» » Физико химические методы аналитической химии. Аналитическая химия. Физико - химические и физические методы анализа

Физико химические методы аналитической химии. Аналитическая химия. Физико - химические и физические методы анализа

Инженеры-экологи должны знать химический состав сырья, продуктов и отходов производства и окружающей среды - воздуха, воды и почвы; важно выявить вредные вещества и определить их концентрацию. Эту задачу решает аналитическая химия - наука об определении химического состава веществ.

Задачи аналитической химии решаются главным образом физико-химическими методами анализа, которые, называют также инструментальными. Они используют измерение какого-либо физического или физико-химического свойства вещества для определения его состава. Он включает также разделы, посвящённые методам разделения и очистки веществ.

Цель данного курса лекций - ознакомление с принципами инструментальных методов анализа, чтобы ориентироваться в их возможностях и на этой основе ставить конкретные задачи специалистам - химикам и понимать смысл полученных результатов анализа.

Литература

    Алесковский В.Б. и др. Физико-химические методы анализа. Л-д, "Химия", 1988 г.

    Ю.С.Ляликов. Физико-химические методы анализа. М.,изд-во "Химия", 1974 г.

    Васильев В.П. Теоретические основы физико-химических методов анализа.М., Высшая школа, 1979 г.

    А.Д.Зимон, Н.Ф.Лещенко. Коллоидная химия. М., "Агар", 2001 г.

    А.И.Мишустин, К.Ф.Белоусова. Коллоидная химия (Методическое пособие). Изд-во МИХМ, 1990 г.

Первые две книги являются учебниками для студентов-химиков и поэтому достаточно сложные для вас. Это делает данные лекции весьма полезными. Однако можно читать отдельные главы.

К сожалению, для данного курса администрация пока не выделила отдельного зачёта, поэтому материал входит в общий экзамен, вместе с курсом физической химии.

2. Классификация методов анализа

Различают качественный и количественный анализ. Первый определяет наличие тех или иных компонентов, второй - их количественное содержание. Методы анализа подразделяются на химические и физико-химические. В данной лекции рассмотрим только химические методы, которые основаны на превращении анализируемого вещества в соединения, обладающие определенными свойствами.

При качественном анализе неорганических соединений исследуемый образец переводят в жидкое состояние растворением в воде или растворе кислоты или щёлочи, что позволяет обнаруживать элементы в форме катионов и анионов. Например, ионы Cu 2+ можно определить по образованию комплексного иона 2+ ярко-синего цвета.

Качественный анализ подразделяют на дробный и систематический. Дробный анализ- обнаружение нескольких ионов в смеси с приблизительно известным составом.

Систематический анализ - это полный анализ по определенной методике последовательного обнаружения индивидуальных ионов. Выделяют отдельные группы ионов со сходными свойствами посредством групповых реагентов, затем группы ионов подразделяют на подгруппы, а те, в свою очередь, - на отдельные ионы, которые и обнаруживают при помощи т.н. аналитических реакций. Это реакции с внешним эффектом - выпадением осадка, выделением газа, изменением цвета раствора.

Свойства аналитических реакций - специфичность, избирательность и чувствительность .

Специфичность позволяет обнаружить данный ион в присутствии других ионов по характерному признаку (цвет, запах и т.п.). Таких реакций сравнительно немного (например, реакция обнаружения иона NH 4 + действием на вещество щелочи при нагревании). Количественно специфичность реакции оценивается величиной предельного отношения, равного отношению концентраций определяемого иона и мешающих ионов. Например, капельная реакция на ион Ni 2+ действием диметилглиоксима в присутствии ионов Co 2+ удается при предельном отношении Ni 2+ к Co 2+ , равном 1:5000.

Избирательность (или селективность) реакции определяется тем, что сходный внешний эффект дают лишь несколько ионов. Bзбирательность тем больше, чем меньше число ионов, дающих сходный эффект.

Чувствительность реакции характеризуется пределом обнаружения или пределом разбавления. Например, предел обнаружения в микрокристаллоскопической реакции на ион Ca 2+ действием серной кислоты равен 0,04 мкг Ca 2+ в капле раствора.

Более сложная задача - анализ органических соединений. Углерод и водород определяют после сжигания пробы, регистрируя выделившийся углекислый газ и воду. Существуют ряд приемов для обнаружения других элементов.

Классификация методов анализа по количеству.

Компоненты подразделяют на основные (1 - 100% по массе), неосновные (0,01 - 1% по массе) и примесные или следовые (менее 0,01% по массе).

    В зависимости от массы и объема анализируемого образца различают макроанализ (0,5 - 1 г или 20 - 50 мл),

    полумикроанализ (0,1 - 0,01 г или 1,0 - 0,1 мл),

    микроанализ (10 -3 - 10 -6 г или 10 -1 - 10 -4 мл),

    ультрамикроанализ (10 -6 - 10 -9 г, или 10 -4 - 10 -6 мл),

    субмикроанализ (10 -9 - 10 -12 г или 10 -7 - 10 -10 мл).

Классификация по природе определяемых частиц:

1.изотопный (физический) - определяются изотопы

2. элементный или атомный - определяется набор химических элементов

3. молекулярный - определяется набор молекул, из которых состоит образец

4. структурно-групповой (промежуточный между атомным и молекулярным) - определяются функциональных группы в молекулах органических соединений.

5. фазовый - анализируются компоненты неоднородных объектов (например минералов).

Другие виды классификации анализа:

Валовой и локальный.

Деструктивный и не деструктивный.

Контактный и дистанционный.

Дискретный и непрерывный.

Важные характеристики аналитической процедуры - экспрессность метода (быстрота проведения анализа), стоимость анализа, возможность его автоматизации.

План лекции:

1. Общая характеристика физико-химических методов

2. Общие сведения о спектроскопических методах анализа.

3. Фотометрический метод анализа: фотоколориметрия, колориметрия, спектрофотометрия.

4. Общие сведения о нефелометрическом, люминесцентном, поляриметрическом методах анализа.

5. Рефрактометрический метод анализа.

6. Общие сведения о масс-спектральном, радиометрическом анализах.

7. Электрохимические методы анализа (потенциометрия, кондуктометрия, кулонометрия, амперометрия, полярография).

8. Хроматографический метод анализа.

Сущность физико-химических методов анализа. Их классификация.

Физико-химические методы анализа, как и химичес­кие методы, основаны на проведении той или иной хими­ческой реакции. В физических методах химические реак­ции отсутствуют или имеют второстепенное значение, хо­тя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физи­ческие методы включают в группу физико-химических методов, так как достаточно строгого однозначного разли­чия между физическими и физико-химическими метода­ми нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

Химические методы анализа были не в состоянии удов­летворить многообразные запросы практики, возросшие в результате научно-технического прогресса, развития полу­проводниковой промышленности, электроники и ЭВМ, ши­рокого применения чистых и сверхчистых веществ в техни­ке.

Применение физико-химических методов анализа на­шло свое отражение в технохимическом контроле пищевых производств, в научно-исследовательских и производственных лабораториях. Эти методы характеризуются высокой чувствительностью и быстрым выполнением анализа. Они основаны на использовании физико-химических свойств веществ.

При выполнении анализов физико-химическими методами точку эквивалентности (конец реакции) определяют не визуально, а при помощи приборов, которые фиксируют изменение физических свойств исследуемого вещества в точке эквивалентности. Для этой цели обычно применяют приборы с относительно сложными оптическими или электрическими схемами, поэтому эти методы получили название методов инструментального анализа.

Во многих случаях для выполнения анализа этими методами не требуется химическая реакция в отличие от химических методов анализа. Надо только измерить показатели каких-либо физических свойств анализируемого вещества: электропроводность, светопоглощение, светопреломление и др. Физико-химические методы позволяют вести в промышленности непрерывный контроль сырья, полуфабрикатов и готовых изделий.

Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.

Точность физико-химических методов сильно колеблет­ся в зависимости от метода. Наиболее высокой точностью (до 0,001%) обладает кулонометрия, основанная на изме­рении количества электричества, которое затрачивается на электрохимическое окисление или восстановление опреде­ляемых ионов или элементов. Большинство физико-хими­ческих методов имеют погрешность в пределах 2-5 %, что превышает погрешность химических методов анализа. Од­нако такое сравнение погрешностей не вполне корректно, так как оно относится к разным концентрационным облас­тям. При небольшом содержании определяемого компонен­та (около 10 -3 % и менее) классические химические методы анализа вообще непригодны; при больших концентрациях физико-химические методы успешно соперничают с хими­ческими. К числу существенных недостатков большинства физико-химических методов относится обязательное нали­чие эталонов и стандартных растворов.

Среди физико-химических методов наибольшее прак­тическое применение имеют:

1. спектральные и другие опти­ческие методы (рефрактометрия, поляриметрия);

2. электрохимические методы анализа;

3. хроматографические методы анализа.

Кроме этого выделяют еще 2 группы физико-химических методов:

1. радиометрические методы, основанные на измерении радиоактивного излучения данного элемента;

2. масс-спектрометрические методы анализа, основанные на определении масс отдельных ионизированных атомов, молекул и радикалов.

Наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов. Эти методы основаны на взаимодействии веществ с электромагнитным излучени­ем. Известно много различных видов электромагнитных излучений: рентгеновское излучение, ультрафио­летовое, видимое, инфракрасное, микроволновое и радио­частотное. В зависимости от типа взаимодействия элект­ромагнитного излучения с веществом оптические методы классифицируются следующим образом.

На измерении эффектов поляризации молекул вещест­ва основаны рефрактометрия, поляриметрия.

Анализируемые вещества могут поглощать электромаг­нитное излучение и на основе использования этого явления выделяют группу абсорбционных оптических методов.

Поглощение света атомами анализируемых веществ используется в атомно-абсорбционном анализе . Способ­ность поглощать свет молекулами и ионами в ультрафио­летовой, видимой и инфракрасной областях спектра поз­волила создать молекулярно-абсорбционный анализ (ко­лориметрию, фотоколориметрию, спектрофотометрию).

Поглощение и рассеяние света взвешенными частица­ми в растворе (суспензии) привело к появлению методов турбидиметрии и нефелометрии .

Методы, основанные на измерении интенсивности из­лучения, возникающего в результате выделения энергии возбужденными молекулами и атомами анализируемого вещества, называются эмиссионными методами . К молекулярно-эмиссионным методам относят люминесценцию (флуоресценцию), к атомно-эмиссионным - эмиссионный спектральный анализ и пламенную фотометрию.

Электрохимические методы анализа основаны на изме­рении электрической проводимости (кондуктометрия ); разности потенциалов (потенциометрия ); количества элект­ричества, прошедшего через раствор (кулонометрия ); за­висимости величины тока от приложенного потенциала (вольт-амперометрия).

В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, рас­пределительной, тонкослойной, адсорбционной, ионооб­менной и других видов хроматографии.

Спектроскопические методы анализа: общие сведения

Понятие о спектроскопическом методе анализа, его разновидности

Спектроскопические методы анализа - физические методы, основанные на взаимодействии электромагнит­ного излучения с веществом. Взаимодействие приводит к различным энергетическим переходам, которые регис­трируют инструментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

Классификация:

Эмиссионный спектральный анализ основан на изуче­нии спектров испускания (излучения) или эмиссионных спектров различных веществ. Разновидностью этого анализа является фотометрия пламени, основанная на измерении интенсивности излучения атомов, возбуж­даемого нагреванием вещества в пламени.

Абсорбционный спектральный анализ основан на изу­чении спектров поглощения анализируемых веществ. Если происходит поглощение излучения атомами, то абсорбция называется атомной, а если молекулами, то - молекулярной. Различают несколько видов аб­сорбционного спектрального анализа:

1. Спектрофотометрия - учитывает поглощение ана­лизируемым веществом света с определенной дли­ной волны, т.е. поглощение монохроматического из­лучения.

2. Фотометрия – основана на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

3. Колориметрия основана на измерении поглоще­ния света окрашенными растворами в видимой час­ти спектра.

4. Нефелометрия основана на измерении интенсив­ности света, рассеянного твердыми частицами, взве­шенными в растворе, т.е. света, рассеянного суспен­зией.

Люминесцентная спектроскопия использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей.

В зависимости от того, в какой части спектра про­исходит поглощение или излучение, различают спект­роскопию в ультрафиолетовой, видимой и инфракрас­ной областях спектра.

Спектроскопия - чувствительный метод определения более 60 элементов. Его применяют для анализа много­численных материалов, включая биологические среды, вещества растительного происхождения, цементы, стек­ла и природные воды.

Фотометрические методы анализа

Фотометрические методы анализа основаны на избира­тельном поглощении света анализируемым веществом или его соединением с подходящим реагентом. Интенсив­ность поглощения можно измерять любым способом, неза­висимо от характера окрашенного соединения. Точность метода зависит от способа измерения. Различают колори­метрический, фотоколориметрический и спектрофотометрический методы.

Фотоколориметрический метод анализа.

Фотоколориметрический метод анализа позволяет количест­венно определить интенсивность поглощения света анали­зируемым раствором с помощью фотоэлектроколориметров (иногда их называют просто фотоколориметрами). Для этого готовят серию стандартных растворов и вычер­чивают зависимость светопоглощения определяемого ве­щества от его концентрации. Эта зависимость называется градуировочным графиком. В фотоколориметрах свето­вые потоки, проходящие через раствор, имеют широкую область поглощения - 30-50 нм, поэтому свет здесь явля­ется полихроматическим. Это приводит к потере воспро­изводимости, точности и избирательности анализа. Достоинства фотоколориметра заключается в простоте конструкции и высокой чувствительности благодаря большой светосиле источника излучения – лампы накаливания.

Колориметрический метод анализа.

Колориметрический метод анализа основан на измерении поглощения света веществом. При этом сравнивают интенсивность окраски, т.е. оптическую плотность, исследуемого раствора с окраской (оптической плотностью) стандартного раствора, концентрация которого известна. Метод весьма чувствителен и применяется для определения микро- и полумикроколичеств.

Для проведения анализа колориметрическим методом требуется значительно меньше времени, чем химическим путем.

При визуальном анализе добиваются равенства интенсивности окрашивания анализируемого и окрашиваемого раствора. Этого можно достигнуть 2 путями:

1. уравнивают окраску, изменяя толщину слоя;

2. подбирают стандартные растворы разных концентраций (метод стандартных серий).

Однако визуально невозможно установить количествен­но, во сколько раз один раствор окрашен интенсивнее дру­гого. В этом случае можно установить только одинаковую окраску анализируемого раствора при сравнении его со стандартным.

Основной закон поглощения света.

Если световой поток, интенсивность которого I 0 , направить на раствор, находящийся в плоском стеклянном сосуде (кювете), то одна часть его интенсивностью I r , отражается от поверхности кюветы, другая часть интенсивностью I а поглощается раствором и третья часть интенсивностью I t проходит через раствор. Между этими величинами имеется зависимость:

I 0 = I r + I а + I t (1)

Т.к. интенсивность I r отраженной части светового потока при работе с одинаковыми кюветами постоянна и незначительна, то в расчетах ею можно пренебречь. Тогда равенство (1) принимает вид:

I 0 = I а + I t (2)

Это равенство характеризует оптические свойства раствора, т.е. его способность поглощать ил пропускать свет.

Интенсивность поглощенного света зависит от числа окрашенных частиц в растворе, которые поглощают свет больше, чем растворитель.

Световой поток, проходя через раствор, теряет часть интенсивности – тем большую, чем больше концентрация и толщина слоя раствора. Для окрашенных растворов существует зависимость, называемая законом Бугера – Ламберта – Бера (между степенью поглощения света, интенсивностью падающего света, концентрацией окрашенного вещества и толщиной слоя).

По этому закону, поглощение монохроматографического света, прошедшего через слой окрашенной жидкости, пропорционально концентрации и толщине слоя его:

I = I 0 ·10 - kCh ,

где I – интенсивность светового потока, прошедшего через раствор; I 0 – интенсивность падающего света; С – концентрация, моль/л ; h – толщина слоя, см ; k – мольный коэффициент поглощения.

Мольный коэффициент поглощения k – оптическая плотность раствора, содержащего 1 моль/л поглощающего вещества, при толщине слоя 1 см. Он зависит от химической природы и физического состояния поглощающего свет вещества и от длины волны монохроматического света.

Метод стандартных серий.

Метод стандартных серий основан на получении одинаковой интенсивности окраски исследуемого и стандартного растворов при одинаковой толщине слоя. Окраску исследуемого раствора сравнивают с окраской ряда стандартных растворов. При одинаковой интенсивности окраски концентрации исследуемого и стандартного растворов равны.

Для приготовления серии стандартных растворов берут 11 пробирок одинаковой формы, размера и из одинакового стекла. Наливают из бюретки стандартный раствор в постепенно возрастающем количестве, например: в 1 пробирку 0,5 мл , во 2ую 1 мл , в 3ю 1,5 мл , и т.д. – до 5 мл (в каждую следующую пробирку на 0,5 мл больше, чем в предыдущую). Во все пробирки наливают равные объемы раствора, который дает с определяемым ионом цветную реакцию. Растворы разбавляют так, чтобы уровни жидкости во всех пробирках были одинаковы. Пробирки закрывают пробками, тщательно перемешивают содержимое и размещают в штативе по возрастающим концентрациям. Таким образом получают цветную шкалу.

К исследуемому раствору в одинаковой пробирке прибавляют столько же реактива, разбавляют водой до того же объема, как и в других пробирках. Закрывают пробкой, тщательно перемешивают содержимое. Окраску исследуемого раствора сравнивают с окраской стандартных растворов на белом фоне. Растворы должны быть хорошо освещены рассеянным светом. Если интенсивность окраски исследуемого раствора совпадает с интенсивностью окраски одного из растворов цветной шкалы, то концентрации этого и исследуемого растворов равны. Если же интенсивность окраски исследуемого раствора промежуточная между интенсивностью двух соседних растворов шкалы, то его концентрация равна средней концентрации этих растворов.

Применение метода стандартных растворов целесообразно только при массовом определении какого-нибудь вещества. Заготовленная серия стандартных растворов служит относительно короткое время.

Метод уравнивания интенсивности окраски растворов.

Метод уравнивания интенсивности окраски исследуемого и стандартного растворов производится путем изменения высоты слоя одного из растворов. Для этого в 2 одинаковых сосуда помещают окрашенные растворы: исследуемый и стандартный. Изменяют высоту слоя раствора в одном из сосудов до тех пор, пока интенсивность окраски в обоих растворах не станет одинаковой. В этом случае определяют концентрацию исследуемого раствора С иссл. , сравнивая ее с концентрацией стандартного раствора:

С иссл. = С ст ·h ст / h иссл,

где h ст и h иссл – высота слоя соответственно стандартного и исследуемого раствора.

Приборы, служащие для определения концентраций исследуемых растворов методом уравнивания интенсивности окраски, называются колориметрами.

Различают визуальные и фотоэлектрические колориметры. При визуальных колориметрических определениях интенсивность окраски измеряют непосредственным наблюдением. Фотоэлектрические методы основаны на использовании фотоэлементов-фотоколориметров. В зависимости от интенсивности падающего пучка света в фотоэлементе возникает электрический ток. Сила тока, вызванная воздействием света, измеряется гальванометром. Отклонение стрелки показывает интенсивность окраски.

Спектрофотометрия.

Фотометрический метод основан на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

Если в фотометрическом методе анализа использовать монохроматическое излучение (излучение одной длины волны), то такой способ называют спектрофотометрией . Степень монохроматичности потока электромагнитного излучения определяют минимальным интервалом длин волн, который выделяется используемым монохроматором (светофильтром, дифракционной решеткой или призмой) из сплошного потока электромагнитного излучения.

К спектрофотометрии относят также область изме­рительной техники, объединяющую спектрометрию, фотометрию и метрологию и занимающуюся разработкой системы методов и приборов для количественных изме­рений спектральных коэффициентов поглощения, отраже­ния, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей.

Стадии спектрофотометрического исследования:

1) проведение химической реакции для получения систем, удобных для проведения спектрофотометричес­кого анализа;

2) измерения поглощения полученных растворов.

Сущность метода спектрофотометрии

Зависимость поглощения раствора вещества от дли­ны волны на графике изображается в виде спектра погло­щения вещества, на котором легко выделить максимум поглощения находящийся при длине волны света, максимально поглощаемой веществом. Измерение опти­ческой плотности растворов веществ на спектрофотомет­рах проводят при длине волны максимума поглощения. Это позволяет анализировать в одном растворе веще­ства, максимумы поглощения которых расположены при разных длинах волн.

В спектрофотометрии в ультрафиолетовой и видимой областях используют электронные спектры поглощения.

Они характеризуют наиболее высокие энергетические пере­ходы, к которым способен ограниченный круг соединений и функциональных групп. В неорганических соединениях электронные спектры связаны с высокой поляризацией ато­мов, входящих в молекулу вещества, и обычно появляются у комплексных соединений. У органических соединений возникновение электронных спектров вызывается перехо­дом электронов с основного на возбужденные уровни.

На положение и интенсивность полос поглощения силь­но влияет ионизация. При ионизации по кислотному типу в молекуле появляется дополнительная неподеленная пара электронов, что приводит к дополнительному батох-ромному сдвигу (сдвигу в длинноволновую область спект­ра) и повышению интенсивности полосы поглощения.

В спектре многих веществ имеется несколько полос поглощения.

Для спектрофотометрических измерений в ультрафи­олетовой и видимой областях применяется два типа при­боров - нерегистрирующие (результат наблюдают на шкале прибора визуально) и регистрирующие спектро­фотометры.

Люминесцентный метод анализа.

Люминесценция - способность к самостоятельному свечению, возникающему под различными воздействиями.

Классификация процессов, вызывающих люми­несценцию:

1)фотолюминесценция (возбуждение видимым или ультрафиолетовым светом);

2)хемилюминесценция (возбуждение за счет энергии химических реакций);

3)катодолюминесценция (возбуждение электронным ударом);

4)термолюминесценция (возбуждение нагреванием);

5)триболюминесценция (возбуждение механическим воздействием).

В химическом анализе имеют значение первые два вида люминесценции.

Классификация люминесценции по наличию пос­лесвечения . Оно может прекращаться сразу при исчез­новении возбуждения - флюоресценция или продол­жаться определенное время после прекращения возбуж­дающего воздействия - фосфоресценция . В основном используют явление флюоресценции, поэтому метод на­зван флюориметрией .

Применение флюориметрии : анализ следов метал­лов, органических (ароматических) соединений, витами­нов D, В 6 . Флюоресцентные индикаторы применяют при титровании в мутных или темно-окрашенных средах (титрование ведут в темноте, освещая титруемый ра­створ, куда добавлен индикатор, светом люминесцент­ной лампы).

Нефелометрический анализ.

Нефелометрия предложена Ф. Кобером в 1912 г. и основана на измерении интенсивности света, рассеянно­го суспензией частиц, с помощью фо­тоэлементов.

С помощью нефелометрии измеряют концентрацию веществ, нерастворимых в воде, но образующих стойкие суспензии.

Для проведения нефелометрических измерений при­меняются нефелометры , аналогичные по принципу коло­риметрам, с той лишь разницей, что при нефелометрии

При проведении фотонефелометрическогоанализа сначала по результатам определения серии стандартных растворов строят калибровочный график, затем проводят анализ исследуемого раствора и по графику определяют концентрацию анализируемого вещества. Для стабилиза­ции получаемых суспензий добавляют защитный колло­ид - раствор крахмала, желатина и др.

Поляриметрический анализ.

Электромагнитные колебания естественного света происходят во всех плоскостях, перпендикулярных к направлению луча. Кристаллическая решетка обладает способностью пропускать лучи только определенного направления. По выходе из кристалла колебания луча совершаются только в одной плоскости. Луч, колебания которого находятся в одной плоскости, называется поляризованным . Плоскость, в которой происходят колебания, называется плоскостью колебания поляризованного луча, а плоскость, перпендикулярная к ней, - плоскость поляризации .

Поляриметрический метод анализа основан на изучении поляризованного света.

Рефрактометрический метод анализа.

В основе рефрактометрического метода анализа лежит определение показателя преломления исследуемого вещества, т.к. индивидуальное вещество характеризуется определенным показателем преломления.

Технические продукты всегда содержат примеси, которые влияют на величину показателя преломления. Поэтому показатель преломления может в ряде случаев служить характеристикой чистоты продукта. Например, сорта очищенного скипидара различают по показателям преломления. Так, показатели преломления скипидара при 20° для желтого цвета, обозначенные через n 20 D (запись означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк), равны:

Первый сорт Второй сорт Третий сорт

1,469 – 1,472 1,472 – 1,476 1,476 – 1,480

Рефрактометрический метод анализа можно применять для двойных систем, например для определения концентрации вещества на водном или органическом растворах. В этом случае анализ основан на зависимости показателя преломления раствора от концентрации растворенного вещества.

Для некоторых растворов имеются таблицы зависимости показателей преломления от их концентрации. В других случаях анализируют методом калибровочной кривой: готовят серию растворов известных концентраций, измеряют их показатели преломления и строят график зависимости показателей преломления от концентрации, т.е. строят калибровочную кривую. По ней определяют концентрацию исследуемого раствора.

Показатель преломления.

При переходе луча света из одной среды в другую его направление меняется. Он преломляется. Показатель преломления равен отношению синуса угла падения к синусу угла преломления (эта величина постоянная и характерная для данной среды):

n = sin α / sin β,

где α и β – углы между направлением лучей и перпендикуляром к поверхности раздела обеих сред (рис. 1)


Показатель преломления – отношение скоростей света в воздухе и в исследуемой среде (если луч света падает из воздуха).

Показатель преломления зависит от:

1. длины волны падающего света (с увеличением длины волны показатель

преломления уменьшается);

2. температуры (с увеличением температуры показатель преломления уменьшается);

3. давления (для газов).

При обозначении показателя преломления указывают длины волны падающего света и температуру измерения. Например, запись n 20 D означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк. В технических справочниках показатели преломления приведены при n 20 D .

Определение показателя преломления жидкости.

Перед началом работы поверхность призм рефрактометра промывают дистиллированной водой и спиртом, проверяют правильность установления нулевой точки прибора и приступают к определению показателя преломления исследуемой жидкости. Для этого поверхность измерительной призмы осторожно протирают ваткой, смоченной исследуемой жидкостью, и наносят на эту поверхность несколько ее капель. Призмы закрывают и, вращая их, наводят границу светотени на крест нитей окуляра. Компенсатором устраняют спектр. При отсчете показателя преломления три десятичных знака берут по шкале рефрактометра, а четвертый – на глаз. Затем сдвигают границу светотени, снова совмещают ее с центром визирного креста и делают повторный отсчет. Т.о. производят 3 или 5 отсчетов, после чего промывают и вытирают рабочие поверхности призм. Исследуемое вещество снова наносят на поверхность измерительной призмы и проводят вторую серию измерений. Из полученных данных берут среднее арифметическое значение.

Радиометрический анализ.

Радиометрический анализ основан на измерении излучений радиоактивных элементов и применяется для количественного определения радиоактивных изотопов в исследуемом материале. При этом измеряют либо ес­тественную радиоактивность определяемого элемента, либо искусственную радиоактивность, получаемую с по­мощью радиоактивных изотопов.

Радиоактивные изотопы идентифицируют по перио­ду их полураспада или по виду и энергии испускаемого излучения. В практике количественного анализа чаще всего измеряют активность радиоактивных изотопов по их α-, β- и γ-излучению.

Применение радиометрического анализа:

Изучение механизма химических реакций.

Методом меченых атомов исследуют эффективность различных приемов внесения удобрений в почву, пути проникновения в организм микроэлементов, нанесен­ных на листья растения, и т.п. Особенно широко ис­пользуют в агрохимических исследованиях радиоактив­ные фосфор 32 Р и азот 13 N.

Анализ радиоактивных изотопов, используемых для лечения онкологических заболеваний и для определе­ния гормонов, ферментов.

Масс-спектральный анализ.

Основан на определении масс отдельных ионизированных атомов, молекул и радикалов в результате комбинированного действия электрического и магнитных полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах – масс-спектрометрах или масс-спектрографах.

Электрохимические методы анализа.

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, про­текающих на поверхности электрода или в приэлектродном пространстве. Аналитический сигнал - электричес­кий параметр (потенциал, сила тока, сопротивление), ко­торый зависит от концентрации определяемого вещества.

Различают прямые и косвенныеэлектрохимические методы . В прямых методах используют зависимость силы тока от концентрации определяемого компонента. В косвенных - силу тока (потенциал) измеряют для на­хождения конечной точки титрования (точки эквивалент­ности) определяемого компонента титрантом.

К электрохимическим методам анализа относят:

1. потенциометрию;

2. кондуктометрию;

3. кулонометрию;

4. амперометрию;

5. полярографию.

Электроды, используемые в электрохимических методах.

1.Электрод сравнения и индикаторный электрод.

Электрод сравнения - это электрод с постоянным потенциалом, нечувствительный к ионам раствора. Элек­трод сравнения имеет устойчивый во времени воспроиз­водимый потенциал, не меняющийся при прохождении небольшого тока, и относительно его ведут отчет потен­циала индикаторного электрода. Используют хлорсеребряный и каломельный электроды. Хлорсеребряный элек­трод - серебряная проволока, покрытая слоем AgCI и помещенная в раствор KCI. Потенциал электрода опре­деляется концентрацией иона хлора в растворе:

Каломельный электрод состоит из металлической рту­ти, каломели и раствора KCI. Потенциал электрода зави­сит от концентрации хлорид-ионов и температуры.

Индикаторный электрод - это реагирующий на кон­центрацию определяемых ионов электрод. Индикаторный электрод изменяет свой потенциал с изменением концен­трации «потенциалопределяющих ионов». Индикаторные электроды делят на необратимые и обратимые . Скачки потенциала обратимых индикаторных электродов на меж­фазных границах зависят от активности участников элек­тродных реакций в соответствии с термодинамическими уравнениями; равновесие устанавливается достаточно быстро. Необратимые индикаторные электроды не удов­летворяют требованиям обратимых. В аналитической химии применяются обратимые электроды, для которых выполняется уравнение Нернста.

2. Металлические электроды: электронообменные и ионообменные.

Уэлектронообменного электрода на межфазной гра­нице протекает реакция с участием электронов. Электро­нообменные электроды делят на электроды первого рода и электроды второго рода . Электроды первого рода - металлическая пластина (серебро, ртуть, кадмий), погру­женная в раствор хорошо растворимой соли этого метал­ла. Электроды второго рода - металл, покрытый слоем малорастворимого соединения этого металла и погружен­ный в раствор хорошо растворимого соединения с тем же анионом (хлорсеребряный, каломельный электроды).

Ионообменные электроды - электроды, потенциал которых зависит от отношения концентраций окисленной и восстановленной форм одного или нескольких веществ в растворе. Такие электроды делаются из инертных ме­таллов, например из платины или золота.

3. Мембранные электроды представляют собой пори­стую пластинку, пропитанную жидкостью, не смешиваю­щейся с водой и способной к избирательной адсорбции определенных ионов (например, растворы хелатов Ni 2+ , Cd 2+ , Fe 2+ в органическом растворе). Работа мембранных электродов основана на возникновении разности потен­циалов на границе раздела фаз и установлении равновесия обмена между мембраной и раствором.

Потенциометрический метод анализа.

Потенциометрический метод анализа основан на измерении потенциала электрода, погруженного в раствор. При потенциометрических измерениях составляют галь­ванический элемент с индикаторным электродом и элек­тродом сравнения и измеряют электродвижущую силу (ЭДС).

Разновидности потенциометрии:

Прямая потенциометрия применяется для непосред­ственного определения концентрации по значению потен­циала индикаторного электрода при условии обратимос­ти электродного процесса.

Косвенная потенциометрия основана на том, что изменение концентрации иона сопровождается изменени­ем потенциала на электроде, погруженном в титруемый раствор.

В потенциометрическом титровании обнаруживают конечную точку по скачку потенциала, обусловленную заменой электрохимической реакции на другую в соответ­ствии со значениями Е° (стандартный электродный потенциал).

Значение по­тенциала зависит от концентрации соответствующих ионов в рас­творе. Например, потенциал серебряного электрода, погруженного в раствор соли серебра, изменяется с изменением концентрации Ag + -ионов в растворе. Поэтому, измерив потенциал электрода, погруженного в раствор данной соли неизвестной концентрации, можно определить содержание соответствующих ионов в растворе.

Электрод, по потенциалу которого судят о концентрации опре­деляемых ионов в растворе, называют индикаторным электродом.

Потенциал индикаторного электрода определяют, сравнивая его с потенциалом другого электрода, который принято называть электродом сравнения. В качестве электрода сравнения может быть применен только такой электрод, потенциал которого остает­ся неизменной при изменении концентрации определяемых ионов. В качестве электрода сравнения применяют стандартный (нор­мальный) водородный электрод.

На практике часто в качестве электрода сравнения с извест­ным значением электродного потенциала пользуются не водород­ным, а каломельным электродом (рис. 1). Потенциал каломель­ного электрода с насыщенным раствором КО при 20 °С равен 0,2490 В.

Кондуктометрический метод анализа.

Кондуктометрический ме­тод анализа основан на измерении электропроводности растворов, изменяющейся в результате химических реакций.

Электропроводность раствора зависит от природы электролита, его температуры и концентрации растворенного вещества. Элек­тропроводность разбавленных растворов обусловлена движением катионов и анионов, отличающихся различной подвижностью.

С повышением температуры электропроводность увеличивает­ся, так как увеличивается подвижность ионов. При данной темпе­ратуре электропроводность раствора электролита зависит от его концентрации: как правило, чем выше концентрация, тем больше электропроводность! Следовательно, электропроводность данного раствора служит показателем концентрации растворенного ве­щества и обусловливается подвижностью ионов.

В простейшем случае кондуктометрического количественного определения, когда в растворе содержится только один электро­лит, строят график зависимости электропроводности раствора ана­лизируемого вещества от его концентрации. Определив электро­проводность исследуемого раствора, по графику находят концент­рацию анализируемого вещества.

Так, электропроводность баритовой воды изменяется прямо пропорционально содержанию в растворе Ва(ОН) 2 . Эта зависи­мость графически выражается прямой линией. Чтобы определить содержание Ва(ОН) 2 в баритовой воде неизвестной концентрации, надо определить ее электропроводность и по калибровочному гра­фику найти концентрацию Ва(ОН)2, соответствующую этому зна­чению электропроводности. Если через раствор Ва(ОН) 2 , электро­проводность которого известна, пропустить измеренный объем га­за, содержащего диоксид углерода, то С0 2 реагирует с Ва(ОН) 2:

Ва(ОН) 2 + С0 2 ВаС0 3 + Н 2 0

В результате этой реакции содержание Ва(ОН) 2 в растворе уменьшится и электропроводность баритовой воды понизится. Из­мерив электропроводность баритовой воды после поглощения ею С0 2 , можно определить, насколько понизилась концентрация Ва(ОН) 2 в растворе. По разности концентраций Ва(ОН) 2 в бари­товой воде легко рассчитать количество поглощенной

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Издательство ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" М.И. ЛЕБЕДЕВА АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Тамбов Издательство ТГТУ 2005 УДК 543(075) ББК Г4я73-4 Л33 Рецензенты: Доктор химических наук, профессор А.Б. Килимник Кандидат химических наук, доцент кафедры неорганической и физической химии ТГУ им. Г.Р. Державина А.И. Рягузов Лебедева, М.И. Л33 Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. Там- бов: Изд-во Тамб. гос. техн. ун-та, 2005. 216 с. Рассмотрены основные вопросы курса «Аналитическая химия и физико-химические методы ана- лиза». После изложения теоретического материала в каждой главе даны содержательные блоки по про- верке знаний с помощью тестовых заданий и приведен рейтинг оценки знаний. В третьем разделе каж- дой главы приведены решения наиболее сложных задач и их оценка в баллах. Предназначены для студентов нехимических специальностей (200401, 200402, 240202, 240802, 240902) и составлены в соответствии со стандартами и учебными программами. УДК 543(075) ББК Г4я73-4 ISBN 5-8265-0372-6 © Лебедева М.И., 2005 © Тамбовский государственный технический университет (ТГТУ), 2005 Учебное издание ЛЕБЕДЕВА Мария Ивановна АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Редактор В.Н. Митрофанова Компьютерное макетирование Д.А. Лопуховой Подписано в печать 21.05.2005 Формат 60 × 84 / 16. Бумага офсетная. Печать офсетная Гарнитура Times New Roman. Объем: 12,55 усл. печ. л.; 12,50 уч.-изд. л. Тираж 200 экз. С. 571М Издательско-полиграфический центр Тамбовского государственного технического университета, 392000, Тамбов, Советская, 106, к. 14 ПРЕДИСЛОВИЕ Без анализа нет синтеза Ф. Энгельс Аналитическая химия – наука о способах идентификации химических соединений, о принципах и методах определения химического состава веществ и их структуры. Особую актуальность аналитическая химия приобрела в настоящее время, поскольку основным фактором неблагоприятного антропогенного воздействия на природу являются химические загрязнения. Определение их концентрации в различных природных объектах становится важнейшей задачей. Зна- ния основ аналитической химии одинаково необходимо современному студенту, инженеру, преподава- телю, предпринимателю. Ограниченное количество учебников и учебных пособий по курсу «Аналитическая химия и физико- химические методы анализа» для студентов химического профиля и полное их отсутствие для специ- альностей «Стандартизация и сертификация», «Пищевая биотехнология», «Инженерная защита окру- жающей среды», а также мой многолетний опыт преподавания этой дисциплины в ТГТУ привели к не- обходимости составления и издания предлагаемого курса лекций. Предлагаемое издание состоит из одиннадцати глав, в каждой из которых выделены наиболее важ- ные теоретические вопросы, отражающие последовательность изложения материала в лекционном кур- се. I – V главы посвящены химическим (классическим) методам анализа, в VIII – X рассмотрены основ- ные физико-химические методы анализа, а XI глава посвящена органическим аналитическим реагентам. Изучение каждого раздела рекомендуется завершать решением соответствующего содержательного блока, расположенного в конце главы. Блоки заданий сформулированы в трех специальных формах. Теоретические задания с выбором ответов (тип А). К каждому теоретическому вопроса такого типа предлагаются по четыре привлекательных варианта ответов, только один из которых является верным. За любое правильно решенное задание типа А студент получает один балл. Задачи с выбором ответов (тип B)1 оцениваются в два балла. Они несложные и решаются практиче- ски в одно или несколько действий. Верный ответ выбирается из четырех предлагаемых вариантов. Задания с развернутым ответом (тип С)2 предлагают студенту записать ответ в развернутой форме и в зависимости от полноты решения и его правильности могут оцениваться от одного до пяти баллов. Максимальное количество баллов дается за полностью решенное задание и указывается в последней строке рейтинговой таблицы. Суммарное количество баллов, набранные по той или иной теме, являются показателем знаний сту- дента, уровень которых можно оценить в предлагаемой рейтинговой системе. Набранное количество баллов Оценка 32 – 40 Отлично 25 – 31 Хорошо 16 – 24 Удовлетворительно Меньше 16 Неудовлетворительно Автор выражает благодарность студентам Авсеевой А., Бусиной М., Зобниной Е., Кацуба Л., Поля- ковой Н., Тишкиной Э. (гр. ПБ-21), Поповой С. (гр. З-31), принимавшим активное участие в оформлении работы. 1 В некоторых главах могут отсутствовать 2 В некоторых главах могут отсутствовать «Аналитическая химия чутко реагирует на за- просы производства и черпает для себя в этом силу и импульсы для дальнейшего рос- та.» Н.С. Курнаков 1 АНАЛИТИЧЕСКАЯ ХИМИЯ КАК НАУКА. ОСНОВНЫЕ ПОНЯТИЯ В решении крупнейших общечеловеческих проблем (проблема сырья, продовольствия, атомной энергетики, космонавтики, полупроводниковой и лазерной техники) ведущее место принадлежит ана- литической химии. Основой экологического мониторинга является совокупность различных химических наук, каждая из которых нуждается в результатах химического анализа, поскольку химическое загрязнение – основ- ной фактор неблагоприятного антропогенного воздействия на природу. Целью аналитической химии становится определение концентрации загрязняющих веществ в различных природных объектах. Ими являются природные и сточные воды различного состава, донные отложения, атмосферные осадки, воз- дух, почвы, биологические объекты и т.д. Широкое внедрение высокоэффективных мер контроля над состоянием окружающей природной среды, не ликвидируя болезнь в корне, очень важно для диагностики. Эффект в этом случае может быть получен намного быстрее и с наименьшими затратами. Система контроля дает возможность вовремя обнаружить вредные примеси и локализовать источ- ник загрязнения. Вот почему роль аналитической химии в охране окружающей среды приобретает все большее значение. Аналитическая химия – это наука о способах идентификации химических соединений, о принци- пах и методах определения химического состава веществ и их структуры. Она является научной осно- вой химического анализа. Химический анализ – это получение опытным путем данных о составе и свойствах объектов. Впервые это понятие научно обосновал Р. Бойль в книге «Химик-скептик» (1661 г.) и ввел термин «ана- лиз». Аналитическая химия базируется на знаниях, полученных при изучении курсов неорганической, ор- ганической, физической химии, физики и математики. Цель изучения аналитической химии – освоение современных методов анализа веществ и их при- менение для решения народно-хозяйственных задач. Тщательный и постоянный контроль производства и объектов окружающей среды основан на достижениях аналитической химии. В. Оствальд писал: «Аналитическая химия, или искусство распознавать вещества или их составные части, занимает среди приложений научной химии особое место, так как вопросы, на которые она дает возможность ответить, возникают всегда при попытке воспроизвести химические процессы для науч- ных или технических целей. Благодаря такому своему значению аналитическая химия с давних пор встречает постоянную заботу о себе…». 1.1 Краткая история развития аналитической химии История развития аналитической химии неотделима от истории развития химии и химической про- мышленности. Отдельные приемы и методы химического анализа были известны с глубокой древности (распознавание веществ по цвету, запаху, вкусу, твердости). В IX – X вв. на Руси пользовались так на- зываемым «пробирным анализом» (определение чистоты золота, серебра и руд). Так, сохранились запи- си Петра I о выполнении им «пробирного анализа» руд. При этом качественный анализ (определение качественного состава) всегда предшествовал количественному анализу (определение количественно- го соотношения компонентов). Основоположником качественного анализа считают английского ученого Роберта Бойля, кото- рый впервые описал методы обнаружения SO 2 − – и Cl − – ионов с помощью Ba 2 + – и Ag + – ионов, а также 4 применил органические красители в качестве индикаторов (лакмус). Однако аналитическая химия нача- ла формироваться в науку после открытия М.В. Ломоносовым закона сохранения веса веществ при хи- мических реакциях и применения весов в химической практике. Таким образом, М.В. Ломоносов – ос- новоположник количественного анализа. Современник Ломоносова академик Т.Е. Ловиц установил взаимосвязь между формой кристаллов и их химическим составом: «микрокристаллоскопический анализ». Первые классические работы по хи- мическому анализу принадлежат академику В.М. Севергину, опубликовавшему «Руководство по испы- танию минеральных вод». В 1844 г. профессор Казанского университета К.К. Клаус, анализируя «сы- рую платину», обнаружил новый элемент – рутений. Переломным этапом в развитии аналитической химии, в становлении ее как науки было открытие периодического закона Д.И. Менделеевым (1869 г.). Труды Д.И. Менделеева составили теоретический фундамент методов аналитической химии и определили основное направление ее развития. В 1871 г. вышло первое руководство по качественному и количественному анализу Н.А. Меншут- кина «Аналитическая химия». Аналитическая химия создавалась трудами ученых многих стран. Неоце- нимый вклад в развитие аналитической химии внесли русские ученые: А.П. Виноградов, Н.А. Тананаев, И.П. Алимарин, Ю.А. Золотов, А.П. Крешков, Л.А. Чугаев, М.С. Цвет, Е.А. Божевольнов, В.И. Кузне- цов, С.Б. Саввин и др. Развитие аналитической химии в первые годы Советской власти проходило в трех основных на- правлениях: – помощь предприятиям в выполнении анализов; – разработка новых методов анализа природных и промышленных объектов; – получение химических реактивов и препаратов. В годы ВОВ аналитическая химия выполняла оборонные задания. Длительное время в аналитической химии господствовали так называемые «классические» методы анализа. Анализ рассматривался как «искусство» и резко зависел от «рук» экспериментатора. Техниче- ский прогресс требовал более быстрых, простых методов анализа. В настоящее время большинство мас- совых химических анализов выполняется с помощью полуавтоматических и автоматических приборов. При этом цена оборудования окупается его высокой эффективностью. В настоящее время необходимо применять мощные, информативные и чувствительные методы ана- лиза, чтобы контролировать концентрации загрязнителей, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что традицион- ным способом ее не удается определить, но сделать это все равно нужно. Действительно, охрана окру- жающей среды – вызов аналитической химии. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. 1.2 ТЕХНИЧЕСКИЙ АНАЛИЗ На всех стадиях любого производства осуществляется технический контроль – т.е. проводятся ра- боты по контролю качества продукции в ходе технологического процесса с целью предотвращения брака и обеспечения выпуска продукции, соответствующей ТУ и ГОСТам. Технический анализ делится на общий – анализ веществ, встречающийся на всех предприятиях (Н2О, топливо, смазочные материалы) и специальный – анализ веществ, встречающихся только на данном предприятии (сырье, полупродукты, отходы производства, конечный продукт). С этой целью ежедневно тысячи химиков-аналитиков выполняют миллионы анализов, согласно со- ответствующим Международным ГОСТам. Методика анализа – подробное описание выполнения аналитических реакций с указанием условий их выполнения. Ее задачей является овладение навыками эксперимента и сущностью аналитических ре- акций. Методы аналитической химии основаны на различных принципах. 1.3 КЛАССИФИКАЦИЯ МЕТОДОВ АНАЛИЗА 1 По объектам анализа: неорганический и органический. 2 По цели: качественный и количественный. Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом объекте. Методы качественного и количественного анализа, позволяющие определить в анализируемом ве- ществе содержание отдельных элементов, называют элементным анализом; функциональных групп – функциональным анализом; индивидуальных химических соединений, характеризующихся опреде- ленной молекулярной массой, – молекулярным анализом. Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом. 3 По способу выполнения: химические, физические и физико-химические (инструментальные) методы. 4 По массе пробы: макро– (>> 0,10г), полумикро– (0,10 – 0,01г), микро– (0.01 – 10 −6 г), ультрамик- роанализ (< 10 −6 г). 1.4 АНАЛИТИЧЕСКИЕ РЕАКЦИИ 1.4.1 Способы выполнения аналитических реакций В основе аналитических методов – получение и измерение аналитического сигнала, т.е. любое проявление химических и физических свойств вещества в результате протекания химической реакции. Аналитические реакции можно проводить «сухим» и «мокрым» путем. Примеры реакций, проводимых «сухим» путем: реакции окрашивания пламени (Na + – желтый; Sr 2+ – красный; Ba 2+ – зеленый; K + – фиолетовый; Tl 3+ – зеленый, In + – синий и др.); при сплавлении Na 2 B 4 O 7 и Co 2+ , Na 2 B 4 O 7 и Ni 2+ , Na 2 B 4 O 7 и Cr 3+ образуются «перлы» буры различной окраски. Чаще всего аналитические реакции проводят в растворах. Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газо- образном). Объект для анализа называется образцом, или пробой. Один и тот же элемент в образце мо- жет находиться в различных химических формах. Например: S 0 , S 2− , SO 2 − , SO 3 - и т.д. В зависимости от 4 2 цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах). Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные усло- вия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения. 1.4.2 Классификация аналитических реакций 1 Групповые реакции: один и тот же реактив реагирует с группой ионов, давая одинаковый сиг- нал. Так, для отделения группы ионов (Ag + , Pb 2+ , Hg 2+) используют реакцию их с Cl − – ионами, при этом 2 образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2). 2 Избирательные (селективные) реакции. Пример: йодокрахмальная реакция. Впервые ее описал в 1815 г. немецкий химик Ф. Штромейер. Для этих целей используют органические реагенты. Пример: диметилглиоксим + Ni 2+ → образование ало − красного осадка диметилглиоксимата никеля. Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать из- бирательными. Пример: если реакции Ag + , Pb 2 + , Hg 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он 2 хорошо растворим в горячей воде. 3 Реакции комплексообразования используются для целей маскирования мешающих ионов. Пример: для обнаружения Со 2+ в присутствии Fe 3+ – ионов с помощью KSCN , реакцию проводят в присутствии F − – ионов. При этом Fe 3+ + 4F − → − , K н = 10 −16 , поэтому Fe 3+ – ионы закомплексованы и не мешают определению Co 2+ – ионов. 1.4.3 Реакции, используемые в аналитической химии 1 Гидролиз (по катиону, по аниону, по катиону и аниону) Al 3+ + HOH ↔ Al(OH) 2+ + H + ; CO 3 − + HOH ↔ HCO 3 + OH − ; 2 − Fe 3+ + (NH 4) 2 S + HOH → Fe(OH) 3 + ... 2 Реакции окисления–восстановления + 2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O Ag → 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4  3 Реакции комплексообразования СuSO 4 + 4 NH 4 OH → SO 4 + 4H 2 O 4 Реакции осаждения Ba 2+ + SO 2− →↓ BaSO 4 4 1.4.4 Сигналы методов качественного анализа 1 Образование или растворение осадка Hg 2+ + 2I − →↓ HgI 2 ; красный HgI 2 + 2KI − → K 2 бесцветный 2 Появление, изменение, исчезновение окраски раствора (цветные реакции) Mn 2 + → − MnO 4 → MnO 2 − 4 бесцветный фиолетовый зеленый 3 Выделение газа SO 3 − + 2H + → SO 2 + H 2 O. 2 4 Реакции образования кристаллов строго определенной формы (микрокристаллоскопические ре- акции). 5 Реакции окрашивания пламени. 1.5 Аналитическая классификация катионов и анионов Для катионов существуют две классификации: кислотно-основная и сероводородная. Сероводо- родная классификация катионов представлена в табл. 1.1. 1.1 Сероводородная классификация катионов Аналитическая Аналитическая Катионы Групповой реагент группа форма І K + , Na + , NH + , Mg 2 + 4   (NH 4) 2 CO 3 + NH 4 OH + NH 4 Cl II Ba 2 + , Sr 2 + , Ca 2 + MeCO3 ↓ pH ~ 9 Al3 + , Cr 3 + (NH 4) 2 S + NH 4 OH + NH 4 Cl Me(OH)m ↓ III Zn 2 + , Mn 2 + , Ni 2 + , Co 2 + , Fe 2 + , Fe3 + pH ~ 9 MeS ↓ Cu 2 + , Cd 2 + , Bi 3 + , Sn 2 + , Sn 4 + H 2S → HCl, IV MeS ↓ Hg 2 + , As3 + , As5 + , Sb 3 + , Sb 5 + pH ~ 0,5 V Ag + , Pb 2 + , 2 + HCl MeCl m ↓ Все анионы делятся на две группы: 1 Групповой реагент – BaCl 2 ; при этом образуются растворимые соли бария: − − − Cl , Br , I , NO 3 , CH 3 COO − , SCN − , − , 4− 3− 2 − ClO − , ClO − , ClO 3 , ClO − . − , BrO3 4 2 Анионы образуют малорастворимые соли бария, которые растворимы в уксусной, соляной и азотной кислотах (за исключением BaSO 4): F − , CO 3 − , SO 2− , SO 3 − , S 2 O 3 − , SiO 3 − , CrO 2− , PO 3− . 2 4 2 2 2 4 4 1.5.1 Схема анализа по идентификации неизвестного вещества 1 Окраска сухого вещества: черная: FeS, PbS, Ag 2 S, HgS, NiS, CoS, CuО, MnO 2 и др; оранжевая: Cr2 O 7− и др; 2 желтая: CrO 2− , HgO, CdS ; 4 красная: Fe(SCN) 3 , Co 2+ ; синяя: Cu 2+ . 2 Окраска пламени. 3 Проверка на наличие кристаллизационной воды. 4 Действие кислот на сухую соль (газ). 5 Подбор растворителя (при комнатной температуре, при нагревании): H 2 O, CH 3 COOH, HCl, H 2 SO 4 , «царская водка», сплавление с Na 2CO3 и последующее выщелачивание. Следует помнить, что практи- чески все нитраты, все соли калия, натрия и аммония растворимы в воде. 6 Контроль pH раствора (только для растворимых в воде объектов). 7 Предварительные испытания (Fe 2+ , Fe 3+ , NH +). 4 8 Обнаружение группы катионов, анионов. 9 Обнаружение катиона. 10 Обнаружение аниона. 1.6 Методы разделения и концентрирования Разделение – это операция (процесс), в результате которого компоненты, составляющие исходную смесь, отделяются один от другого. Концентрирование – операция (процесс), в результате которого повышается отношение концен- трации или количества микрокомпонентов к концентрации или количеству макрокомпонентов. Необходимость разделения и концентрирования может быть обусловлена следующими факторами: – проба содержит компоненты, мешающие определению; – концентрация определяемого компонента ниже предела обнаружения метода; – определяемые компоненты неравномерно распределены в пробе; – отсутствуют стандартные образцы для градуировки приборов; – проба высокотоксична, радиоактивна или дорога. Большинство методов разделения основано на распределении вещества между двумя фазами: I – водной и II – органической. Например, для вещества А имеет место равновесие A I ↔ A II . Тогда отношение концентрации вещества А в органической фазе к концентрации вещества в водной фазе называется константой распределения K D KD = [A]II [A]I Если обе фазы – растворы, насыщенные относительно твердой фазы, и экстрагируемое вещество существует в единственной форме, то при равновесии константа распределения равна S II KD = , (1.1) SI где S I , S II – растворимости вещества в водной и органической фазах. Абсолютно полное извлечение, а, следовательно, и разделение теоретически неосуществимы. Эф- фективность извлечения вещества А из одной фазы в другую можно охарактеризовать двумя фактора- ми: полнотой извлечения Rn и степенью отделения примесей Rc . x y Rn = ; Rc = , (1.2) x0 y0 где x и x0 – содержание извлекаемого вещества и содержание его в исходном образце; y и y0 – конечное и исходное содержание примеси. Чем меньше Rc и чем больше Rn , тем совершеннее разделение.

Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделение компонентов, обнаружения (идентификация) и определения.

Практически все методы основаны на зависимости между составом вещества и его свойствами. Для обнаружения компонента или его количества измеряют аналитический сигнал .

Аналитический сигнал – это среднее из измерений физической величены на заключительной стадии анализа. Аналитический сигнал функционально связан с содержанием определяемого компонента. Эта может быть сила тока, ЭДС системы, оптическая плотность, интенсивность излучения и т.д.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определенном количестве компонента измеряется величина аналитического сигнала: масса осадка, сила тока, интенсивность линий спектра и т.д. Затем рассчитывается содержание компонента с использованием функциональной зависимости аналитический сигнал – содержание: y=f(c), которая устанавливается расчетным или опытным путем и может быть представлена в виде формулы, таблицы или графика.

В аналитической химии различают химические, физические и физико-химические методы анализа.

В химических методах анализа определяемый элемент или ион переводят в какое – либо соединение, обладающее тем или иным характерными свойствами, на основании которых можно установить, что образовалось именно это соединение.

Химические методы анализа имеют определенную область применения. Также и скорость выполнения анализов с помощью химических методов не всегда удовлетворяет нужды производства, где очень важно получить анализы своевременно, пока еще можно регулировать технологический процесс. Поэтому наряду с химическими получают все большее распространение физические и физико-химические методы анализа.

Физические методы анализа основаны на измерении какого-либо

параметра системы, который является функцией состава, например, эмиссионных спектров поглощения, электро- или теплопроводности, потенциала электрода, погруженного в раствор, диэлектрической проницаемости, показателя преломления, ядерного магнитного резонанса и т.д.

Физические методы анализа дают возможность решать вопросы, которые нельзя разрешить методами химического анализа.

Для анализа веществ широко используются физико-химические методы анализа, основанные на химических реакциях, протекание которых сопровождается изменением физических свойств анализируемой системы, например, её цвет, интенсивность окраски, прозрачность, величины тепло- и электропроводимости и т.д.

Физико-химические методы анализа отличаются высокой чувствительностью и экспрессностью выполнения, дают возможность автоматизировать химико-аналитические определения и являются незаменимым при анализе малых количеств веществ.

Следует отметить, что между физическими и физико-химическими методами анализа не всегда можно провести строгую границу. Иногда их объединяют под общим названием «инструментальные» методы, т.к. для выполнения тех или иных измерений требуются приборы, позволяющие с большой точностью измерить значения определённых параметров, характеризующих те или иные свойства вещества.

Указанные методы анализа применяются в случае присутствия зависимости между измеряемыми физическими свойствами в-в и их качественным и количественным составом. Поскольку для измерения физических св-в в-в применяются различные приборы (инструменты), то эти методы наз-ся инструментальными. Классификация физических и физико-химических методов анализа. Основана на учете измеряемых физических и физико-химических св-в в-ва или изучаемой системы. Оптические методы основаны на измерении оптических св-в в-в. Хроматографические на использовании способности различных в-в к избирательной сорбции. Электрохимические методы основаны на измерении электрохимических св-в системы. Радиометрические основаны на измерении радиоактивных св-в в-в. Термические на измерении тепловых эффектов соответствующих процессов. Масс-спектрометрические на изучении ионизированных фрагментов («осколков») в-в. Ультразвуковые, магнитохимические, пикнометрические и т.д. Достоинства инструментальных методов анализа: низкий предел обнаружения 1 -10 -9 мкг; малая предельная концентрация, до 10 -12 г/мл определяемого в-ва; высокая чувствительность, формально определяемая величиной тангенса угла наклона соответствующей градуировочной кривой, отражающей графически зависимость измеряемого физического параметра, который откладывается обычно по оси ординат, от кол-ва или концентрации определяемого в-ва (ось абсцисс). Чем больше тангенс угла наклона кривой к оси абсцисс, тем чувствительнее метод, что означает следующее: для получения одинакового «отклика» - изменения физического свойства - требуется меньшее изменение концентрации или кол-ва измеряемого в-ва. К достоинствам относится высокая селективность (избирательность) методов, т. е. сотавные компоненты смесей можно определять без разделения и выделения этих компонентов; малая продолжительность времени проведения анализа, возможность их автоматизации и компьютеризации. Недостатки: сложность аппаратуры и высокая стоимость; большая погрешность (5 -20 %), чем в классическом химич-ом анализе (0,1 -0,5%); хуже воспроизводимость. Оптические методы анализа основаны на измерении оптических св-в в-ва (испускание, поглощение, рассеяние, отражение, преломление, поляризация света), проявляющихся при взаимодействии электромагнитного излучения с в-вом.

Классификация по изучаемым объектам: атомный и молекулярный спектральный анализ. По характеру взаимодействия электромагнитного излучения с в-ом. При этом различают следующие методы. Атомно-абсорбционный анализ, в основе которого лежит измерениепоглощения монохроматического излучения атомами определяемого в-ва в газовой фазе после атомизации в-ва. Эмиссионный спектральный анализ - измерение интенсивности света, излучаемого в-ом (чаще всего атомами или ионами) при его энергетическом возбуждении, например, в плазме электрического разряда. Пламенная фотометрия - использование газового пламени в качестве источника энергетического возбуждения излучения. Нефелометрия - измерение рассеивания света частицами света дисперсной системы (среды). Турбидиметрический анализ - измерение ослабления интенсивности излучения при его прохождении через дисперсную среду. Рефрактометрический анализ измерение показателей светопреломления в-в. Поляриметрический анализ измерение величины оптического вращения - угла вращения плоскости поляризации света оптически активными в-ми. По области используемого электромагнитного спектра классифицируют следующие методы: спектроскопия (спектрофотометрия) в УВИ области спектра, т. е. в ближайшей ультрафиолетовой области спектра - в интервале длин волн 200 - 400 нм и в видимой области - в интервале длин волн 400 - 700 нм. Инфракрасная спектроскопия, изучающая участок электромагнитного спектра в интервале 0,76 - 1000 мкм (1 мкм=10 -6 м), реже рентгеновская и микроволновая спектроскопия. По природе энергетических переходов в различных спектрах - электронных (изменение энергии электронных состояний атомов, ионов, радикалов, молекул, кристаллов в УВИ области); колебательных (при изменении энергии колебательных состояний 2-х и многоатомных ионов, радикалов, молекул, а также жидких и твердых фаз в ИК области); вращательных также в ИК и микроволновой области. Т.о. взаимодействие между молекулами и электромагнитным излучением заключается в том, что путем поглощения электромагнитного излучения молекулы переходят в возбужденное состояние. При этом важную роль играет энергия, т. е. длина волны поглощенного излучения.

Так, в рентгеновских лучах, длина волны которых 0,05 - 5 нм, происходит процесс возбуждения внутренних электронов в атомах и молекулах; в ультрафиолетовых лучах (5 - 400 нм) происходит процесс возбуждения внешних электронов в атомах и молекулах; видимый свет (400 - 700 нм) происходит возбуждение внешних электронов в сопряженных р-электронных системах; инфракрасное излучение (700 нм - 500 мк) происходит процесс возбуждения колебаний молекул; микроволны (500 мк - 30 см) процесс возбуждения вращения молекул; радиоволны (более 30 см) процесс возбуждения спиновых переходов в атомных ядрах (ядерный магнитный резонанс). Поглощение излучений позволяет в спектрометрии их измерять и регистрировать. При этом падающее излучение делится на эталонное и измеряемое при одинаковой интенсивности. Измеряемое излучение проходит через пробу; при этом происходит поглощение, изменяется интенсивность. При поглощении энергии электромагнитного излучения частицы в-ва (атомы, молекулы, ионы) увеличивают свою энергию, т. е. переходят в более высоколежащее энергетическое состояние. Электронные, колебательные, вращательные энергетические состояния частиц в-ва могут изменяться лишь дискретно, на строго определенную величину. Для каждой частицы существует индивидуальный набор энергетических состояний - энергетических уровней (термов), например, электронных уровней энергии. Электронные энергетические уровни молекул и многоатомных ионов имеют тонкую структуру - колебательные подуровни; поэтому одновременно с чисто электронными переходами осуществляются и колебательные переходы.

Каждому электронному (электронно-колебательному) переходу с нижнего энергетического уровня на более высоко лежащий электронный уровень отвечает полоса в электронном спектре поглощения. Так как разность между электронными уровнями для каждой частицы (атома, иона, молекулы) строго определенна, то строго определенным является и положение полосы в электронном спектре поглощения, соответствующей тому или иному электронному переходу, т. е. длина волны (частота, волновое число) максимума полосы поглощения. Различия в интенсивности измеряются детектором и записываются на самописце в виде сигнала (пика), стр 318, химия, справочник школьника и студента, схема спектрометра. Ультрафиолетовая спектроскопия и абсорбционная спектроскопия в видимой области. Поглощение электромагнитного излучения из ультрафиолетовой и видимой части спектра; возбуждает переходы электронов в молекулах с занятых на незанятые энергетические уровни. Чем больше разность в энергии между энергетическими уровнями, тем большую энергию, т.е. более короткую длину волны, должно иметь излучение. Часть молекулы, которая в значительной части определяет поглощение света, называется хромофором (буквально, несущие цвет) - это атомные группы, влияющие на поглощение света молекулой, в особенности сопряженные и ароматические системы р-электронов.

Структурные элементы хромофоров в основном и участвуют в поглощении кванта световой энергии, что приводит к появлению полос в сравнительно узком участке спектра поглощения соединений. Практическое значение для определения строения органических молекул имеет область от 200 до 700 нм. Количественное измерение: наряду с положением максимума поглощения для анализа важно значение экстинкции (ослабления) излучения, т. е. интенсивности его поглощения. В соответствии с законом Ламберта - Бера Е=lgI 0 /I=еcd, Е - экстинкция, I 0 - интенсивность падающего света, I - интенсивность проходящего света, е - молярный коэффициент экстинкции, см 2 /моль, c - концентрация, моль/л, d - толщина слоя пробы, см. Экстинкция зависит от концентрации поглощающего в-ва. Методы абсорбционного анализа колориметрия, фотоэлектроколориметрия, спектрометрия. Колориметрия самый простой и старый метод анализа, основан на визуальном сравнении окраски жидкостей (определение рН почвы на приборе Алямовского) - самый простой метод сравнения с серией эталонных р-ов. Широко распространены 3-и метода колориметрии: метод стандартных серий (метод шкалы), метод уравнивания окрасок и метод разбавления. Используются стеклянные колориметрические пробирки, стеклянные бюретки, колориметры, фотометры. Метод шкалы - это определение рН на приборе Алямовского, т. е. серия пробирок с различной конц-ей в-ва и разная по изменению интенсивности цвета р-ра или эталонных р-ов. Фотоколориметрия - метод основан на измерении интенсивности немонохроматического светового потока, прошедшего через анализируемый р-р с помощью фотоэлементов.

Световой поток от источника излучения (лампы накаливания) проходит через светофильтр, пропускающий излучение лишь в определенном интервале длин волн, через кювету с анализируемым р-ом и попадает на фотоэлемент, преобразующий световую энергию в фототок, регистрируемый соответствующим прибором. Чем больше светопоглощение анализируемого р-ра (т. е. чем выше его оптическая плотность), тем меньше энергия светового потока, попадающего на фотоэлемент. ФЭКи снабжаются н-ми светофильтрами, имеющими максимум светопропускания при различных длинах волн. При наличии 2-х фотоэлементов происходит измерение 2-х световых потоков, одного через анализируемый р-р, другого через р-р сравнения. Концентрацию исследуемого в-ва находят по градуировочному графику.

Электрохимические методы анализа основаны на электродных реакциях и на переносе электричества через р-ры. В количественном анализе используется зависимость величин измеряемых параметров электрохимических процессов (разность электрических потенциалов, ток, кол-во электричества) от сод-ия определяемого в-ва в р-ре, участвующего в данном электрохимическом процессе. Электрохимические процессы - такие процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических св-в системы, которую в подобных случаях можно наз-ать электрохимической системой. Основные принципы потенциометрии

Как следует из названия метода - в нем измеряется потенциал. Для пояснения, что за потенциал и почему он возникает, рассмотрим систему состоящую из металлической пластины и находящегося с ней в контакте раствора, содержащего ионы того же металла (электролит) (рис. 1). Такая система называется электродом. Любая система стремится к такому состоянию, которое отвечает минимуму ее внутренней энергии. Поэтому в первый момент после погружения металла в раствор на границе раздела фаз начинают протекать процессы, ведущие к снижению внутренней энергии системы. Предположим, что ионизированное состояние атома металла энергетически более «выгодно», чем нейтральное (возможен и обратный вариант). Тогда в первый момент времени атомы металла будут переходить из поверхностного слоя пластины в раствор, оставляя в ней свои валентные электроны. При этом поверхность пластины приобретает отрицательный заряд, причем этот заряд растет по мере увеличения количества атомов металла, перешедших в виде ионов в раствор. Электростатические силы притяжения разноименных зарядов (отрицательнозаряженные электроны в пластине и положительные ионы металла в растворе) не позволяют удалиться этим зарядам от границы раздела фаз, а также вызывают обратный процесс перехода ионов металла из раствора в металлическую фазу и восстановления их там. Когда скорости прямого и обратного процессов становятся одинаковыми, наступает равновесие. Состояние равновесия системы характеризуется разделением зарядов на границе раздела фаз, т. е. появляется «скачок» потенциала. Следует отметить, что описанный механизм возникновения электродного потенциала является не единственным, в реальных системах протекает также множество других процессов, приводящих к образованию «скачка» потенциалов на межфазовой границе. Кроме того, «скачок» потенциала может возникать на границе раздела фаз не только при контакте электролита с металлом, но и при контакте электролита с другими материалами, например, полупроводниками, ионообменными смолами, стеклами и т. д.

При этом ионы, концентрация которых влияет на потенциал электрода называются потенциалопределяющими. Потенциал электрода зависит от природы материала, контактирующего с электролитом, концентрации потенциалопределяющих ионов в растворе и температуры. Этот потенциал измеряется относительно другого электрода, потенциал которого постоянен. Т. о., установив эту связь, возможно использовать ее в аналитической практике для определения концентрации ионов в растворе. При этом электрод, потенциал которого измеряется, носит название измерительный, а электрод, относительно которого производятся измерения - вспомогательный или электрод сравнения. Постоянство потенциала электродов сравнения достигается постоянством концентрации потенциалопределяющих ионов в его электролите (электролит №1). Состав электролита №2 может меняться. Для предотвращения смешивания двух разных электролитов они разделяются мембраной, проницаемой для ионов. Потенциал измерительного электрода принимается равным измеренной э.д.с., приведенной электрохимической системы. Применяя в качестве электролита №2, растворы известного состава можно установить зависимость потенциала измерительного электрода от концентрации потенциалоопределяющих ионов. Эта зависимость в дальнейшем может быть использована при анализе раствора неизвестной концентрации.

Для стандартизации шкалы потенциалов в качестве электрода сравнения принят стандартный водородный электрод, потенциал которого принят равным нулю при любой температуре. Однако при обычных измерениях водородный электрод применяется редко из-за своей громоздскости. В повседневной практике применяют другие более простые электроды сравнения, потенциал которых относительно водородного электрода определен. Поэтому, при необходимости, результат измерения потенциала, проведенного относительно таких электродов, может быть пересчитан относительно водородного электрода. Наиболее широко распространенными являются хлорсеребряный и каломельный электроды сравнения. Разность потенциалов измерительного электрода и электрода сравнения является мерой концентрации определяемых ионов.

Электродную функцию можно описать с помощью линейного уравнения Нернста:

Е = Е 0 + 2,3 RT/nF *lg а,

где Е - разность потенциалов между измерительным электродом и электродом сравнения, мВ; Е 0 - константа, зависящая в основном от свойств электрода сравнения (стандартный потенциал электрода), мВ; R - газовая постоянная, Дж*моль -1 * К -1. ; n - заряд иона с учетом его знака; F - число Фарадея, Кл/моль; Т - абсолютная температура, 0 К; член 2,3 RT/nF, входящий в уравнение Нернста при 25 0 С равен 59,16 мВ для однозарядных ионов. Метод без наложения внешнего (постороннего) потенциала классифицируется как метод, основанный на учете природы источника электрической энергии в системе. В этом методе источником эл.эн. служит сама элек-хим-ая система, представляющая собой гальванический элемент (гальваническую цепь) - потенциометрические методы. ЭДС и электродные потенциалы в такой системе зависят от сод-ия определяемого в-ва в р-ре. Электрохимическая ячейка включает 2-ва электрода - индикаторный и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих 2-х электродов.

Потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, то ЭДС зависит только от потенциала индикаторного электрода, т. е. от активностей (концентраций) тех или иных ионов в р-ре. На этом и основано потенциометрическое определение концентрации данного в-ва в анал-ом р-ре. Применяют как прямую потенциометрию, так и метод потенциометрического титрования. При определении рН р-ов в кач-ве индикаторных используются электроды потенциал которых зависит от конц-ии ионов водорода: стеклянный, водородный, хингидронный (окислительно-восстановительный электрод в виде платиновой проволоки, погруженной в р-р НС1, насыщенной хингидроном - эквимолекулярным соединением хинона с гидрохиноном) и нек-ые др. Мембранные или ион-селективные электроды имеют реальный потенциал, зависящий от активности тех ионов в р-ре, кот-ые сорбируются мембраной электрода (твердой или жидкой) метод наз-ся ионометрией.

Спектрофотометрами наз-ют приборы, позволяющие производить измерения светопоглощения образцов в узких по спектральному составу пучках света (монохроматический свет). Спектрофотметры позволяют разлагать белый свет в непрерывный спектр, выделять из этого спектра узкий интервал длин волн (1 - 20 нм ширина выделяемой полосы спектра), пропускать изолированный пучок света через анализируемый р-р и измерять с высокой точностью интенсивность этого пучка. Поглощение света окрашенным в-ом в р-ре измеряют, сравнивая его с поглощением нулевого р-ра. В спектрофотометре сочетаются два прибора: монохроматор для получения монохроматического светового потока и фотоэлектрический фотометр, предназначенный для измерения интенсивности света. Монохроматор состоит из источника света, диспергирующего устройства (разлагающего белый свет в спектр) и устройства регулирующего величину интервала длин волн светового пучка, падающего на р-р.

Из разнообразных физико-химических и физических методов анализа наибольшее значение имеют 2-ве группы методов: 1 - методы, основанные на изучении спектральных характеристик в-ва; 2 - методы, основанные на изучении физико-химических параметров. Спектральные методы основаны на явлениях, происходящих при взаимодействии вещества с различными видами энергии (электромагнитным излучением, термической энергией, электрической и пр.). К основным видам взаимодействия в-ва с лучистой энергией относится поглощение и испускание (эмиссия) излучения. Характер явлений, обусловленных поглощением или испусканием, в принципе одинаков. При взаимодействии излучения с в-вом частицы его (атомы молекулы) переходят в возбужденное состояние. Через некоторое время (10 -8 с) частицы возвращаются в основное состояние, испуская избыточную энергию в виде электромагнитного излучения. Эти процессы связаны с электронными переходами в атоме или молекуле.

Электромагнитное излучение можно охарактеризовать длиной волныл или частотой н, которые связаны между собой соотношением н=с/л, где с - скорость света в вакууме (2,29810 8 м/с). Совокупность всех длин волн (частот) электромагнитного излучения составляет электромагнитный спектр от г-лучей (коротковолновая область, фотоны обладают высокой энергией) до видимой области спектра (400 - 700 нм) и радиоволн (длинноволновая область, фотоны с низкой энергией).

На практике имеют дело с излучением, характеризующимся определенным интервалом длин волн (частот), т. е. с определенным участком спектра (или, как говорят, с полосой излучения). Часто для аналитических целей используется и монохроматический свет (световой поток, в котором электромагнитные волны имеют одну длину волны). Избирательное поглощение атомами и молекулами излучения с определенными длинами волн приводит к тому, что каждое в-во характеризуется индивидуальными спектральными характеристиками.

Для аналитических целей используют как поглощение излучения атомами и молекулами (соответственно атомно- абсорбционная спектроскопия), так и испускание излучения атомами и молекулами (эмиссионная спектроскопия и люминесценция).

Спектрофотометрия основана на избирательном поглощении электромагнитного излучения в-вом. Измеряя поглощение в-вом излучения различных длин волн, можно получить спектр поглощения, т. е. зависимость поглощения от длины волны падающего света. Спектр поглощения - это качественная характеристика в-ва. Количественной характеристикой является количество поглощенной энергии или оптическая плотность раствора, которая зависит от концентрации поглощающего в-ва по закону Бугера-Ламберта-Бера: D=еІс, где D - оптическая плотность, i - толщина слоя; с - концентрация, моль/л; е - молярный коэффициент поглощения (е = D при І=1 см и с=1 моль/л). Величина е служит характеристикой чувствительности: чем больше значение е, тем меньшие количества в-ва можно определить. Многие в-ва (особенно органические) интенсивно поглощают излучение в УФ- и видимой областях, что делает возможным их непосредственное определение. Большинство ионов, наоборот, слабо поглощают излучение видимой области спектра (е? 10…1000), поэтому их обычно переводят в другие, более интенсивно поглощающие соединения, а затем проводят измерения. Для измерения поглощения (оптической плотности) используют спектральные приборы 2-х видов: фотоэлектроколориметры (с грубой монохроматизацией) и спектрофотометры (с более тонкой монохроматизацией). Наиболее распространенным является фотометрический метод анализа, количественные определения в котором основаны на законе Бугера-Ламберта-Бера. Основными приемами фотометрических измерений являются: метод молярного коэффициента светопоглощения, метод градуировочного графика, метод стандартов (метод сравнения), метод добавок. В методе молярного коэффициента светопоглощения измеряют оптическую плотность D исследуемого р-ра и по известному значению молярного коэффициента светопоглощения е рассчитывают концентрацию с поглощающего в-ва в растворе: с = D/(е І). В методе градуировочного графика готовят ряд стандартных растворов с известным значением концентрации с определяемого компонента и определяют их значение оптической плотности D.

По полученным данным строят градуировочный график - зависимость оптической плотности раствора от концентрации в-ва: D = f(с). В соответствии с законом Бухера-Ламберта-Бера график представляет собой прямую линию. Затем измеряют оптическую плотность D исследуемого раствора и по градуировочному графику определяют концентрацию определяемого соединения. Метод сравнения (стандартов) основан на сравнении оптической плотности стандартного и исследуемого растворов:

D ст =е*І*с ст и D х = е*І*с х,

откуда D х / D ст =е*І*с х /е*І*с ст и с х =с ст *D х /Dст. В методе добавок сравниваются значения оптической плотности исследуемого раствора и того же раствора с добавлением (с а) известного количества определяемого компонента. По результатам определений рассчитывают концентрацию в-ва в исследуемом растворе: D х = е*І*с х и D х+а = е*І*(с х +с а), откуда D х /D х+а = е*І*с х /е*І*(с х +с а) и с х =с а * D х /D х+а - D х. .

Атомно-абсорбционная спектроскопия основана на избирательном поглощении излучения атомами. Для переведения вещества в атомарное состояние раствор образца впрыскивают в пламя или подогревают в специальной кювете. В результате растворитель улетучивается или сгорает, а твердое в-во атомизируется. Большая часть атомов остается в невозбужденном состоянии, и лишь небольшая часть возбуждается с последующим испусканием излучения. Набор линий, соответствующий длинам волн поглощаемого излучения, т. е. спектр, является качественной характеристикой, а интенсивность этих линий - соответственно количественной характеристикой в-ва.

Атомно-эмиссионная спектроскопия основана на измерении интенсивности света, излучаемого возбужденными атомами. Источниками возбуждения могут быть пламя, искровый разряд, электрическая дуга и др. Для получения спектров испускания пробу в виде порошка или раствора вводят в источник возбуждения, где происходит переход в-ва в газообразное состояние или частичный распад его на атомы и простые (по составу) молекулы. Качественной характеристикой в-ва является его спектр (т. е. набор линий в спектре испускания), а количественной - интенсивность этих линий.

Люминесценция основана на испускании излучения возбужденными молекулами (атомами, ионами) при переходе их в основное состояние. Источниками возбуждения при этом могут быть ультрафиолетовое и видимое излучение, катодные лучи, энергия химической реакции и пр. Энергия излучения (люминесценции) всегда меньше поглощенной энергии, т. к. часть поглощенной энергии еще до начала испускания преобразуется в тепловую. Следовательно, люминесцентное испускание всегда имеет меньшую длину волны, чем длина волны поглощенного при возбуждении света. Люминесценция может использоваться как для обнаружения в-в (по длине волны), так и для их количественного определения (по интенсивности излучения). Электрохимические методы анализа основаны на взаимодействии в-ва с электрическим током. Протекающие при этом процессы локализованы либо на электродах, либо в приэлектродном пространстве. Большинство методов относятся к первому из этих типов. Потенциометрия. Электродным процессом называется гетерогенная реакция, при которой заряженная частица (ион, электрон) переносится через границу раздела фаз. В рез-те такого переноса на пов-ти электрода возникает разность потенциалов, обусловленная образованием двойного электрического слоя. Как всякий процесс, электродная реакция с течением времени приходит к равновесию, и на электроде устанавливается равновесный потенциал.

Измерение величин равновесных электродных потенциалов является задачей потенциометрического метода анализа. Измерения при этом проводят в электрохимической ячейке состоящей из 2-х полуэлементов. Одиг из них содержит индикаторный электрод (потенциал которого зависит от концентрации определяемых ионов в растворе в соответствии с уравнением Нернста), а другой - электрод сравнения (потенциал которого постоянен и не зависит от состава раствора). Метод может быть реализован в варианте прямой потенциометрии или в варианте потенциометрического титрования. В первом случае измеряют потенциал индикаторного электрода в анализируемом растворе относительно электрода сравнения и по уравнению Нернста рассчитывают концентрацию определяемого иона. В варианте потенциометрического титрования определяемый ион титруют подходящим реагентом, следя одновременно за изменением потенциала индикаторного электрода. По полученным данным строят кривую титрования (зависимость потенциала индикаторного электрода от объема прибавленного титранта). На кривой вблизи точки эквивалентности наблюдается резкое изменение значения потенциала (скачок потенциала) индикаторного электрода, что позволяет рассчитать содержание определяемого иона в растворе. Электродные процессы очень многообразны. В целом их можно классифицировать на 2-ве большие группы: процессы, происходящие с переносом электронов (т. е. собственно электрохимические процессы), и процессы, связанные с переносом ионов(при этом электроду присуща ионная проводимость). В последнем случае речь идет о так называемых ионселективных мембранных электродах, широко применяемых в настоящее время. Потенциал такого электрода в растворе, содержащем определяемые ионы, зависит от их концентрации по уравнению Нернста. К этому же типу электродов относится и стеклянный электрод, применяемый в рН-метрии. Возможность создания большого числа мембранных электродов с высокой селективностью к тем или иным ионам выделила эту область потенциометрического анализа в самостоятельную отрасль - ионометрию.

Полярография. При прохождении тока в электрохимической ячейке наблюдается отклонение величин электродных потенциалов от их равновесных значений. В силу ряда причин возникает так называемая электродная поляризация. Явление поляризации, возникающей в процессе электролиза на электроде с малой поверхностью, лежит в основе данного метода анализа. В этом методе к электродам, опущенным в исследуемый раствор, прикладывают возрастающую разность потенциалов. При малой величине разности потенциалов ток через раствор практически не идет (т. н. остаточный ток). При увеличении разности потенциалов до величины, достаточной для разложения электролита, сила тока резко возрастает. Эту величину разности потенциалов называют потенциалом разложения. Измеряя зависимость силы тока, проходящего через раствор, от величины приложенного напряжения, можно построить т. н. вольтамперную кривую, которая позволяет с достаточной точностью определить качественный и количественный состав раствора. При этом качественной характеристикой в-ва является величина разности потенциалов, достаточная для его электрохимического разложения (потенциал полуволны Е S), а количественной - величина прироста силы тока, обусловленная его электрохимическим разложением в растворе (высота длины волны Н, или различие в величинах предельного диффузионного тока и остаточного тока). Для количественного определения концентрации в-ва в растворе используют следующие приемы: метод градуировочного графика, метод стандартов, метод добавок. Кондуктометрический метод анализа основан на зависимости электропроводности раствора от концентрации электролита. Применяется, как правило, в варианте кондуктометрического титрования, точку эквивалентности в котором определяют по перегибу кривой титрования (зависимости электропроводности от количества прибавленного титранта). Амперометрическое титрование является разновидностью потенциометрического титрования, только индикаторным электродом является полярографическое устройство, т.е. применяется микроэлектрод с наложенным напряжением.