» » Место химии в современной научной картине мира. Эволюция химической картины мира. Основные этапы развития химии

Место химии в современной научной картине мира. Эволюция химической картины мира. Основные этапы развития химии

Химию принято подразделять на 5 разделов: неорганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.

К важнейшим особенностям современной химии относятся:

1. Дифференциация главных разделов химии на отдельные, во многом самостоятельные научные дисциплины, которая основана на различии объектов и методов исследования.

2. Интеграция химии с другими науками. В результате этого процесса возникли: биохимия, биоорганическая химия и молекулярная биология, которые изучают химические процессы в живых организмах. На стыке дисциплин возникли и геохимия, и космохимия.

3. Появление новых физико-химических и физических методов исследования.

4. Формирование теоретического фундамента химии на основе квантово-волновой концепции.

По мере развития химии до ее современного уровня в ней сложились четыре совокупности подходов к решению основной задачи (исследование происхождения свойств веществ и разработка на этой основе методов получения веществ с заранее заданными свойствами).

1. Учение о составе, в котором свойства веществ связывались исключительно с их составом. На этом уровне содержание химии исчерпывалось ее традиционным определением – как науки о химических элементах и их соединениях.

2. Структурная химия. Эта концепция объединяет теоретические представления в химии, устанавливающие связь свойств веществ не только с составом, но и со структурой молекул. В рамках этого подхода возникло понятие «реакционная способность», включающее представление о химической активности отдельных фрагментов молекулы – отдельных ее атомов или целых атомных групп. Структурная концепция позволила превратить химию из преимущественно аналитической в синтетическую науку. Этот подход позволил в конечном итоге создать промышленные технологии синтеза многих органических веществ.

3. Учение о химических процессах. В рамках этой концепции с помощью методов физической кинетики и термодинамики были выявлены факторы, влияющие на направленность и скорость протекания химических превращений и на их результат. Химия вскрыла механизмы управления реакциями и предложила способы изменения свойств получаемых веществ.

4. Эволюционная химия. Последний этап концептуального развития химии связан с использованием в ней некоторых принципов, реализованных в химизме живой природы. В рамках эволюционной химии осуществляется поиск таких условий, при которых в процессе химических превращений идет самосовершенствование катализаторов реакций. По существу, речь идет о самоорганизации химических процессов, происходящих в клетках живых организмов.

Рождение химии, так же как и всей европейской науки, несмотря на их долгую историю становления, связывают с возникновением идеи существования законов природы в Новое время. Классическим определением химии является определение, согласно которому, химия - это наука о веществах, об их строении, свойствах, о реакциях и законах, которым подчиняются их превращения; одна из отраслей естествознания 1 . Однако уже в 1967 г. в фундаментальной монографии «Эволюция представлений об основных законах химии» В. И. Кузнецова сделан вывод, что определение химии как «науки о веществах и их превращениях» устарело . Изменились понимание структуры вещества и динамики химических процессов и, соответственно, методология их исследования. Это привело к плодотворному развитию всех основных направлений химических исследований. Были открыты новые химические соединения. Так, современная химия располагает более 15 млн химических соединений и химических реакций, обнаруживающие неожиданные свойства и потребовавших введения совершенно новых понятий.

Ю. А. Жданов, обращаясь к проблеме специфики химической формы движения, отмечает, что как это ни парадоксально, но химия в системе современного естествознания занимает несколько двусмысленное положение: ее охотно признают в качестве необходимой научной основы для понимания биологических, геологических явлений, для создания технологических процессов, но нередко ей отказывают в статусе теоретической науки, сводя к квантовой механике, статической физике, термодинамике . Жданов пишет, что существует немало авторитетных свидетелей как из среды философов, так и из числа естествоиспытателей, готовых поклясться, что химия как наука в принципе не существует, что под термином «химия» скрывается смесь точной, элегантной физической теории и грязной, вульгарной кухни, которую лишь из сострадания можно назвать наукой. В такой ситуации справедлив вопрос, который ставит в своих исследованиях не только К). А. Жданов, но и многие ученые и философы: если теоретическая сторона химии исчерпывается физикой, то от химии остается лишь практическое экспериментирование, но кто же решится считать наукой область деятельности, лишенную своей собственной теории?

Несмотря на то, что возникают оценки современного состояния химии как рождения повой химии, одной из проблем, которая требует прояснения, является вопрос о редукции химического знания к физическому . Эта проблема - философский вопрос, поскольку, по сути, это вопрос, как он сформулирован

В. Декельманом о том, имеет ли химия некоторое собственное понятие бытия или же она по самым своим основам является всего лишь частной областью физики . Традиция сведения химических изменений к физическим имеет свои истоки в представлениях о том, что атомы огня, воздуха и земли механически взаимодействуют друг с другом и образуют «смешанные тела» (Р. Декарт, Р. Бойль, И. Ньютон). Согласно М. Волькенштей- ну, не существует теоретической химии, кроме физики. Это понимание утвердилось с развитием, во-первых, классической механики (М. Фарадей) и разделялось многими химиками; например, Д. И. Менделеев признавал, что блеск химических открытий сделал современную химию совершенно специальной наукой, при этом отмечал, что «несомненно, должно настать время, когда химическое сродство будет рассматриваться как механическое явление» . Во-вторых, с развитием квантовой механики, принципы и положения которой применимы для решения традиционных проблем химической науки, что дает основания для убеждений в квантовомеханическом характере фундаментальных основ химии.

Физической основой химического знания являются следующие главные постулаты квантовой механики: 1) понятие волновой функции электрона как распределенного в пространстве и времени заряда и спина (углового момента); 2) принцип Паули, «организующий» электроны по энергетическим уровням, спиновым состояниям и но их собственным орбиталям (волновым функциям); 3) уравнение Э. Шрёдингера как квантовый наследник уравнений классической механики.

В связи с этим многие физики XX в., например, В. Гейзенберг, П. Иордан, Р. Фейнман, развивали тезис о возможности сведения закономерностей любых химических процессов к фундаментальным физическим законам. Более того, физиками выражается уверенность в том, что непременно наступит момент, «когда биология также полностью сольется с физикой и химией, как нынешняя квантовая механика слила воедино физику и химию» . Многие представители отечественной физики и философии также разделяют эту точку зрения. Так, С. В. Вонсовский пишет, что во всех химических процессах мы встречаемся, прежде всего, с атомизмом тел природы . Химия понимается им как одна из важнейших естественно-научных дисциплин, прежде всего наука о структуре молекул, а также о процессах взаимодействия молекул и поведении веществ при различных химических реакциях.

Проблема редукции в химической картине мира - это попытки превратить химию в столь же точную науку, как и теоретическая физика. Однако существует и другая основа химии - математическая, выражением которой стало установление множества количественных закономерностей, точных законов (включая электронную периодичность закона Менделеева), высочайшего измерительного уровня определения атомно-молекулярных, термодинамических и кинетических констант, характеризующих вещество и химический процесс. Наряду с фундаментальной физико-математической основой химии на сегодняшний день сформировалось большое количество исследовательских областей самого химического знания. Более того, тенденции развития междисциплинарных взаимодействий как на стыках химических дисциплин, так и между всеми естественными науками, привели к действию обратных связей между дисциплинами.

Основной тезис традиции, противостоящей редукции химии к физике: «В явлении химическом всегда есть нечто большее, чем в просто явлении физическом» (В. Оствальд, Н. Н. Семенов, Ю. А. Жданов, Б. М. Кедров, А. Н. Несмеянов и др.). Это положение приводит к необходимости постановки проблемы объектной основы химии. Выражением этой проблемы может служить вопрос: имеют ли химия и физика дело с одним и тем же объектом изучения?

Как отмечает Г. А. Крестов, химия изучает мир объединяемым понятием материи, которая существует в форме вещества и поля, обладающих массой, энергией и характеризующихся диалектическим единством корпускулярных и волновых свойств .

Однако понятием «поля» оперирует физика. В. М. Кедров отмечает, что атомы и молекулы могут быть конечной ступенью развития объекта по отношению к своим исходным структурным элементам и являться объектом изучения физики, однако они могут быть и исходной химической единицей по отношению к возникающим из него молекулярным структурам и в этом случае выступать объектом изучения химии 11 .

Сторонники сведения химических связей к физическим постулируют понимание химического взаимодействия как особой разновидности более общего электромагнитного взаимодействия. Если принять во внимание, что индивидуальный атом еще не является химическим веществом, то и периодическая система элементов Д. И. Менделеева не является химической концепцией. Как справедливо отмечает В. А. Энгельгардт, проводя анализ химического процесса: «...часть, ранее бывшая самостоятельной, перестает существовать как таковая, становится компонентом внутренне объединенного интегрального целого. Возникает нечто новое, ранее не существовавшее, со свойственными ему новыми качествами» .

Особенность химической картины мира заключается в том, что основными объектами изучения являются не просто атомы или молекулы, но очень сложная организация вещества. Необходимо принять во внимание, что перестройка электронных орбиталей атома происходит внутри атома как единого целого. То есть перестройка электронных орбиталей обусловлена всей структурой атома, а не только индивидуальными свойствами электронов. Только в рамках целого можно говорить о том, что то или иное взаимодействие является химическим. Необходимо принять во внимание, что химические соединения построены не из индивидуальных атомов, а из атомных ядер (атомных остовов), связанных обобществленным электронным континуумом . Это обусловливает то, что процесс потери электрона одним атомом и присоединение его другим не может отражать сущность химического взаимодействия.

В этом вопросе такие исследователи, как Н. М. Черемных и О. С. Сироткин , справедливо полагают, что именно наличие химической связи в веществе является критерием того, что оно является объектом химического исследования; ни элементарная частица, ни атом (считающийся иногда «законным» объектом химии) этому критерию не удовлетворяют, и поэтому модели элементарного и атомного уровня организации вещества нельзя экстраполировать на химический уровень. Химическая система - это некоторая целостность, поэтому описание отдельных элементов, на основе которых она возникла, не может дать цельную картину химического процесса, например, образования гликогена из глюкозы и т. д. Справедливо утверждение того, что существует различие между физикой и химией, оно не сводится только к различию химического и физического (электромагнитного) взаимодействий. Н. Н. Семёнов выделяет основные принципы, из которых могут быть выведены все химические закономерности, не сводимые к законам физики:

Принцип электронного строения молекулярных систем; учение о взаимосвязи строения и свойств молекулярных

  • - учение о реакционной способности химических соединений;
  • - концепция единства химических явлений .

Более того, если принять во внимание то, что, согласно авторитетному мнению физикохимика Н. Н. Семёнова, сущностью химического является химический процесс, рассматриваемый в современной химии как кинетический континуум множества веществ, то именно химический процесс образует мост между объектами физики и объектами биологии .

  • См.: Химический энциклопедический словарь. М. : Советская энциклопедия,1983.
  • См.: Кузнецов В. И. Эволюция представлений об основных законах химии.М. : Наука, 1967.
  • См.: Жданов Ю. А. Углерод и жизнь. Ростов н/Д: Изд-во РГУ, 1968 ; Жданов Ю. А. Очерки методологии органической химии. М. : Высш. школа, 1960.
  • См.: Кузнецов В. И. Диалектика развития химии. М. : Наука, 1973 ; Соловьёв Ю. И., Трифонов Д. II., Шамин А. II. Развитие основных направлений современной химии. М. : Просвещение, 1978 ; Полит Л. Общая химия. М. : Мир, 1974.

(структурные уровни организации материи с точки зрения химии).

Химия – одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения. По определению Д.И. Менделеева (1871), "химию в современном ее состоянии можно назвать учением об элементах". Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта – Хемия (греч. Chemía, встречается у Плутарха), которое производится от "хем" или "хаме" – черный и означает "наука черной земли" (Египта), "египетская наука".

Современная химия тесно связана как с другими науками, так и со всеми отраслями народного хозяйства. Качественная особенность химической формы движения материи и ее переходов в другие формы движения обусловливает разносторонность химической науки и ее связей с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химией и химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке и теоретическая химия также не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии и сама испытывала и испытывает ее влияние. Исторически сложились два основных раздела химии: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с другими элементами (органические вещества). До конца 18 в. термины "неорганическая химия" и "органическая химия" указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая химия соприкасается прежде всего с геохимией и далее с минералогией и геологией, т.е. с науками о неорганической природе. Органическая химия представляет отрасль химии, которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ; через органическую и биоорганическую химию Химия граничит с биохимией и далее с биологией, т.е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений. В химии постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределенных нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: химия комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.



Изучение химических объектов и явлений физическими методами, установление закономерностей химических превращений, исходя из общих принципов физики, лежит в основе физической химии. К этой области химии относится ряд в значительной мере самостоятельных дисциплин: термодинамика химическая, кинетика химическая, электрохимия, коллоидная химия, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов, радиационная химия, фотохимия, учения о катализе, химических равновесиях, растворах и др. Самостоятельный характер приобрела аналитическая химия, методы которой широко применяются во всех областях химии и химической промышленности. В областях практического приложения химии возникли такие науки и научные дисциплины, как химическая технология с множеством ее отраслей, металлургия, агрохимия, медицинская химия, судебная химия и др.

Внешний мир, существующий независимо от человека и его сознания, представляет собой различные виды движения материи. Материя существует в вечном движении, мерой которого выступает энергия. Наиболее изучены такие формы существования материи как вещество и поле. В меньшей степени наука проникла в сущность вакуума и информации как возможных форм существования материальных объектов.

Под веществом понимают устойчивую совокупность частиц (атомов, молекул и др.), обладающих массой покоя. Поле рассматривается как материальная среда, обеспечивающая взаимодействие частиц. Современная наука считает, что поле представляет собой поток квантов, не обладающих массой покоя.

Окружающие человека материальные тела состоят из различных веществ. При этом телами называют объекты реального мира, обладающие массой покоя и занимающие определенный объем пространства.

Каждое тело имеет свои физические параметры и свойства. А вещества, из которых они состоят, обладают химическими и физическими свойствами. В качестве физических свойств можно назвать агрегатные состояния вещества, плотность, растворимость, температура, цвет, вкус, запах и др.

Различают твердое, жидкое, газообразное и плазменное агрегатные состояния вещества. В нормальных условиях (температура 20 градусов Цельсия, давление 1 атмосфера) различные вещества находятся в разных агрегатных состояниях. Например: сахароза, хлорид натрия (соль), сера – это твердые тела; вода, бензол, серная кислота – жидкости; кислород, диоксид углерода, метан – газы.

Главной задачей химии как науки является выявление и описание таких свойств вещества, которые позволяют превращать одни вещества в другие на основе химических реакций.

Химические превращения – это особая форма движения материи, которая обусловлена взаимодействием атомов, приводящим к образованию молекул, ассоциантов и агрегатов.

С точки зрения химической организации атом является исходным уровнем в общей структуре материи.

Химия, таким образом, изучает особую «химическую» форму движения материи, характерной особенностью которой является качественное превращение вещества.

Химия – это наука, изучающая превращение одних веществ в другие, сопровождающееся изменением их состава и структуры, а также исследует взаимные переходы между этими процессами.

Термин «естествознание» означает знание о природе или природоведение. Начало изучению природы положила натурфилософия («природоведение» в переводе с немецкого «naturphilosophie»; а в переводе с латинского – «natura» – природа, «Sophia» – мудрость).

В ходе развития каждой науки, в том числе и химии, развивался математический аппарат, понятийный аппарат теорий, совершенствовалась экспериментальная база и техника эксперимента. Как результат возникла полная дифференциация в предметах исследования различных естественных наук. Химия в основном исследует атомный и молекулярный уровень организации материи, что представлено на рис. 8.1.


Рис. 8.1. Уровни материи, изучаемые химической наукой

Основные понятия и законы химии

В основе современного естествознания лежит принцип сохранения материи, движения и энергии. Сформулированный М.В. Ломоносовым в 1748 г. Этот принцип прочно вошел в химическую науку. В 1756 г. М.В. ломоносов, изучая химические процессы, обнаружил постоянство общей массы веществ, участвующих в химической реакции. Это открытие стало важнейшим законом химии – законом сохранения и взаимосвязи массы и энергии. В современной трактовке он формулируется следующим образом: масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции.

В 1774 г. Знаменитый французский химик А. Лавуазье дополнил закон сохранения массы представлениями о неизменности масс каждого из веществ, участвующих в реакции.

В 1760 г. М.В. Ломоносов сформулировал закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, она превращается из одного вида в другой. Немецкий ученый Р. Майер в 1842 г. Экспериментально подтвердил данный закон. А английский ученый Джоуль установил эквивалентность различных видов энергии и работы (1кал= 4,2 Дж). Для химических реакций этот закон формулируется следующим образом: энергия системы, включающей вещества, вступившие в реакцию, равна энергии системы, включающей вещества, образовавшиеся в результате реакции.

Закон постоянства состава был открыт французским ученым Ж. Прустом (1801г.): всякое химически чистое индивидуальное вещество имеет всегда один и тот же количественный состав независимо от способа его получения. Другими словами, как бы не получали воду –при сгорании водорода или при разложении гидроксида кальция (Ca (OH)2) отношение масс водорода и кислорода в ней равно 1:8.

В 1803г. Дж. Дальтон (английский физик и химик) открыл закон кратных отношений, согласно которому, если два элемента образуют между собой несколько соединений, то массы одного из элементов, приходящиеся на одну и ту же массу другого, относятся между собой как небольшие целые числа. Этот закон является подтверждением атомистических представлений о структуре материи. Если элементы соединяются в кратных отношениях, то химические соединения различаются на целые атомы, которые представляют собой наименьшее количество элемента, вступившего в соединение.

Важнейшим открытием химии XIX столетия является закон Авогадро. В результате количественных исследований реакций между газами французский физик Ж.Л. Гей-Люссак установил, что объемы реагирующих газов относятся между собой и к объемам образующихся газообразных продуктов, как небольшие целые числа. Объяснение этому факту и дает закон Авогадро (открытый итальянским химиком А. Авогадро в 1811г.): в равных объемах любых газов, взятых при одинаковой температуре и давлении, содержится одинаковое число молекул.

Закон эквивалентов часто применяется в химических расчетах. Из закона постоянства состава следует, что взаимодействие элементов друг с другом совершается в строго определенных (эквивалентных) соотношениях. Поэтому термин эквивалент утвердился в химической науке в качестве основного. Эквивалентом элемента называют такое его количество, которое соединяется с одним молем водорода или замещает тоже количество атомов водорода в химических реакциях. Масса одного эквивалента химического элемента называется его эквивалентной массой. Представления об эквивалентах и эквивалентных массах применимы и к сложным веществам. Эквивалентом сложного вещества называется такое его количество, которое взаимодействует без остатка с одним эквивалентом водорода или с одним эквивалентом любого другого вещества. Формулировка закона эквивалентов была дана Рихтером в конце XVIII века: все вещества реагируют друг с другом в количествах, пропорциональных их эквивалентам. Другая формулировка этого закона гласит: массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентнвм массам (объемам). Математическая запись этого закона имеет вид: m 1: m 2 = Э 1: Э 2 , где m 1 и m 2 – массы взаимодействующих веществ, Э 1 и Э 2 – эквивалентные массы этих веществ, выраженные в кг/моль.

Важную роль играет периодический закон Д.И. Менделеева, современная трактовка которого гласит, что порядок расположения и химические свойства элементов определяются зарядом ядра.

Химия – наука о превращениях веществ, сопровождающихся изменением их состава и строения.

Явления, при которых из одних веществ образуются другие, называются химическими . Естественно, что, с одной стороны, в этих явлениях можно обнаружить чисто физические изменения, а, с другой стороны, химические явления всегда присутствуют во всех биологических процессах. Таким образом, очевидна связь химии с физикой и биологией.

Эта связь, по-видимому, была одной из причин того, почему химия долго не могла стать самостоятельной наукой. Хотя уже Аристотель разделял вещества на простые и сложные, чистые и смешанные и пытался объяснить возможность одних превращений и невозможность других, химические явления в целом он считал качественными изменениями и потому относил к одному из родов движения . Химия Аристотеля была частью его физики – знания о природе ().

Другая причина несамостоятельности античной химии связана с теоретичностью , созерцательностью всей древнегреческой науки в целом. В вещах и явлениях искали неизменное – идею . Теория химических явлений приводила к идее элемента () как некоего начала природы или к идее атома как неделимой частицы вещества. Согласно атомистической концепции, особенности форм атомов во множестве их сочетаний обуславливают разнообразие качеств тел макромира.

Эмпирический опыт относился в Древней Греции к области искусств и ремесел . Он включал также и практические знания о химических процессах: выплавке металлов из руд, крашении тканей, выделке кожи.

Вероятно, из этих древних ремесел, известных еще в Египте и Вавилоне, возникло «тайное» герметическое искусство Средневековья – алхимия, наиболее распространенное в Европе в IX-XVI веках.

Зародившись в Египте в III-IV веках, это направление практической химии было связано с магией и астрологией. Целью ее было разработать способы и средства превращения менее благородных веществ в более благородные, чтобы достичь реального совершенства, как материального, так и духовного. В ходе поисков универсальных средств таких превращений арабские и европейские алхимики получили много новых и ценных продуктов, а также усовершенствовали лабораторную технику.

1. Период зарождения научной химии (XVII – конец XVIII в.; Парацельс, Бойль, Кавендиш, Шталь, Лавуазье, Ломоносов). Характеризуется тем, что химия выделяется из естествознания в качестве самостоятельной науки. Ее цели определяются развитием промышленности в Новое время. Однако, теории этого периода, как правило, используют либо античные, либо алхимические представления о химических явлениях. Завершился период открытием закона сохранения массы при химических реакциях.

Например, ятрохимия Парацельса (XVI в.) была посвящена приготовлению лекарств и лечению болезней. Парацельс объяснял причины болезней нарушением химических процессов в организме. Как и алхимики, он сводил разнообразие веществ к нескольким элементам – носителям основных свойств материи. Следовательно, восстановление их нормального соотношения приемом лекарств излечивает болезнь.

Теория флогистона Шталя (XVII-XVIII вв.) обобщала множество химических реакций окисления, связанных с горением. Шталь предположил существование во всех веществах элемента «флогистон» – начала горючести.

Тогда реакция горения выглядит так: горючее тело → остаток + флогистон; возможен и обратный процесс: если остаток насытить флогистоном, т.е. смешать, например, с углем, то снова можно получить металл.

2. Период открытия основных законов химии (1800-1860 гг.; Дальтон, Авогадро, Берцелиус). Итогом периода стала атомно-молекулярная теория:

а) все вещества состоят из молекул, которые находятся в непрерывном хаотическом движении;

б) все молекулы состоят из атомов;

3. Современный период (начался в 1860 гг.; Бутлеров, Менделеев, Аррениус, Кекуле, Семенов). Характеризуется выделением разделов химии в качестве самостоятельных наук, а также развитием смежных дисциплин, например, биохимии. В этот период были предложены периодическая система элементов, теории валентности, ароматических соединений, электрохимической диссоциации, стереохимия, электронная теория материи.

Современная химическая картина мира выглядит так:

1. Вещества в газообразном состоянии состоят из молекул. В твердом и жидком состоянии из молекул состоят только вещества с молекулярной кристаллической решеткой (СО 2 , H 2 O). Большинство твердых тел имеет структуру либо атомную, либо ионную и существует в виде макроскопических тел (NaCl, CaO, S).

2. Химический элемент – определенный вид атомов с одинаковым зарядом ядра. Химические свойства элемента определяются строением его атома.

3. Простые вещества образованы из атомов одного элемента (N 2 , Fe). Сложные вещества или химические соединения образованы атомами разных элементов (CuO, H 2 O).

4. Химические явления или реакции – это процессы, в которых одни вещества превращаются в другие по строению и свойствам без изменения состава ядер атомов.

5. Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции (закон сохранения массы).

6. Всякое чистое вещество независимо от способа получения всегда имеет постоянный качественный и количественный состав (закон постоянства состава).

Основная задача химии – получение веществ с заранее заданными свойствами и выявление способов управления свойствами вещества.

Химия – наука о превращениях веществ, сопровождающихся изменением их состава и строения.

Явления, при которых из одних веществ образуются другие, называются химическими . Естественно, что, с одной стороны, в этих явлениях можно обнаружить чисто физические изменения, а, с другой стороны, химические явления всегда присутствуют во всех биологических процессах. Таким образом, очевидна связь химии с физикой и биологией.

Эта связь, по-видимому, была одной из причин того, почему химия долго не могла стать самостоятельной наукой. Хотя уже Аристотель разделял вещества на простые и сложные, чистые и смешанные и пытался объяснить возможность одних превращений и невозможность других, химические явления в целом он считал качественными изменениями и потому относил к одному из родов движения . Химия Аристотеля была частью его физики – знания о природе ().

Другая причина несамостоятельности античной химии связана с теоретичностью , созерцательностью всей древнегреческой науки в целом. В вещах и явлениях искали неизменное – идею . Теория химических явлений приводила к идее элемента () как некоего начала природы или к идее атома как неделимой частицы вещества. Согласно атомистической концепции, особенности форм атомов во множестве их сочетаний обуславливают разнообразие качеств тел макромира.

Эмпирический опыт относился в Древней Греции к области искусств и ремесел . Он включал также и практические знания о химических процессах: выплавке металлов из руд, крашении тканей, выделке кожи.

Вероятно, из этих древних ремесел, известных еще в Египте и Вавилоне, возникло «тайное» герметическое искусство Средневековья – алхимия, наиболее распространенное в Европе в IX-XVI веках.

Зародившись в Египте в III-IV веках, это направление практической химии было связано с магией и астрологией. Целью ее было разработать способы и средства превращения менее благородных веществ в более благородные, чтобы достичь реального совершенства, как материального, так и духовного. В ходе поисков универсальных средств таких превращений арабские и европейские алхимики получили много новых и ценных продуктов, а также усовершенствовали лабораторную технику.

1. Период зарождения научной химии (XVII – конец XVIII в.; Парацельс, Бойль, Кавендиш, Шталь, Лавуазье, Ломоносов). Характеризуется тем, что химия выделяется из естествознания в качестве самостоятельной науки. Ее цели определяются развитием промышленности в Новое время. Однако, теории этого периода, как правило, используют либо античные, либо алхимические представления о химических явлениях. Завершился период открытием закона сохранения массы при химических реакциях.

Например, ятрохимия Парацельса (XVI в.) была посвящена приготовлению лекарств и лечению болезней. Парацельс объяснял причины болезней нарушением химических процессов в организме. Как и алхимики, он сводил разнообразие веществ к нескольким элементам – носителям основных свойств материи. Следовательно, восстановление их нормального соотношения приемом лекарств излечивает болезнь.

Теория флогистона Шталя (XVII-XVIII вв.) обобщала множество химических реакций окисления, связанных с горением. Шталь предположил существование во всех веществах элемента «флогистон» – начала горючести.

Тогда реакция горения выглядит так: горючее тело → остаток + флогистон; возможен и обратный процесс: если остаток насытить флогистоном, т.е. смешать, например, с углем, то снова можно получить металл.

2. Период открытия основных законов химии (1800-1860 гг.; Дальтон, Авогадро, Берцелиус). Итогом периода стала атомно-молекулярная теория:

а) все вещества состоят из молекул, которые находятся в непрерывном хаотическом движении;

б) все молекулы состоят из атомов;

3. Современный период (начался в 1860 гг.; Бутлеров, Менделеев, Аррениус, Кекуле, Семенов). Характеризуется выделением разделов химии в качестве самостоятельных наук, а также развитием смежных дисциплин, например, биохимии. В этот период были предложены периодическая система элементов, теории валентности, ароматических соединений, электрохимической диссоциации, стереохимия, электронная теория материи.

Современная химическая картина мира выглядит так:

1. Вещества в газообразном состоянии состоят из молекул. В твердом и жидком состоянии из молекул состоят только вещества с молекулярной кристаллической решеткой (СО 2 , H 2 O). Большинство твердых тел имеет структуру либо атомную, либо ионную и существует в виде макроскопических тел (NaCl, CaO, S).

2. Химический элемент – определенный вид атомов с одинаковым зарядом ядра. Химические свойства элемента определяются строением его атома.

3. Простые вещества образованы из атомов одного элемента (N 2 , Fe). Сложные вещества или химические соединения образованы атомами разных элементов (CuO, H 2 O).

4. Химические явления или реакции – это процессы, в которых одни вещества превращаются в другие по строению и свойствам без изменения состава ядер атомов.

5. Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции (закон сохранения массы).

6. Всякое чистое вещество независимо от способа получения всегда имеет постоянный качественный и количественный состав (закон постоянства состава).

Основная задача химии – получение веществ с заранее заданными свойствами и выявление способов управления свойствами вещества.