оловянная | ||
V | N 5+ | -ная | HNO 3 азотная | |
P 5+ | -ная | H 3 PO 4 орто фосфорная , HPO 3 мета фосфорная, H 4 P 2 O 7 ди фосфорная, H 5 P 3 O 10 три фосфорная | ||
As 5+ | -овая | H 3 AsO 4 орто мышьяковая , HasO 3 мета мышьяковая | ||
Sb 5+ | -яная | H 3 SbO 4 орто сурьмяная, HSbO 3 мета сурьмяная | ||
VI | S 6+ | -ная | H 2 SO 4 серная , H 2 S 2 O 7 ди серная | |
Se 6+ | -овая | H 2 SeO 4 селеновая | ||
Te 6+ | -овая | H 6 TeO 6 орто теллуровая , H 2 TeO 4 мета теллур овая | ||
V | N 3+ | -истая | HNO 2 азотистая | |
P 3+ | -истая | H 2 PHO 3 фосфористая (фосфоновая) | ||
As 3+ | -овистая | H 3 AsO 3 орто мышьяковистая , HasO 2 мета мышьяковистая | ||
Sb 3+ | -янистая | H 3 SbO 3 орто сурьмянистая, HSbO 2 мета сурьмянистая | ||
VI | S 4+ | -нистая | H 2 SO 3 сернистая | |
Se 4+ | -истая | H 2 SeO 3 селенистая | ||
Te 4+ | -истая | H 2 TeO 3 теллуристая | ||
V | N + | -новатистая | H 2 N 2 O 2 азотноватистая | |
P + | -новатистая | HPH 2 O 2 фосфорноватистая (фосфиновая) | ||
Традиционные названия оксокислот галогенов (табл. 4) в высшей степени окисления N , также образуются добавлением к названию элемента окончания –ная . Однако, для оксокислот галогенов в степени окисления N-2 используются окончания –новатая , а окончание –истая применяется для названия кислот со степенью окисления галогенов N-4 . Оксокислоты галогенов с наиболее низкими степенями окисления N-6 имеют окончания –новатистая .
Несмотря на то, что характерные степени окисления переходных d-элементов не подчиняются менделеевскому правилу «четности», высшая степень окисления d-металлов, образующих побочные подгруппы III-VII группы, также определяются номером группы N и традиционные названия их оксокислот образуются подобно р-элементам c помощью окончаний – овая, -евая : H 4 TiO 4 титановая , H 3 VO 4 ванадиевая, H 2 CrO 4 хромовая, H 2 Cr 2 O 7 ди хромовая , HMnO 4 марганцевая . Для оксокислот d-элементов в более низких степенях окисления металла рекомендуется использовать систематические названия, образованные по правилам для комплексных соединений.
Таблица 4. Традиционные названия оксокислот р-элементов VII группы.
N | Э z+ | Окончание | Название кислоты |
Высшая степень окисления элемента N | |||
VII | Cl 7+ | -ная | HClO 4 хлорная |
Br 7+ | HBrO 4 бромная | ||
I 7+ | H 5 IO 6 орто иодная , HIO 4 мета иодная | ||
Степень окисления элемента N-2 | |||
VII | Cl 5+ | -новатая | HClO 3 хлорноватая |
Br 5+ | HBrO 3 бромноватая | ||
I 5+ | HIO 3 иодноватая | ||
Степень окисления элемента N-4 | |||
VII | Cl 3+ | -истая | HClO 2 хлористая |
Br 3+ | HBrO 2 бромистая | ||
I 3+ | HIO 2 иодистая | ||
Степень окисления элемента N-6 | |||
VII | Cl + | -оватистая | HClO хлорноватистая |
Br + | HBrO бромноватистая | ||
I + | HIO иодноватистая |
Упражнения:
13. Приведите традиционные названия и графические формулы следующих оксокислот: H 2 SO 4 , H 2 S 2 O 7 , HNO 3 , HNO 2 , H 3 PO 4 , HPO 3 , H 4 P 2 O 7 , H 2 PHO 3 , HPH 2 O 2 , HClO, HClO 2 , HClO 3 , HClO 4 , H 5 IO 6 , HMnO 4 , H 2 Cr 2 O 7 .
14. Приведите молекулярные и графические формулы следующих оксокислот: бромноватистая, иодная, селенистая, ортотеллуровая, метамышьяковая, дикремниевая, метаоловянная, фосфористая (фосфоновая), фосфорноватистая (фосфиновая), пентафосфорная, метаванадиевая.
15. Приведите реакции, демонстрирующие общие методы получения оксокислот. Приведите примеры оксидов элементов в промежуточных степенях окисления, которые при взаимодействии с водой образуют две кислоты.
16. Напишите реакции дегидратации следующих кислот: H 3 BO 3 , HMnO 4 , H 2 S 2 O 7 , HNO 2 , H 3 PO 4 , H 2 WO 4 , H 3 AsO 3 , H 2 CrO 4 . Приведите названия кислот и получающихся кислотных оксидов (ангидридов кислот).
17. Какие из перечисленных веществ будут взаимодействовать с соляной кислотой: Zn, CO, Mg(OH) 2 , CaCO 3 , Cu, N 2 O 5 , Al(OH) 3 , Na 2 SiO 3 , BaO? Напишите уравнения реакций.
18. Напишите реакции, демонстрирующие кислотный характер следующих оксидов, назовите соответствующие им кислоты: P 4 O 10 , SeO 3 , N 2 O 3 , NO 2 , SO 2 , As 2 O 5 .
19. Приведите реакции взаимного перехода между фосфорными кислотами: H 3 PO 4 ®HPO 3 , H 3 PO 4 ®H 4 P 2 O 7 , HPO 3 ®H 3 PO 4 , HPO 3 ®H 4 P 2 O 7 , H 4 P 2 O 7 ®HPO 3 , H 4 P 2 O 7 ®H 3 PO 4 .
Пероксокислоты.
Кислотные гидроксиды, содержащие пероксидную группу –О-О- получили групповое название пероксокислоты . Пероксидная группа в составе пероксокислот может замещать как атом кислорода в гидроксидной группировке, так и мостиковый кислородный атом, объединяющий атомы элемента кислотообразователя в полиядерных кислотных гидроксидах:
При записи формул пероксокислот рекомендуется пероксидную группу заключать в круглые скобки и записывать в правой части формулы. Традиционные названия пероксокислот образуются из названия соответствущей оксокислоты с добавлением приставки пероксо- . При наличии в составе пероксокислоты нескольких пероксидных группировок их количество указывается численной приставкой: ди-, три-, тетра- и т.д. Например: HNO 2 (O 2) пероксоазотная кислота, H 3 PO 2 (O 2) 2 дипероксофосфорная кислота.
Упражнение:
9. Приведите традиционные названия и графические формулы следующих пероксокислот: H 3 PO 2 (O 2), H 4 P 2 O 6 (O 2), H 3 BO 2 (O 2).
9.4. Тиокислоты, политионовые и другие замещенные оксокислоты*- раздел для углубленного изучения.
Оксокислоты, в которых часть или все атомы кислорода замещены на атомы серы, называют тиокислотами . При записи формул тиокислот рекомендуется серу помещать на последнее место справа - H 3 PO 3 S, H 3 PO 2 S 2 , H 3 POS 4 , H 3 PS 4:
Традиционные названия тиокислот образуются из названия соответствующей оксокислоты с добавлением приставки тио- ;при замещении двух и более атомов кислорода на атомы серы их количество указывается численными приставками: ди-, три-, тетра- и т.д.
Оксокислоты общей формулы H 2 (O 3 S-S n -SO 3) (n = 0¸4) называют политионовыми . Характерной особенностью их строения (за исключение H 2 S 2 O 6) является наличие мостиковых атомов серы, объединяющих две структурные {SO 3 }-группировки:
В дитионовой кислоте две структурные группировки объединениы непосредственно атомами серы-кислотообразователями H 2 (O 3 S-SO 3). Традиционные названия политионовых кислот состояи из чмсловой приставки, указывающей общее количество атомов серы в составе и группового окончания –тионовая кислота.
Кислотные гидроксиды, в которых часть гидроксидных группировок или атомов кислорода замещена на другие атомы галогенов или -NH 2 , =NH группировки, называют замещенными кислотами . Традиционные названия таких кислот образуются от названия соответствующей оксокислоты с добавлением приставки, составленной из названия замещающих атомов галогенов или групп (NH 2 – амид , NH – имид ) и соединительной гласной –о . В формулах таких кислот замещающие атомы или группы помещают на последнее место.
По традиции, замещенные серные кислоты называют сульфоновыми кислотами:
HSO 3 F - фторсульфоновая, HSO 3 Cl - хлорсульфоновая,
HSO 3 (NH 2) – амидосульфоновая, H 2 S 2 O 4 (NH) - имидодисульфоновая кислота.
Упражнения:
10. Приведите традиционные названия замещенных оксокислот: HSeO 3 F, HAsO 2 Cl 2 , H 2 CS 3 , H 3 POS 3 , H 2 AsO 3 (NH 2).
11. Приведите молекулярные и графические формулы кислот: тиосерная, тритионовая, дитиосурьмяная, амидосульфоновая, диброммышьяковая, амидоугольная.
Бескислородные кислоты.
Водные растворы водородных соединений халькогенов (H 2 S, H 2 Se, H 2 Te) и галогенов (HF, HCl, HBr, HI), а также псевдогалогенов (HCN, HNCS, HCNO, HN 3), в которых роль электроотрицательных составляющих (анионов) играют группы атомов, обладающих галогенидоподобными свойствами, проявляют кислотные свойства и диссоциируют с образованием ионов гидроксония. Они образуют семейство бескислородных кислот .
Систематическое название бескислородных кислот образуется из русского названия элемента или специального названия псевдогалогенидной группировки с добавлением соединительной гласной –о и словосочетания водородная кислота :
HF - фтороводородная кислота, H 2 Te - теллуроводородная кислота,
HCN - циановодородная кислота, HNCS - тиоцианатоводородная кислота,
HN 3 - азидоводородная кислота (или азотистоводородная кислота).
Исторически для водных растворов ряда бескислородных кислот в химической практике применяют и тривиальные названия (см. приложение 2):
HF - плавиковая кислота, HCl - соляная кислота,
HCN - синильная кислота, H 2 S - сероводородная вода.
Упражнение:
12. Приведите систематические и тривиальные названия бескислород-ных кислот: HCl, HCN, HBr, HNCS, HI, H 2 S, HF, H 2 Se.
13. Приведите формулы следующих кислот: синильная, бромоводородная, плавиковая, азидоводородная, сероводородная, родановодородная, иодоводородная, циановодородная, тиоционатоводородная кислота.
Галогенангидриды.
Галогенангидридами называют сложные вещества, которые можно рассматривать как продукты полного замещения гидроксидных группировок в молекулах оксокислот атомами галогенов. Таким образом, галогенангидриды являются конечным членом ряда последовательных превращений оксокислоты при замещении гидроксидных групп на атомы галогенов: оксокислота ® галогензамещенная оксокислота ® галогенангидрид. Например, POCl 3 является конечным членом ряда последовательного замещения трех гидроксидных групп в ортофосфорной кислоте:
Некоторые галогенангидриды могут быть рассмотрены как производные неустойчивых оксокислот – например, CCl 4 и PCl 5 формально являются хлорангидридами полностью гидратированных кислотных гидроксидов углерода (IV) H 4 CO 4 и фосфора (V) H 5 PO 5 , в которых число гидроксидных групп совпадает со степенью окисления элемента-кислотообразователя. Галогенангидриды могут содержать либо атомы только одного галогена, либо атомы разных галогенов: POCl 3 , POBrCl 2 , POIBrCl.
В химической практике для галогенангидридов используют несколько методов построения их названий :
По правилам систематической номенклатуры для сложных соединений с использованием латинских числовых приставок указывающих количество электроотрицательных галогенидных и оксидных ионов галогенангидрида:
PCl 3 - трихлорид фосфора, PCl 5 - пентахлорид фосфора,
POCl 3 - трихлорид-оксид фосфора, POBrCl 2 - дихлорид-бромид-оксид фосфора;
По правилам систематической номенклатуры для бинарных соединений с указанием по методу Штока римскими цифрами в круглых скобках степени окисления элемента:
PCl 3 - хлорид фосфора (III), PCl 5 - хлорид фосфора (V);
- традиционные названия образуют с помощью числовых приставок, указывающих количество атомов галогенов, русского названия галогенов, окончания – ангидрид и названия килоты в родительном падеже: PCl 3 - трихлорангидрид фосфористой кислоты, POCl 3 - трихлорангидрид фосфорной кислоты, POBrCl 2 - дихлорбромангидрид фосфорной кислоты;
Для галогеннгидридов серной и сернистой кислоты допускается ограниченное использование специальных названий , в которых применяются специальные названия катионов: SO 2 2+ - сульфурил и SO 2+ - тионил :
SO 2 Cl 2 - сульфурилхлорид, SO 2 FCl - сульфурилхлоридфторид,
SOBr 2 - тионилбромид, SOF 2 - тионилфторид.
Характерным химическим свойством галогенангидридов является их эффективное взаимодействие с водой с образованием галогеноводородной и оксокислоты:
PCl 5 + 3H 2 O = H 3 PO 4 + 5HCl
POBrCl 2 + 3H 2 O = H 3 PO 4 + 2HCl + HBr
Упражнения:
14. Приведите систематические и традиционные названия галогенангидридов и напишите реакции их взаимодействия с водой: SbOCl, SeO 2 F 2 , NOBr, NO 2 F 2 , NF 3 , AsOCl 2 F, CO 2 Cl 2 , SOCl 2 , SO 2 Br 2 .
15. Приведите молекулярные и графические формулы галогенангидридов: хлорид-оксид бора, бромид кремния(IV), дифторид-оксид кремния, сульфурилфторид, дихлорангидрид селенистой кислоты, сульфурилбромид, тионилхлорид, хлоробромойодоангидрид ортофосфорной кислоты, дихлоробромоангидрид ортомышьяковой кислоты, тионилфторид.
Соли.
Соли являются одним из наиболее емких по числу химических соединений классов неорганических соединений. Они образуются в результате самых разнообразных химических процессов и, в частности, являются продуктами кислотно-основных реакций взаимодействия основных и кислотных бинарных Э n X m и полиэлементных химических соединений, характеризующихся соответственно преимущественно ионным и ковалентным характером химической связи Э-Х (табл. 1.5).
Таблица 1.5. Кислотно-основные реакции солеобразования.
Соединения | Реакция солеобразования | |
Основные | Кислотные | |
NaF | PF 5 | NaF + PF 5 = Na |
Na 2 O | P 2 O 5 | 3Na 2 O + P 2 O 5 = 2Na 3 Na 2 O + P 2 O 5 = 2Na |
Na 2 S | P 2 S 5 | 3Na 2 S + P 2 S 5 = 2Na 3 Na 2 S + P 2 S 5 = 2Na |
Na 3 N | P 3 N 5 | Na 3 N + P 3 N 5 = Na 4 |
NaH | AlH 3 | NaH + AlH 3 = Na |
NaOH | Al(OH) 3 | NaOH + Al(OH) 3 = Na NaOH + Al(OH) 3 = Na + H 2 O |
NaNO 3 | I(NO 3) | NaNO 3 + I(NO 3) = Na |
NaOH | HNO 3 | NaOH + HNO 3 = Na + H 2 O |
Al(OH) 3 | H 3 PO 4 | Al(OH) 3 + H 3 PO 4 = Al + 6H 2 O 2Al(OH) 3 + 3H 3 PO 4 = Al 2 3 + 6H 2 O Al(OH) 3 + 3H 3 PO 4 = Al 3 +3H 2 O 3Al(OH) 3 + 2H 3 PO 4 = (AlOH) 3 2 + 6H 2 O 3Al(OH) 3 + H 3 PO 4 = {Al(OH) 2 } 3 + 3H 2 O |
NaOH + Ba(OH) 2 | H 3 PO 4 | NaOH + Ba(OH) 2 + H 3 PO 4 = (NaBa) + 3H 2 O |
Al(OH) 3 | H 2 SO 4 + HNO 3 | Al(OH) 3 + H 2 SO 4 + HNO 3 = Al[(SO 4)NO 3 ] + H 2 O |
В составе солей можно выделить катионную и анионную составляющие, являющиеся производными исходных основных и кислотных соединений и имеющих преимущественно ионный характер химической связи. Вследствие этого в расплавах и растворах соли подвергаются процессу электролитической диссоциации, приводящей к образованию катионов и анионов.
В зависимости от состава соли классифицируются по природе катионов и анионов:
Соли со сложными катионами на основе двух разных ионов металла или иона аммония и металла ({(KAl) 2 , {(NH 4) 2 Fe} 2) называются двойными солями, а соли со сложными анионами (Ca[(ClO)Cl], Fe[(SO 4)NO 3 ]) – смешанными солями:
- cоли, в состав катионов которых входят гидроксидные группировки (Al(OH), {Al(OH)} 2 , Al(OH) 2 Cl) и способные проявлять основные свойства за счет образования OH - -ионов в результате процесса электролитической диссоциации катиона – например:
Al(OH)SO 4 ®Al(OH) 2+ + SO 4 2-
Al(OH) 2+ Û Al 3+ + OH -
называются основными . Такие соли могут быть рассмотрены как продукты частичного замещения гидроксидных групп в основных гидроксидах на группировки, являющиеся кислотными остатками соответствующих оксо- или бескислородных кислот:
|
- соли, анионы которых содержат атомы водорода ((NH 4), NaHS) и способны проявлять кислотные свойства за счет образования ионов гидроксония при электролитической диссоциации аниона – например:
NaHS® Na + + HS - , HS - Û H + + S 2-
называются кислыми . Такие соли могут быть рассмотрены как продукты частичного замещения водорода в кислотах на катионы металла или аммония:
- соли, являющиеся продуктами полного замещения гидроксидных групп на кислотные остатки или атомов водорода на катионы металла (аммония), называются средними илинормальными .
Некоторые соли при кристаллизации из водных растворов образуют кристаллические решетки, содержащие молекулы воды – например: CuSO 4 ×5H 2 O, Na 2 SO 4 ×10H 2 O. Такие соли называются кристаллогидратами .
Как видно из табл. 1.5, кислые и основные соли образуются в результате реакций нейтрализации при различных соотношениях многосновных кислот и многокислотных оснований и легко переходят как друг в друга, так и в средние соли: Al(H 2 PO 4) 3 + Al(OH) 3 = Al 2 (HPO 4) 3 + 3H 2 O
Al 2 (HPO 4) 3 + Al(OH) 3 = 3AlPO 4 + 3H 2 O
2AlPO 4 + Al(OH) 3 = (AlOH) 3 (PO 4) 2
(AlOH) 3 (PO 4) 2 + 3Al(OH) 3 = 2{Al(OH) 2 } 3 PO 4
{Al(OH) 2 } 3 PO 4 + H 3 PO 4 = (AlOH) 3 (PO 4) 2 + 3H 2 O
(AlOH) 3 (PO 4) 2 + H 3 PO 4 = 3AlPO 4 + 3H 2 O
2AlPO 4 + H 3 PO 4 = Al 2 (HPO 4) 3
Al 2 (HPO 4) 3 + H 3 PO 4 = 2Al(H 2 PO 4) 3
Систематические названия средних солей бескислородных солей образуют по общим правилам для бинарных соединений:
Na 2 S - сульфид натрия, FeCl 3 - хлорид железа (III) (трихлорид железа),
Cu(CN) 2 - цианид меди (II), AgCNS - тиоцианат серебра.
Систематические названия солей оксокислот и их производных образуются по правилам номенклатуры для комплексных соединений, которые будут рассмотрены далее. В то же время, как и для кислот, в химической практике для наиболее распространенных солей оксокислот широко используют традиционные названия.
Традиционные названия солей состоят из названий анионов и катионов. Название анионов средних солей распространенных оксокислот строится из корней русских или латинских (Табл. 1.) названий кислотообразующих элементов с соответствующими окончаниями и приставками в зависимости от их степени окисления (Табл. 6, 7) и через дефис групповым словом –ион . Для р-элементов III-VI группы в высшей степени окисления в названии анионов используют окончание –ат , в более низкой степени (N-2) – суффикс –ит и для N + и P + - пристаку гипо- и окончание –ит .
Для галогенов в степени окисления +7 в названии анионов используют приставку пер- и окончание –ат ; для степеней окисления: +5 – окончание -ат , +3 – окончание –ит и для наиболее низкой +1 – приставку гипо- и окончание –ит .
Различные приставки: мета-, орто-, ди-, три- и т.д., используемые в названии оксокислот для указания их формы, сохраняются и в названиях анионов.
Для оксоанионов образованных d-элементами в основном используются систематические названия и только для ограниченного круга анионов (Табл. I-5.) в химической практике применяют традиционные названия.
В целом, традиционное название средних солей оксокислот строится из названия аниона (групповое слово –ион опускается) и русского названия катиона в родительном падеже с указанием римскими цифрами в круглых скобках его степени окисления (если она может быть переменной):
Fe 2 (S 2 O 7) - дисульфат железа (III), Na 3 PO 4 - ортофосфат натрия,
Ba 5 (IO 6) - ортопериодат бария, NiSeO 3 - селенит никеля (II),
NaPH 2 O 2 - гипофосфит натрия, KMnO 4 - перманганат калия.
Таблица 6. Традиционные названия оксоанионов p-элементов III-VI групп.
основные гидроксиды википедия, основные гидроксиды группыОсно́вные гидрокси́ды - это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH) и в водном растворе диссоциируют с образованием анионов ОН− и катионов. Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.
- 1 Получение
- 2 Классификация
- 3 Номенклатура
- 4 Химические свойства
- 5 См. также
- 6 Литература
Получение
Гранулы гидроксида натрия Гидроксид кальция Гидроксид алюминия Метагидроксид железа- Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь. Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.
- Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
- Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.
- Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
- Некоторые основания можно получить реакциями обмена:
- Основания металлов встречаются в природе в виде минералов, например: гидраргиллита Al(OH)3, брусита Mg(OH)2.
Классификация
Основания классифицируются по ряду признаков.
- По растворимости в воде.
- Растворимые основания (щёлочи): гидроксид лития LiOH, гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
- Практически нерастворимые основания: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3, Be(OH)2.
- Другие основания: NH3·H2O
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов. Исключение составляет гидроксид лития LiOH, хорошо растворимый в воде, но являющийся слабым основанием.
- По количеству гидроксильных групп в молекуле.
- Однокислотные (гидроксид натрия NaOH)
- Двукислотные (гидроксид меди(II) Cu(OH)2)
- Трехкислотные (гидроксид железа(III) Fe(OH)3)
- По летучести.
- Летучие: NH3, CH3-NH2
- Нелетучие: щёлочи, нерастворимые основания.
- По стабильности.
- Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
- Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
- По степени электролитической диссоциации.
- Сильные (α > 30 %): щёлочи.
- Слабые (α < 3 %): нерастворимые основания.
- По наличию кислорода.
- Кислородсодержащие: гидроксид калия KOH, гидроксид стронция Sr(OH)2
- Бескислородные: аммиак NH3, амины.
- По типу соединения:
- Неорганические основания: содержат одну или несколько групп -OH.
- Органические основания: органические соединения, являющиеся акцепторами протонов: амины, амидины и другие соединения.
Номенклатура
По номенклатуре IUPAC неорганические соединения, содержащие группы -OH, называются гидроксидами. Примеры систематических названий гидроксидов:
- NaOH - гидроксид натрия
- TlOH - гидроксид таллия(I)
- Fe(OH)2 - гидроксид железа(II)
Если в соединении есть оксидные и гидроксидные анионы одновременно, то в названиях используются числовые приставки:
- TiO(OH)2 - дигидроксид-оксид титана
- MoO(OH)3 - тригидроксид-оксид молибдена
Для соединений, содержащих группу O(OH), используют традиционные названия с приставкой мета-:
- AlO(OH) - метагидроксид алюминия
- CrO(OH) - метагидроксид хрома
Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3 n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется . Примеры названий:
- Tl2O3 n H2O - полигидрат оксида таллия(III)
- MnO2 n H2O - полигидрат оксида марганца(IV)
Особо следует именовать соединение NH3 H2O, которое раньше записывали как NH4OH и которое в водных растворах проявляет свойства основания. Это и подобные соединения следует именовать как гидрат:
- NH3 H2O - гидрат аммиака
- N2H4 H2O - гидрат гидразина
Химические свойства
- В водных растворах основания диссоциируют, что изменяет ионное равновесие:
- лакмус становится синим,
- метилоранж - жёлтым,
- фенолфталеин приобретает цвет фуксии.
- При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:
- При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
- Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
- Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
- Основания вступают в обменные реакции (реагируют с растворами солей):
- Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:
- Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами.
См. также
- Кислота
- Оксиды
- Гидроксиды
- Теории кислот и оснований
Литература
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М.: Советская энциклопедия, 1988. - Т. 1. - 623 с.
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М.: Советская энциклопедия, 1992. - Т. 3. - 639 с. - ISBN 5-82270-039-8.
- Лидин Р.А. и др. Номенклатура неорганических веществ. - М.: КолосС, 2006. - 95 с. - ISBN 5-9532-0446-9.
основные гидроксиды, основные гидроксиды википедия, основные гидроксиды группы, основные гидроксиды это
3. Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды. Некоторые из них проявляют свойства оснований (основные гидроксиды) - NaOH , Ba (OH ) 2 и т.п.; другие проявляют свойства кислот (кислотные гидроксиды) - HNO 3 , H 3 PO 4 и другие. Существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как свойства оснований, так и свойства кислот - Zn (OH ) 2 , Al (OH ) 3 и т.п.
3.1. Классификация, получение и свойства оснований
Основаниями (основными гидроксидами) с позиции теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид-ионов ОН - .
По современной номенклатуре их принято называть гидроксидами элементов с указанием, если необходимо, валентности элемента (римскими цифрами в скобках): КОН - гидроксид калия, гидроксид натрия NaOH , гидроксид кальция Ca (OH ) 2 , гидроксид хрома (II ) - Cr (OH ) 2 , гидроксид хрома (III ) - Cr (OH ) 3 .
Гидроксиды металлов принято делить на две группы: растворимые в воде (образованные щелочными и щелочноземельными металлами - Li , Na , K , Cs , Rb , Fr , Ca , Sr , Ba и поэтому называемые щелочами) и нерастворимые в воде . Основное различие между ними заключается в том, что концентрация ионов ОН - в растворах щелочей достаточно высока, для нерастворимых же оснований она определяется растворимостью вещества и обычно очень мала. Тем не менее, небольшие равновесные концентрации иона ОН - даже в растворах нерастворимых оснований определяют свойства этого класса соединений.
По числу гидроксильных групп (кислотность) , способных замещаться на кислотный остаток, различают:
Однокислотные основания - KOH , NaOH ;
Двухкислотные основания - Fe (OH ) 2 , Ba (OH ) 2 ;
Трехкислотные основания - Al (OH ) 3 , Fe (OH ) 3 .
Получение оснований
1. Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:
CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4 ,
K 2 SO 4 + Ba(OH) 2 = 2KOH + BaCO 3 ↓ .
При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.
При получении нерастворимых в воде оснований, обладающих амфотерными свойствами, следует избегать избытка щелочи, так как может произойти растворение амфотерного основания, например,
AlCl 3 + 3KOH = Al(OH) 3 + 3KCl,
Al(OH) 3 + KOH = K.
В подобных случаях для получения гидроксидов используют гидроксид аммония, в котором амфотерные оксиды не растворяются:
AlCl 3 + 3NH 4 OH = Al(OH) 3 ↓ + 3NH 4 Cl.
Гидроксиды серебра, ртути настолько легко распадаются, что при попытке их получения обменной реакцией вместо гидроксидов выпадают оксиды:
2AgNO 3 + 2KOH = Ag 2 O ↓ + H 2 O + 2KNO 3 .
2. Щелочи в технике обычно получают электролизом водных растворов хлоридов:
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2 .
(суммарная реакция электролиза)
Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:
2 Li + 2 H 2 O = 2 LiOH + H 2 ,
SrO + H 2 O = Sr (OH ) 2 .
Химические свойства оснований
1. Все нерастворимые в воде основания при нагревании разлагаются с образованием оксидов:
2 Fe (OH ) 3 = Fe 2 O 3 + 3 H 2 O ,
Ca (OH ) 2 = CaO + H 2 O .
2. Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:
NaOH + HNO 3 = NaNO 3 + H 2 O ,
Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O.
3. Щелочи взаимодействуют с кислотными и с амфотерными оксидами:
2KOH + CO 2 = K 2 CO 3 + H 2 O,
2NaOH + Al 2 O 3 = 2NaAlO 2 + H 2 O.
4. Основания могут вступать в реакцию с кислыми солями:
2NaHSO 3 + 2KOH = Na 2 SO 3 + K 2 SO 3 +2H 2 O,
Ca(HCO 3) 2 + Ba(OH) 2 = BaCO 3 ↓ + CaCO 3 + 2H 2 O.
Cu(OH) 2 + 2NaHSO 4 = CuSO 4 + Na 2 SO 4 +2H 2 O.
5. Необходимо особенно подчеркнуть способность растворов щелочей реагировать с некоторыми неметаллами (галогенами, серой, белым фосфором, кремнием):
2 NaOH + Cl 2 = NaCl + NaOCl + H 2 O (на холоду),
6 KOH + 3 Cl 2 = 5 KCl + KClO 3 + 3 H 2 O (при нагревании),
6KOH + 3S = K 2 SO 3 + 2K 2 S + 3H 2 O,
3KOH + 4P + 3H 2 O = PH 3 + 3KH 2 PO 2 ,
2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 .
6. Кроме того, концентрированные растворы щелочей при нагревании способны растворять также и некоторые металлы (те, соединения которых обладают амфотерными свойствами):
2Al + 2NaOH + 6H 2 O = 2Na + 3H 2 ,
Zn + 2KOH + 2H 2 O = K 2 + H 2 .
Растворы щелочей имеют рН > 7 (щелочная среда), изменяют окраску индикаторов (лакмус - синяя, фенолфталеин - фиолетовая).
М.В. Андрюxoва, Л.Н. Бopoдина
Гидроксиды можно представить как продукт присоединения (реального или мысленного) воды к соответствующим оксидам. Гидроксиды подразделяются на основания, кислоты, амфотерные гидроксиды. Основания имеют общий состав М(ОН)х, кислоты имеют общий состав НхКо. В молекулах кислородсодержащих кислот замещаемые атомы водорода связаны с центральным элементом через атомы кислорода. В молекулах бескислородных кислот атомы водорода присоединяются непосредственно к атому неметалла. К амфотерным гидрокисдам относятся прежде всего гидроксиды алюминия, бериллия и цинка, а также гидроксиды многих переходных металлов в промежуточных степенях окисления.
По растворимости в воде выделяют растворимые основания - щёлочи (образованы щелочными и щелочноземельными металлами). Основания, образованные остальными металлами, не растворяются в воде. Большинство неорганических кислот растворимы в воде. К нерастворимым в воде неорганическим кислотам относится только кремниевая кислота H2SiO3. Амфотерные гидроксиды в воде не растворяются.
Химические свойства оснований.
Все основания, как растворимые, так и нерастворимые, обладают общим характерным свойством - образовывать соли.
Рассмотрим химические свойства растворимых оснований (щелочей):
1. При растворении в воде диссоциируют с образованием катиона металла и гидроксид-аниона. Изменяют окраску индикаторов: фиолетового лакмуса - на синий, фенолфталеина - на малиновый, метилового оранжевого - на жёлтый, универсальной индикаторной бумаги - на синий.
2. Взаимодействие с кислотными оксидами:
щёлочь + кислотный оксид = соль.
3. Взаимодействие с кислотами:
щёлочь + кислота = соль + вода.
Реакция между кислотой и щёлочью называется реакцией нейтрализации.
4. Взаимодействие с амфотерными гидроксидами:
щёлочь + амфотерный гидроксид = соль (+ вода)
5. Взаимодействие с солями (при условии растворимости исходной соли и образовании осадка или газа в результате реакции.
Рассмотрим химические свойства нерастворимых оснований:
1. Взаимодействие с кислотами:
основание + кислота = соль + вода.
Многокислотные основания способны к образованию не только средних, но и основных солей.
2. Разложение при нагревании:
основание = оксид металла + вода.
Химические свойства кислот.
Все кислоты обладают общим характерным свойством - образование солей при замещении катионов водорода на катионы металла/аммония.
Рассмотрим химические свойства растворимых в воде кислот:
1. При растворении в воде диссоциируют с образованием катионов водорода и аниона кислотного остатка. Изменяют окраску индикаторов на красный (розовый) цвет, за исключением фенолфталеина (не реагирует на кислоты, остаётся бесцветным).
2. Взаимодействие с металлами, стоящими в ряду активности левее водорода (при условии образования растворимой соли):
кислота + металл = соль + водород.
При взаимодействии с металлами исключениями являются кислоты-окислители - азотная и концентрированная серная кислоты. Во-первых, они реагируют и с некоторыми металлами, стоящими в ряду активности правее водорода. Во-вторых, в реакция с металлами никогда не выделяется водород, но образуются соль соответствующей кислоты, вода и продукты восстановления азота или серы соответственно.
3. Взаимодействие с основаниями/амфотерными гидроксидами:
кислота + основание = соль + вода.
4. Взаимодействие с аммиаком:
кислота + аммиак = соль аммония
5. Взаимодействие с солями (при условии образования газа или осадка):
кислота + соль = соль + кислота.
Многоосновные кислоты способны к образованию не только средних, но и кислых солей.
Нерастворимая кремниевая кислота не изменяет окраску индикаторов (очень слабая кислота), но способна реагировать с растворами щелочей при небольшом нагревании:
1. Взаимодействие кремниевой кислоты с раствором щёлочи:
кремниевая кислота + щёлочь = соль + вода.
2. Разложение (при длительном хранении или при нагревании)
кремниевая кислота = оксид кремния (IV) + вода.
Химические свойства амфотерных гидроксидов.
Амфотерные гидроксиды способны к образованию двух рядов солей, так как при реакциях с щелочами проявляют свойства кислоты, а при реакциях с кислотами проявляют свойства основания.
Рассмотрим химические свойства амфотерных гидроксидов:
1. Взаимодействие с щелочами:
амфотерный гидроксид + щёлочь = соль (+ вода).
2. Взаимодействие с кислотами:
амфотерный гидроксид + кислота = соль + вода.
Физические свойства
Общая формула гидроксидов щелочных металлов – MOН.
Все гидроксиды щелочных металлов – бесцветные гигроскопичные вещества, легко расплывающиеся на воздухе, очень хорошо растворимы в воде и этаноле, при переходе от LiOH к CsOH растворимость увеличивается.
Некоторые физические свойства гидроксидов щелочных металлов приведены в таблице.
Химические свойства
Гидроксиды всех щелочных металлов плавятся без разложения, гидроксид лития при нагревании до температуры 600°С разлагается:
2LiOH = Li 2 O + H 2 O.
Все гидроксиды проявляют свойства сильных оснований. В воде практически нацело диссоциируют:
NaOH = Na + + OH - .
Реагируют с оксидами неметаллов:
KOH + CO 2 = KHCO 3 ;
2NaOH + CO 2 = Na 2 CO 3 + H 2 O;
2KOH + 2NO 2 = KNO 3 + KNO 2 + H 2 O.
Взаимодействуют с кислотами, вступают в реакцию нейтрализации:
NaOH + HCl = NaCl + H 2 O;
KOH + HNO 3 = KNO 3 + H 2 O.
Вступают в обменные реакции с солями:
2NaOH + CuCl 2 = Cu(OH) 2 + 2NaCl.
Реагируют с галогенами:
2KOH + Cl 2 = KClO + KCl + H 2 O (на холоде) ;
6KOH + 3Cl 2 = KClO 3 + 5KCl + 3Н 2 О (при нагревании).
В расплавленном состоянии взаимодействуют с амфотерными металлами и их оксидами:
2KOH + Zn = K 2 ZnO 2 + H 2 ;
2KOH + ZnO = K 2 ZnO 2 + H 2 O.
Водные растворы гидроксидов при взаимодействии с амфотерными металлами, их оксидами и гидроксидами образуют гидроксокомплексы:
2NaOH + Be + 2H 2 O = Na 2 + H 2 ;
2NaOH + BeO + H 2 O = Na 2 ;
2NaOH + Be(OH) 2 = Na 2 .
Водные растворы и расплавы гидроксидов реагируют с бором и кремнием, их оксидами и кислотами:
4NaOH + 4B + 3O 2 = 4NaBO 2 + 2H 2 O (расплав);
2NaOH + Si + H 2 O = Na 2 SiO 3 + 2H 2 (раствор).
Получение
Гидроксиды лития, натрия и калия получают электролизом концентрированных растворов их хлоридов, при этом на катоде выделяется водород, на аноде образуется хлор:
2NaCl + 2H 2 O H 2 + 2NaOH + Cl 2 .
Гидроксиды рубидия и цезия получают из их солей при помощи обменных реакций:
Rb 2 SO 4 + Ba(OH) 2 = 2RbOH + BaSO 4 .
ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ
Свойства щелочноземельных металлов
Атомный номер | Название | Атомная масса | Электронная конфигурация | r г/см 3 | t°пл. °C | t°кип. °C | ЭО | Атомный радиус, нм | Степень окисления |
Бериллий Be | 9,01 | 2s 2 | 1,86 | 1,5 | 0,113 | +2 | |||
Магний Mg | 24,3 | 3s 2 | 1,74 | 649,5 | 1,2 | 0,16 | +2 | ||
Кальций Ca | 40,08 | 4s 2 | 1,54 | 1,0 | 0,2 | +2 | |||
Стронций Sr | 87,62 | 5s 2 | 2,67 | 1,0 | 0,213 | +2 | |||
Барий Ba | 137,34 | 6s 2 | 3,61 | 0,9 | 0,25 | +2 | |||
Радий Ra | 7s 2 | ~6 | ~700 | 0,9 | – | +2 |
Физические свойства
Щелочноземельные металлы (по сравнению со щелочными металлами) обладают более высокими t°пл. и t°кип., потенциалами ионизации, плотностями и твердостью.
Химические свойства
1. Очень реакционноспособны.
2. Обладают положительной валентностью +2.
3. Реагируют с водой при комнатной температуре (кроме Be) с выделением водорода.
4. Обладают большим сродством к кислороду (восстановители).
5. С водородом образуют солеобразные гидриды ЭH 2 .
6. Оксиды имеют общую формулу ЭО. Тенденция к образованию пероксидов выражена слабее, чем для щелочных металлов.
Нахождение в природе
3BeO Al 2 O 3 6SiO 2 – берилл
MgCO 3 – магнезит
CaCO 3 MgCO 3 – доломит
KCl MgSO 4 3H 2 O – каинит
KCl MgCl 2 6H 2 O – карналлит
CaCO 3 – кальцит (известняк, мрамор и др.)
Ca 3 (PO 4) 2 – апатит, фосфорит
CaSO 4 2H 2 O – гипс
CaSO 4 – ангидрит
CaF 2 – плавиковый шпат (флюорит)
SrSO 4 – целестин
SrCO 3 – стронцианит
BaSO 4 – барит
BaCO 3 – витерит
Получение
Бериллий получают восстановлением фторида:
BeF 2 + Mg – t ° ® Be + MgF 2
Барий получают восстановлением оксида:
3BaO + 2Al – t ° ® 3Ba + Al 2 O 3
Остальные металлы получают электролизом расплавов хлоридов:
CaCl 2 ® Ca + Cl 2
катод: Ca 2+ + 2ē ® Ca 0
анод: 2Cl - – 2ē ® Cl 0 2
Металлы главной подгруппы II группы - сильные восстановители; в соединениях проявляют только степень окисления +2. Активность металлов и их восстановительная способность увеличивается в ряду: ––Be–Mg–Ca–Sr–Ba®
1. Реакция с водой.
В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являтся сильными основаниями:
Mg + 2H 2 O – t ° ® Mg(OH) 2 + H 2
Ca + 2H 2 O ® Ca(OH) 2 + H 2
2. Реакция с кислородом.
Все металлы образуют оксиды RO, барий-пероксид – BaO 2:
2Mg + O 2 ® 2MgO
Ba + O 2 ® BaO 2
3. С другими неметаллами образуются бинарные соединения:
Be + Cl 2 ® BeCl 2 (галогениды)
Ba + S ® BaS(сульфиды)
3Mg + N 2 ® Mg 3 N 2 (нитриды)
Ca + H 2 ® CaH 2 (гидриды)
Ca + 2C ® CaC 2 (карбиды)
3Ba + 2P ® Ba 3 P 2 (фосфиды)
Бериллий и магний сравнительно медленно реагируют с неметаллами.
4. Все металлы растворяются в кислотах:
Ca + 2HCl ® CaCl 2 + H 2
Mg + H 2 SO 4 (разб.) ® MgSO 4 + H 2
Бериллий также растворяется в водных растворах щелочей:
Be + 2NaOH + 2H 2 O ® Na 2 + H 2
5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета:
Ca 2+ - темно-оранжевый
Sr 2+ - темно-красный
Ba 2+ - светло-зеленый
Катион Ba 2+ обычно открывают обменной реакцией с серной кислотой или ее солями:
Сульфат бария – белый осадок, нерастворимый в минеральных кислотах.
Оксиды щелочноземельных металлов
Получение
1) Окисление металлов (кроме Ba, который образует пероксид)
2) Термическое разложение нитратов или карбонатов
CaCO 3 – t ° ® CaO + CO 2
2Mg(NO 3) 2 – t ° ® 2MgO + 4NO 2 + O 2
Химические свойства
Типичные основные оксиды. Реагируют с водой (кроме BeO), кислотными оксидами и кислотами
MgO + H 2 O ® Mg(OH) 2
3CaO + P 2 O 5 ® Ca 3 (PO 4) 2
BeO + 2HNO 3 ® Be(NO 3) 2 + H 2 O
BeO - амфотерный оксид, растворяется в щелочах:
BeO + 2NaOH + H 2 O ® Na 2
Гидроксиды щелочноземельных металлов R(OH) 2
Получение
Реакции щелочноземельных металлов или их оксидов с водой:
Ba + 2H 2 O ® Ba(OH) 2 + H 2
CaO(негашеная известь) + H 2 O ® Ca(OH) 2 (гашеная известь)
Химические свойства
Гидроксиды R(OH) 2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH) 2 – нерастворим в воде, растворяется в щелочах). Основность R(OH) 2 увеличивается с увеличением атомного номера:
Be(OH) 2 – амфотерный гидроксид
Mg(OH) 2 – слабое основание
остальные гидроксиды - сильные основания (щелочи).
1) Реакции с кислотными оксидами:
Ca(OH) 2 + SO 2 ® CaSO 3 ¯ + H 2 O
Ba(OH) 2 + CO 2 ® BaCO 3 ¯ + H 2 O
2) Реакции с кислотами:
Mg(OH) 2 + 2CH 3 COOH ® (CH 3 COO) 2 Mg + 2H 2 O
Ba(OH) 2 + 2HNO 3 ® Ba(NO 3) 2 + 2H 2 O
3) Реакции обмена с солями:
Ba(OH) 2 + K 2 SO 4 ® BaSO 4 ¯+ 2KOH
4) Реакция гидроксида бериллия со щелочами:
Be(OH) 2 + 2NaOH ® Na 2
Жесткость воды
Природная вода, содержащая ионы Ca 2+ и Mg 2+ , называется жесткой. Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.
Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, некарбонатная (постоянная) жесткость – хлоридов и сульфатов.
Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.
Удаление жесткости воды осуществляется путем осаждения из раствора ионов Ca 2+ и Mg 2+ .