» » Строение ядра атома физика. Состав и строение атомного ядра (кратко). Сколько весит атом

Строение ядра атома физика. Состав и строение атомного ядра (кратко). Сколько весит атом

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом. Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами.

В 1911 году Резерфорд в своём докладе «Рассеяние α- и β-лучей и строение атома» в философском обществе Манчестера заявил :

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин -протон. После промежуточной протон-электронной теории строения ядра, имевшей немало явных недостатков, в первую очередь она противоречила экспериментальным результатам измерений спинов и магнитных моментов ядер, в 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном. В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена.



Радиоактивность

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Закон радиоактивного распада - закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году. Современная формулировка закона:

что означает, что число распадов за интервал времени t в произвольном веществе пропорционально числу N имеющихся в образце радиоактивных атомов данного типа.

В этом математическом выражении λ - постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеет размерность с −1 . Знак минус указывает на убыль числа радиоактивных ядер со временем. Закон выражает независимость распада радиоактивных ядер друг от друга и от времени: вероятность распада данного ядра в каждую следующую единицу времени не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Решение этого дифференциального уравнения имеет вид:

Или , где Т - период полураспада равный времени, в течение которого число радиоактивных атомов или активность образца уменьшаются в 2 раза.

12. Ядерные реакции.

Ядерная реакция - это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.

Виды ядерных реакций

Ядерная реакция деления - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

Ядерная реакция синтеза - процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.

Кроме нового ядра, в ходе реакции синтеза, как правило, образуются также различные элементарные частицы и (или) кванты электромагнитного излучения.

Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания - это так называемый «кулоновский барьер». Для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.

Фотоядерная реакция

При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном, нейтронов.

Запись ядерных реакций

способ написания формул ядерных реакций аналогичен записи формул реакций химических, то есть слева записывается сумма исходных частиц, справа - сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

Мы видим, что число протонов и нейтронов справа и слева остаётся одинаковым (барионное число сохраняется). Это же относится к электрическим зарядам, лептонным числам и другим величинам (энергия, импульс, момент импульса, …). В некоторых реакциях, где участвует слабое взаимодействие, протоны могут превращаться в нейтроны и наоборот, однако их суммарное число не меняется.

Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно 10 -14 … 10 -15 м (линейные размеры атома – 10 -10 м).

Атомное ядро состоит из элементарных частиц  протонов и нейтронов. Протонно-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко, а впоследствии развита В. Гейзенбергом.

Протон (р ) имеет положительный заряд, равный заряду электрона, и массу покоят p = 1,6726∙10 -27 кг 1836m e , гдеm e масса электрона. Нейтрон (n )нейтральная частица с массой покояm n = 1,6749∙10 -27 кг 1839т e ,. Массу протонов и нейтронов часто выражают в других единицах – в атомных единицах массы (а.е.м., единица массы, равная 1/12 массы атома углерода
). Массы протона и нейтрона равны приблизительно одной атомной единице массы. Протоны и нейтроны называют­сянуклонами (от лат.nucleus ядро). Общее число нуклонов в атомном ядре называ­етсямассовым числомА ).

Радиусы ядер возрастают с увеличением массового числа в соответствии с соотношением R = 1,4А 1/3 10 -13 см.

Эксперименты показывают, что ядра не имеют резких границ. В центре ядра существует определенная плотность ядерного вещества, и она постепенно уменьшается до нуля с увеличением расстояния от центра. Из-за отсутствия четко определенной границы ядра его «радиус» определяется как расстояние от центра, на котором плотность ядерного вещества уменьшается в два раза. Среднее распределение плотности материи для большинства ядер оказывается не просто сферическим. Большинство ядер деформировано. Часто ядра имеют форму вытянутых или сплющенных эллипсоидов

Атомное ядро характеризуетсязарядом Ze, гдеZ зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева.

Ядро обозначается тем же символом, что и нейтральный атом:
, гдеX символ химического элемента,Z атомный номер (число протонов в ядре),А массовое число (число нуклонов в ядре). Массовое числоА приблизительно равно массе ядра в атомных единицах массы.

Так как атом нейтрален, то заряд ядра Z определяет и число электронов в атоме. От числа электронов зависитих распределение по состояниям в атоме. Заряд ядра определяет специфику данного химического элемента, т. е. определяет число электро­нов в атоме, конфигурациюих электронных оболочек, величину и характер внутри­атомного электрического поля.

Ядра с одинаковыми зарядовыми числами Z , но с разными массовыми числамиА (т. е. с разными числами нейтронов N = A – Z ), называются изотопами, а ядра с одинаковымиА, но разнымиZ – изобарами. Например, водород (Z = l) имеет три изотопа: Н – протий (Z = l,N = 0), Н – дейтерий (Z = l,N = 1), Н – тритий (Z = l,N = 2), олово – десять изотопов и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами.

Е , МэВ

Уровни энергии

и наблюдаемые переходы для ядра атома бора

Квантовая теория строго ограничивает значения энергий, которыми могут обладать составные части ядер. Совокупности протонов и нейтронов в ядрах могут находиться только в определенных дискретных энергетических состояниях, характерных для данного изотопа.

Когда электрон переходит из более высокого в более низкое энергетическое состояние, разность энергий излучается в виде фотона. Энергия этих фотонов имеет порядок нескольких электронвольт. Для ядер энергии уровней лежат в интервале примерно от 1 до 10 МэВ. При переходах между этими уровнями испускаются фотоны очень больших энергий (γ–кванты). Для иллюстрации таких переходов на рис. 6.1 приведены пять первых уровней энергии ядра
.Вертикальными линиями указаны наблюдаемые переходы. Например, γквант с энергией 1,43 МэВ испускается при переходе ядра из состояния с энергией 3,58 МэВ в состояние с энергией 2,15 МэВ.

Атомное ядро
Atomic nucleus

Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10 -12 см, что на четыре порядка меньше диаметра атома (10 -8 см). Плотность вещества в ядре – около 230 млн.тонн/см 3 .
Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда . В 1932 г. после открытия там же Дж. Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг , Д.Д. Иваненко , Э. Майорана).
Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58 Ni, либо никель-58.

Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 10 9 -10 10 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями ≈ 10 -13 см). Протоны и нейтроны имеют размер около 10 -13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном. Радиус ядра можно приближённо оценить по формуле R ≈ (1.0-1.1)·10 -13 А 1/3 см, где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 10 14 г/см 3) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах 10 -13 см) до центра ядра.
Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействиямежду кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).
Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.
Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами. Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.
Различные типы ядер часто называют нуклидами. Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов. Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов ≈290. Из них 116-118 протонов.
Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t > 10 -23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы - стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате - -распадов, с превращением нейтрона ядра в протон.
Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - -распада подвержены также α-распаду (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p – энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~10 -23 – 10 -22 c) с испусканием нуклонов.
При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия. Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы. Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.
Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.
Для теоретического описания атомных ядер используется квантовая механика и различные модели.
Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму

Вопросы «Из чего состоит материя?», «Какова природа материи?» всегда занимали человечество. Еще с древнейших времен философы и ученые искали ответы на эти вопросы, создавая как реалистичные, так и совершенно удивительные и фантастические теории и гипотезы. Однако буквально столетие назад человечество подошло к разгадке этой тайны максимально близко, открыв атомарную структуру материи. Но каков состав ядра атома? Из чего все состоит?

От теории к реальности

К началу двадцатого века атомарная структура перестала быть только гипотезой, а стала абсолютным фактом. Оказалось, что состав ядра атома - понятие очень сложное. В его состав входят Но возник вопрос: состав атома и включают в себя разное количество этих зарядов или нет?

Планетарная модель

Изначально представляли, что атом построен очень похоже на нашу Солнечную систему. Однако довольно быстро оказалось, что подобное представление не совсем верно. Проблематика чисто механического переноса астрономического масштаба картины в область, которая занимает миллионные доли миллиметра, повлекла за собой существенное и резкое изменение свойств и качеств явлений. Главное различие заключалось в гораздо более жестких законах и правилах, по которым построен атом.

Недостатки планетарной модели

Во-первых, так как атомы одного рода и элемента по параметрам и свойствам должны быть совершенно одинаковы, то и орбиты у электронов этих атомов тоже должны быть одинаковы. Однако законы движения астрономических тел не смогли дать ответы на эти вопросы. Второе противоречие заключается в том, что движение электрона по орбите, если применить к нему хорошо изученные физические законы, должно обязательно сопровождаться перманентным выделением энергии. В результате этот процесс привел бы к истощению электрона, который в конечном итоге затухнул бы и даже упал на ядро.

Волновая структура материи

В 1924 году молодой аристократ Луи де Бройль выдвинул мысль, которая перевернула представления научного сообщества о таких вопросах как состав атомных ядер. Идея заключалась в том, что электрон - это не просто движущийся шарик, который вращается вокруг ядра. Это размытая субстанция, которая движется по законам, напоминающим распространение волн в пространстве. Довольно быстро это представление распространили и на движение любого тела в целом, пояснив, что мы замечаем только одну сторону этого самого движения, а вот вторая фактически не проявляется. Мы можем видеть распространение волн и не заметить движение частицы, либо же наоборот. На самом же деле обе эти стороны движения всегда существуют, и вращение электрона по орбите - это не только перемещение самого заряда, но также и распространение волн. Такой подход кардинально отличается от принятой ранее планетарной модели.

Элементарная основа

Ядро атома - это центр. Вокруг него и вращаются электроны. Свойствами именно ядра обусловлено все остальное. Говорить о таком понятии как состав ядра атома необходимо с самого важного момента - с заряда. В составе атома наблюдается определенное которые несут отрицательный заряд. Само же ядро обладает положительным зарядом. Из этого можно сделать определенные выводы:

  1. Ядро - это заряженная положительно частица.
  2. Вокруг ядра находится пульсирующая атмосфера, создаваемая зарядами.
  3. Именно ядро и его характеристики определяют количество электронов в атоме.

Свойства ядра

Медь, стекло, железо, дерево обладают одинаковыми электронами. Атом может потерять пару электронов или даже все. Если ядро остается заряжено положительно, то оно способно притянуть нужное количество отрицательно заряженных частиц из других тел, что позволит ему сохраниться. Если атом теряет некоторое количество электронов, то положительный заряд у ядра будет больше, чем остаток отрицательных зарядов. В этом случае и весь атом приобретет избыточный заряд, и его можно будет назвать положительным ионом. В некоторых случаях атом может привлечь большее количество электронов, и тогда он станет отрицательно заряженным. Следовательно, его можно будет назвать отрицательным ионом.

Сколько весит атом?

Масса атома в основном определяется ядром. Электроны, которые входят в состав атома и атомного ядра, весят мене одной тысячной от общей массы. Так как массу считают мерой запаса энергии, которым обладает вещество, то этот факт считается неимоверно важным при изучении такого вопроса, как состав ядра атома.

Радиоактивность

Наиболее сложные вопросы появились после открытия Радиоактивные элементы излучают альфа-, бета- и гамма-волны. Но такое излучение должно иметь источник. Резерфорд в 1902 году показал, что таким источником является сам атом, а точнее сказать, ядро. С другой стороны, радиоактивность - это не только испускание лучей, а и перевод одного элемента в другой, с совершенно новыми химическими и физическими свойствами. То есть радиоактивность - это изменение ядра.

Что мы знаем о ядерной структуре?

Почти сто лет назад физик Проут выдвинул мысль о том, что элементы в периодической системе не являются бессвязными формами, а представляют собой комбинации Поэтому можно было ожидать, что и заряды, и массы ядер будут выражаться через целые и кратные заряды самого водорода. Однако это не совсем так. Изучая свойства атомных ядер при помощи электромагнитных полей, физик Астон установил, что элементы, атомные веса у которых не являлись целыми и кратными, на самом деле - комбинация разных атомов, а не одно вещество. Во всех случаях, когда атомный вес не целое число, мы наблюдаем смесь разных изотопов. Что это такое? Если говорить про состав ядра атома, изотопы - атомы с одинаковыми зарядами, но с разными массами.

Эйнштейн и ядро атома

Теория относительности говорит, что масса - это не мера, по которой определяют количество материи, а мера энергии, которой обладает материя. Соответственно, материю можно измерить не массой, а зарядом, который составляет эту материю, и энергией заряда. Когда одинаковый заряд приближается к другому такому же, энергия будет увеличиваться, в обратном случае - уменьшаться. Это, несомненно, не означает изменение материи. Соответственно, с этой позиции ядро атома - это не источник энергии, а скорее, остаток после ее выделения. Значит, существует некое противоречие.

Нейтроны

Супруги Кюри при бомбардировке альфа-частицами бериллия открыли некие непонятные лучи, которые, сталкиваясь с ядром атома, отталкивают его с огромной силой. Однако они способны проходить сквозь большую толщину вещества. Это противоречие разрешилось тем, что данная частица оказалась с нейтральным электрическим зарядом. Соответственно, ее и назвали нейтроном. Благодаря дальнейшим исследованиям оказалось, что почти такая же, как и у протона. В общем-то говоря, нейтрон и протон невероятно похожи. С учетом этого открытия определенно можно было установить, что в состав ядра атома входят и протоны, и нейтроны, причем в одинаковых количествах. Все постепенно становилось на места. Число протонов - атомный номер. Атомный вес - это сумма масс нейтронов и протонов. Изотопом можно же назвать элемент, в котором количество нейтронов и протонов будет не равным друг другу. Как уже говорилось выше, в таком случае, хотя элемент остается фактическим тем же самым, его свойства могут существенно измениться.

У которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} - это число равно порядковому номеру элемента , к которому относится атом, в таблице (Периодической системе элементов) Менделеева . Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N {\displaystyle N} . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами . Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами . Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} ( A = N + Z {\displaystyle A=N+Z} ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами .

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами .

История

Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.

Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.

После обнаружения стабильных изотопов элементов, ядру самого лёгкого атома была отведена роль структурной частицы всех ядер. С 1920 года ядро атома водорода имеет официальный термин - протон . В 1921 году Лиза Мейтнер предложила первую, протон-электронную, модель строения атомного ядра, согласно которой оно состоит из протонов, электронов и альфа-частиц :96 . Однако в 1929 году произошла «азотная катастрофа» - В. Гайтлер и Г. Герцберг установили , что ядро атома азота подчиняется статистике Бозе - Эйнштейна , а не статистике Ферми - Дирака , как предсказывала протон-электронная модель :374 . Таким образом, эта модель вступила в противоречие с экспериментальными результатами измерений спинов и магнитных моментов ядер . В 1932 году Джеймсом Чедвиком была открыта новая электрически нейтральная частица, названная нейтроном . В том же году Иваненко и, независимо, Гейзенберг выдвинули гипотезу о протон-нейтронной структуре ядра. В дальнейшем, с развитием ядерной физики и её приложений, эта гипотеза была полностью подтверждена .

Теории строения атомного ядра

В процессе развития физики выдвигались различные гипотезы строения атомного ядра; тем не менее, каждая из них способна описать лишь ограниченную совокупность ядерных свойств. Некоторые модели могут взаимоисключать друг друга.

Наиболее известными являются следующие:

  • Капельная модель ядра - предложена в 1936 году Нильсом Бором .
  • Оболочечная модель ядра - предложена в 30-х годах XX века.

Ядерно-физические характеристики

Впервые заряды атомных ядер определил Генри Мозли в 1913 году . Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы Z {\displaystyle Z} , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

1 / λ = a Z − b {\displaystyle {\sqrt {1/\lambda }}=aZ-b} , где

A {\displaystyle a} и b {\displaystyle b} - постоянные.

Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли .

Масса

Из-за разницы в числе нейтронов A − Z {\displaystyle A-Z} изотопы элемента имеют разную массу M (A , Z) {\displaystyle M(A,Z)} , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома . Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы . Согласно соотношению Эйнштейна , каждому значению массы M {\displaystyle M} соответствует полная энергия:

E = M c 2 {\displaystyle E=Mc^{2}} , где c {\displaystyle c} - скорость света в вакууме .

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях :

E 1 = 1,660 539 ⋅ 10 − 27 ⋅ (2,997 925 ⋅ 10 8) 2 = 1,492 418 ⋅ 10 − 10 {\displaystyle E_{1}=1{,}660539\cdot 10^{-27}\cdot (2{,}997925\cdot 10^{8})^{2}=1{,}492418\cdot 10^{-10}} , E 1 = 931,494 {\displaystyle E_{1}=931{,}494} .

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:

R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}} ,

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил , то значение r 0 {\displaystyle r_{0}} зависит от процесса, при анализе которого получено значение R {\displaystyle R} , усреднённое значение r 0 = 1 , 23 ⋅ 10 − 15 {\displaystyle r_{0}=1{,}23\cdot 10^{-15}} м, таким образом радиус ядра в метрах :

R = 1 , 23 ⋅ 10 − 15 A 1 / 3 {\displaystyle R=1{,}23\cdot 10^{-15}A^{1/3}} .

Моменты ядра

Как и составляющие его нуклоны, ядро имеет собственные моменты.

Спин

Поскольку нуклоны обладают собственным механическим моментом, или спином, равным 1 / 2 {\displaystyle 1/2} , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения ℏ {\displaystyle \hbar } (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.

Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких ℏ {\displaystyle \hbar } , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д. .

Магнитный момент

Измерения спинов стали возможными благодаря наличию непосредственно связанных с ними магнитных моментов . Они измеряются в магнетонах и у различных ядер равны от −2 до +5 ядерных магнетонов. Из-за относительно большой массы нуклонов магнитные моменты ядер очень малы по сравнению с магнитными моментами электронов , поэтому их измерение гораздо сложнее. Как и спины, магнитные моменты измеряются спектроскопическими методами , наиболее точным является метод ядерного магнитного резонанса .

Магнитный момент чётно-чётных пар, как и спин, равен нулю. Магнитные моменты ядер с непарными нуклонами образуются собственными моментами этих нуклонов и моментом, связанным с орбитальным движением непарного протона .

Электрический квадрупольный момент

Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля , создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры , расстояния между которыми зависят от квадрупольного момента .

Энергия связи

Устойчивость ядер

Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми A {\displaystyle A} энергетически выгоден процесс слияния - термоядерный синтез , приводящий к увеличению массового числа, а для ядер с большими A {\displaystyle A} - процесс деления . В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики , а первый находится в стадии разработки.

Детальные исследования показали, что устойчивость ядер также существенно зависит от параметра N / Z {\displaystyle N/Z} - отношения чисел нейтронов и протонов. В среднем для наиболее стабильных ядер N / Z ≈ 1 + 0.015 A 2 / 3 {\displaystyle N/Z\approx 1+0.015A^{2/3}} , поэтому ядра лёгких нуклидов наиболее устойчивы при N ≈ Z {\displaystyle N\approx Z} , а с ростом массового числа всё более заметным становится электростатическое отталкивание между протонами, и область устойчивости сдвигается в сторону N > Z {\displaystyle N>Z} (см. поясняющий рисунок ).

Если рассмотреть таблицу стабильных нуклидов, встречающихся в природе, можно обратить внимание на их распределение по чётным и нечётным значениям Z {\displaystyle Z} и N {\displaystyle N} . Все ядра с нечётными значениями этих величин являются ядрами лёгких нуклидов 1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}} , 3 6 Li {\displaystyle {}_{3}^{6}{\textrm {Li}}} , 5 10 B {\displaystyle {}_{5}^{10}{\textrm {B}}} , 7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}} . Среди изобар с нечётными A, как правило, стабилен лишь один. В случае же чётных A {\displaystyle A} часто встречаются по два, три и более стабильных изобар, следовательно, наиболее стабильны чётно-чётные, наименее - нечётно-нечётные. Это явление свидетельствует о том, что как нейтроны, так и протоны, проявляют тенденцию группироваться парами с антипараллельными спинами , что приводит к нарушению плавности вышеописанной зависимости энергии связи от A {\displaystyle A} .

Таким образом, чётность числа протонов или нейтронов создаёт некоторый запас устойчивости, который приводит к возможности существования нескольких стабильных нуклидов, различающихся соответственно по числу нейтронов для изотопов и по числу протонов для изотонов. Также чётность числа нейтронов в составе тяжёлых ядер определяет их способность делиться под воздействием нейтронов .

Ядерные силы

Ядерные силы - это силы, удерживающие нуклоны в ядре, представляющие собой большие силы притяжения, действующие только на малых расстояниях. Они обладают свойствами насыщения, в связи с чем ядерным силам приписывается обменный характер (с помощью пи-мезонов). Ядерные силы зависят от спина, не зависят от электрического заряда и не являются центральными силами .

Уровни ядра

В отличие от свободных частиц, для которых энергия может принимать любые значения (так называемый непрерывный спектр), связанные частицы (то есть частицы, кинетическая энергия которых меньше абсолютного значения потенциальной), согласно квантовой механике , могут находиться в состояниях только с определёнными дискретными значениями энергий, так называемый дискретный спектр. Так как ядро - система связанных нуклонов, оно обладает дискретным спектром энергий. Обычно оно находится в наиболее низком энергетическом состоянии, называемым основным . Если передать ядру энергию, оно перейдёт в возбуждённое состояние .

Расположение энергетических уровней ядра в первом приближении:

D = a e − b E ∗ {\displaystyle D=ae^{-b{\sqrt {E^{*}}}}} , где:

D {\displaystyle D} - среднее расстояние между уровнями,

E ∗ {\displaystyle E^{*}} - энергия возбуждения ядра,

A {\displaystyle a} и b {\displaystyle b} - коэффициенты, постоянные для данного ядра:

A {\displaystyle a} - среднее расстояние между первыми возбуждёнными уровнями (для лёгких ядер примерно 1 МэВ, для тяжёлых - 0,1 МэВ)

B {\displaystyle b} - константа, определяющая скорость сгущения уровней при увеличении энергии возбуждения (для лёгких ядер примерно 2 МэВ −1/2 , для тяжёлых - 4 МэВ −1/2).

С ростом энергии возбуждения уровни сближаются быстрее у тяжёлых ядер, также плотность уровней зависит от чётности числа нейтронов в ядре. Для ядер с чётными (особенно магическими) числами нейтронов плотность уровней меньше, чем для ядер с нечётными, при равных энергиях возбуждения первый возбуждённый уровень в ядре с чётным числом нейтронов расположен выше, чем в ядре с нечётным.

Во всех возбуждённых состояниях ядро может находиться лишь конечное время, до тех пор, пока возбуждение не будет снято тем или иным путём. Состояния, энергия возбуждения которых меньше энергии связи частицы или группы частиц в данном ядре, называются связанными ; в этом случае возбуждение может сниматься лишь гамма-излучением . Состояния с энергией возбуждения, превышающей энергию связи частиц, называются квазистационарными . В этом случае ядро может испустить частицу или гамма-квант .