» » Принцип неопределенности гейзенберга в квантовой механике. Принцип неопределенности гейзенберга в квантовой механике Что такое принцип неопределенности

Принцип неопределенности гейзенберга в квантовой механике. Принцип неопределенности гейзенберга в квантовой механике Что такое принцип неопределенности

Хотя этот принцип и выглядит довольно странным, по своей сути он чрезвычайно прост. В квантовой теории, где положение объекта характеризуется квадратом амплитуды, а величина его импульса - длиной волны соответствующей волновой функции, этот принцип есть не что иное, как просто факт, характерный для волн: волна, локализованная в пространстве, не может иметь одну длину волны. Недоумение вызывается тем, что, говоря о частице, мы мысленно представляем ее классический образ, а затем удивляемся, когда обнаруживаем, что квантовая частица ведет себя не так, как ее классическая предшественница.

Если настаивать на классическом описании поведения квантовой частицы (в частности, если пытаться приписать ей как положение в пространстве, так и импульс), то максимальные возможные точности одновременного определения ее положения и импульса окажутся связанными между собой с помощью удивительно простого соотношения, впервые предложенного Гейзенбергом и получившего название принципа неопределенности:

где - неточности, или неопределенности, значений импульса и положения частицы. Произведение неточностей импульса и положения

оказывается порядка величины постоянной Планка. В квантовой теории в отличие от классической невозможно одновременно локализовать квантовую частицу и приписать ей определенный импульс Поэтому такая частица не может обладать и траекторией в том же смысле, что классическая частица. Мы имеем в виду отнюдь не психологическую неопределенность. Эта неопределенность характеризует природу такого объекта, который не может одновременно обладать двумя свойствами-положением и импульсом; объекта, отдаленно напоминающего шторм в атмосфере: если он простирается на большие расстояния, то дуют слабые ветры; если же он сконцентрирован в небольшой области, то возникает ураган или тайфун.

Принцип неопределенности содержит в удивительно простой форме то, что было так трудно сформулировать, используя волну Шредингера. Если имеется волновая функция с заданной длиной волны или с заданным импульсом, то ее положение является полностью неопределенным, так как вероятности нахождения частицы в различных точках пространства равны между собой. С другой стороны, если частица полностью локализована, ее волновая функция должна состоять из суммы всех возможных периодических волн, так что ее длина волны или импульс оказываются абсолютно неопределенными. Точное соотношение между неопределенностями положения и импульса (которое получается непосредственно из волновой теории и не связано особым образом с квантовой механикой, так как оно характеризует природу любых волн - звуковых волн, волн на поверхности воды или волн, бегущих вдоль натянутой пружины) дается в простой форме принципом неопределенности Гейзенберга.

Вспомним рассмотренную ранее частицу, одномерное движение которой происходило между двумя стенками, расположенными на расстоянии друг от друга. Неопределенность положения такой частицы не превышает расстояния между стенками, так как мы знаем, что частица заключена между ними. Поэтому величина равна или меньше

Положение частицы, конечно, может быть локализовано в более узких пределах. Но если задано, что частица просто заключена между стенками, ее координата х не может выйти за пределы расстояния между этими стенками. Следовательно, неопределенность, или отсутствие

знания, ее координаты х не может превышать величину I. Тогда неопределенность импульса частицы больше или равна

Импульс связан со скоростью по формуле

следовательно, неопределенность скорости

Если частица-электрон и расстояние между стенками равно см. то

Таким образом, если частица с массой электрона локализована в области, размеры которой порядка то говорить о скорости частицы можно лишь с точностью до см/с,

Используя результаты, полученные ранее, можно найти соотношение неопределенности для волны Шредингера в случае частицы, заключенной между двумя стенками. Основному состоянию такой системы соответствует смесь в равных долях решений с импульсами

(В классическом случае электрон мечется от стенки к стенке, причем его импульс, оставаясь все время равным по величине изменяет свое направление при каждом соударении со стенкой.) Так как импульс изменяется от до его неопределенность равна

Из соотношения де Бройля

а для основного состояния

В то же время

Следовательно,

Этот результат можно использовать для оценки наименьшего значения энергии, которым может обладать квантовая система. Ввиду того что импульс системы - неопределенная величина, эта энергия в общем случае не равна нулю, что радикально отличает квантовую систему от классической. В классическом случае энергия рассматриваемой частицы совпадает с ее кинетической энергией, и когда частица покоится, эта энергия обращается в нуль, Для квантовой системы, как было показано выше неопределенность импульса находящейся в системе частицы составляет

Импульс такой частицы нельзя определить точно, так как возможные его значения лежат в интервале шириной Очевидно, если нуль лежит посредине этого интервала (фиг. 127), то импульс будет изменяться по величине в пределах от нуля до Следовательно, минимальный возможный импульс, который можно приписать частице, равен в силу принципа неопределенности

При меньших значениях импульса принцип неопределенности нарушится. Энергию, соответствующую этому импульсу,

можно сравнить с наименьшей энергией, величину которой мы вычислили с помощью уравнения Шредингера, подбирая подходящую стоячую волну между стенками сосуда:

Ценность полученного результата состоит не в численном согласии, а в том, что нам удалось провести грубую оценку величины минимальной энергии, используя лишь принцип неопределенности. Кроме того, нам удалось понять, почему минимальное значение кинетической энергии квантовомеханической системы (в отличие от классической системы) никогда не равно нулю. Соответствующая классическая частица, заключенная между стенками, обладает нулевой кинетической

энергией, когда она находится в покое. Квантовая же частица не может покоиться, если она захвачена между стенками. Ее импульс или скорость существенно неопределенны, что проявляется в увеличении энергии, причем это увеличение в точности совпадает с тем значением, которое получается из строгого решения уравнения Шредингера.

Этот весьма общий результат имеет особенно важные следствия в том разделе квантовой теории, который соответствует классической кинетической теории, т. е. в квантовой статистике. Широко известно, что температура системы, как утверждает кинетическая теория, определяется внутренним движением составляющих систему атомов. Если температура квантовой системы высока, то нечто весьма похожее на это действительно имеет место. Однако при низких температурах квантовые системы не могут прийти к абсолютному покою. Минимальная температура соответствует наинизшему из возможных состояний данной системы. В классическом случае все частицы находятся в покое, а в квантовом - энергия частиц определяется из выражения (41.17), что не соответствует покою частиц.

Из всего сказанного может создаться впечатление, что мы уделяем слишком много внимания электронам, заключенным между двумя стенками. Наше внимание к электронам вполне оправдано. А к стенкам? Если проанализировать все рассмотренные ранее случаи, то можно убедиться в том, что вид силовой системы, будь то сосуд или что-нибудь иное, удерживающей электрон в ограниченной области пространства, не так уже существен.

Две стенки, центральная сила или различные препятствия (фиг. 128) приводят к примерно одинаковым результатам. Не столь уж важен вид конкретной системы, которая удерживает электрон. Гораздо важнее, что электрон вообще захвачен, т. е. его волновая функция локализована. В результате эта функция представляется в виде суммы периодических волн и импульс частицы становится неопределенным, причем

Проанализируем теперь с помощью принципа неопределенности одно типично волновое явление, а именно расширение волны после прохождения ею небольшого отверстия (фиг. 129). Это явление мы уже разбирали геометрическим способом, вычисляя расстояния, на

которых горбы пересекаются с впадинами., В том, что теперь результаты окажутся сходными, нет ничего удивительного. Просто одна и та же теоретическая модель описывается разными словами. Допустим, что электрон попадает в отверстие в экране, двигаясь слева направо. Нас интересует неопределенность положения и скорости электрона в направлении х (перпендикулярном направлению движения). (Соотношение неопределенности выполняется для каждого из трех направлений в отдельности: Ах-Архжк,

Обозначим ширину щели через эта величина является максимальной погрешностью определения положения электрона в направлении х, когда он проходил через отверстие, чтобы проникнуть за экран. Отсюда мы можем найти неопределенность импульса или скорости частицы в направлении я:

Следовательно, если мы допускаем, что электрон проходит сквозь отверстие в экране шириной мы должны признать, что его скорость при этом станет неопределенной с точностью до величины

В отличие от классической частицы квантовая не может, пройдя сквозь отверстие, дать на экране четкое изображение.

Если она движется со скоростью в направлении экрана, а расстояние между экраном и отверстием равно то она пройдет это расстояние за время

За это время частица сместится в направлении х на величину

Угловой разброс определяется как отношение величины смещения к длине

Таким образом, угловой разброс (интерпретируемый как половина углового расстояния до первого дифракционного минимума) равен длине волны, деленной на ширину отверстия, что совпадает с результатом, полученным ранее для света.

А что можно сказать об обычных массивных частицах? Являются ли они квантовыми частицами или частицами ньютоновского типа? Следует ли пользоваться механикой Ньютона в случае объектов обычных размеров и квантовой механикой в случае объектов, размеры которых малы? Мы можем считать все частицы, все тела (даже Землю) квантовыми. Однако, если размеры и масса частицы соизмеримы с размерами и массами, которые обычно наблюдаются в макроскопических явлениях, то квантовые эффекты - волновые свойства, неопределенности положения и скорости - становятся слишком малыми, чтобы быть обнаружимыми в обычных условиях.

Рассмотрим, например, частицу, о которой мы говорили выше. Допустим, что эта частица - металлический шарик от подшипника с массой в одну тысячную грамма (очень маленький шарик). Если мы локализуем его положение с точностью, доступной нашему зрению, в поле микроскопа, скажем с точностью до одной тысячной сантиметра, то локализованного на длине см, неопределенность скорости оказывается слишком маленькой величиной, чтобы быть обнаруженной при обычных наблюдениях.

Соотношения неопределенности Гейзенберга связывают не только положение и импульс системы, но и другие ее параметры, которые в классической теории считались независимыми. Одним из наиболее интересных и полезных для наших целей соотношений является связь между неопределенностями энергии и времени. Обычно ее записывают в виде

Если система находится в определенном состоянии в течение длительного промежутка времени, то энергия этой системы известна с большой точностью; если же она находится в этом состоянии в течение очень короткого интервала времени, то ее энергия становится неопределенной; этот факт точно описывается соотношением, приведенным выше.

Это соотношение обычно применяют при рассмотрении перехода квантовой системы из одного состояния в другое. Допустим, например, что время жизни какой-то частицы равно , т. е. между моментом рождения этой частицы и моментом ее распада проходит время порядка с. Тогда максимальная точность, с которой может быть известна энергия этой частицы, равна

что составляет весьма небольшую величину. Как мы увидим позднее, существуют так называемые элементарные частицы, время жизни которых порядка с (время между моментом рождения частицы и моментом ее аннигиляции). Таким образом, промежуток времени, в течение которого частица находится в определенном состоянии, очень мал, и неопределенность энергии оценивается как

Эта величина, 4-106 эВ (миллион электронвольт кратко обозначается символом МэВ), огромна; вот почему, как мы увидим позже, таким элементарным частицам, иногда называемым резонансами, приписывают не точное значение энергии, а целый спектр значений в довольно широком диапазоне.

Из соотношения (41.28) можно также получить так называемую естественную ширину уровней квантовой системы. Если, например, атом переходит с уровня 1 на уровень 0 (фиг. 130), то энергию уровня

Тогда разброс значений энергии этого уровня определяется из выражения:

Это типичная естественная ширина энергетических уровней атомной системы.

Принцип неопределенности является фундаментальным законом микромира. Его можно считать частным выражением принципа дополнительности.

В классической механике частица движется по определенной траектории, и в любой момент времени возможно точно определить ее координаты и ее импульс. Относительно микрочастицы такое представление неправомерно. Микрочастица не имеет четко выраженной траектории, она обладает и свойствами частицы, и свойствами волны (корпускулярно‑волновой дуализм). В этом случае понятие «длина волны в данной точке» не имеет физического смысла, а поскольку импульс микрочастицы выражается через длину волны – p =к/ л, то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату, и наоборот.

В. Гейзенберг (1927 г.), учитывая двойственную природу микрочастиц, пришел к выводу, что невозможно одновременно с любой наперед заданной точностью характеризовать микрочастицу и координатами, и импульсом.

Соотношениями неопределенностей Гейзенберга называются неравенства:

Δx · Δp x ≥ h, Δy · Δp y ≥ h, Δz · Δp z h.

Здесь Δx, Δy, Δz означают интервалы координат, в которых может быть локализована микрочастица (эти интервалы и есть неопределенности координат), Δp x , Δp y , Δp z означают интервалы проекций импульса на координатные осиx, y, z, h – постоянная Планка. Согласно принципу неопределенностей, чем точнее фиксируется импульс, тем значительнее будет неопределенность по координате, и наоборот.

Принцип соответствия

По мере развития науки, углубления накопленных знаний новые теории становятся более точными. Новые теории охватывают все более широкие горизонты материального мира и проникают в ранее неизведанные глубины. Динамические теории сменяются статическими.

Каждая фундаментальная теория имеет определенные границы применимости. Поэтому появление новой теории не означает полного отрицания старой. Так, движение тел в макромире со скоростями значительно меньшими, чем скорость света, всегда будет описываться классической механикой Ньютона. Однако при скоростях, соизмеримых со скоростью света (релятивистских скоростях), механика Ньютона неприменима.

Объективно имеет место преемственность фундаментальных физических теорий. Это и есть принцип соответствия, который можно сформулировать следующим образом: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

3.4. Понятие о состоянии системы. Лапласовский детерминизм

В классической физике система понимается как совокупность каких‑то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно‑следственных отношений между взаимодействующими элементами системы.

Философское учение об объективности закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира называют детерминизмом. Центральным понятием детерминизма является положение о существованиипричинности; причинность имеет место, когда одно явление порождает другое явление (следствие).

Классическая физика стоит на позициях жесткого детерминизма, который называют лапласовским, – именно Пьер Симон Лаплас провозгласил принцип причинности как фундаментальный закон природы. Лаплас считал, что если известно расположение элементов (каких‑то тел) системы и действующие в ней силы, то можно с полной достоверностью предсказать, как будет двигаться каждое тело этой системы сейчас и в будущем. Он писал: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширен, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами». Традиционно это гипотетическое существо, которое могло бы (по Лапласу) предсказать развитие Вселенной, в науке называют «демоном Лапласа».

В классический период развития естествознания утверждается представление о том, что только динамические законы полностью характеризуют причинность в природе.

Лаплас пытался объяснить весь мир, в том числе физиологические, психологические, социальные явления с точки зрения механистического детерминизма, который он рассматривал как методологический принцип построения всякой науки. Образец формы научного познания Лаплас видел в небесной механике. Таким образом, лапласовский детерминизм отрицает объективную природу случайности, понятие вероятности события.

Дальнейшее развитие естествознания привело к новым представлениям причинности и следствия. Для некоторых природных процессов трудно определить причину – например, радиоактивный распад происходит случайно. Нельзя однозначно связать время «вылета» α– или β‑частицы из ядра и значение ее энергии. Подобные процессы объективно случайны. Особенно много таких примеров в биологии. В нынешнем естествознании современный детерминизм предлагает разнообразные, объективно существующие формы взаимосвязи процессов и явлений, многие из которых выражаются в виде соотношений, не имеющих выраженных причинных связей, то есть не содержащих в себе моментов порождения одного другим. Это и пространственно‑временные связи, отношения симметрии и определенных функциональных зависимостей, вероятностные соотношения и т. д. Однако все формы реальных взаимодействий явлений образуются на основе всеобщей действующей причинности, вне которой не существует ни одного явления действительности, в том числе и так называемых случайных явлений, в совокупности которых проявляются статические законы.

Наука продолжает развиваться, обогащается новыми концепциями, законами, принципами, что свидетельствует об ограниченности лапласовского детерминизма. Однако классическая физика, в частности классическая механика, имеет и сегодня свою нишу применения. Ее законы вполне применимы для относительно медленных движений, скорость которых значительно меньше скорости света. Значение классической физики в современный период хорошо определил один из создателей квантовой механики Нильс Бор: «Как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщать другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики».

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат, импульса, энергии и т. д. Перечисленные величины называются динамическими переменными. Строго говоря, микрообъекту не могут быть приписаны указанные динамические переменные. Однако информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами, представляющими собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, т. е. через значения динамических переменных. В соответствии с этим измеренные значения динамических переменных приписываются микрочастицам. Например, говорят о состоянии электрона, в котором он имеет такое-то значение энергии, и т. д.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь, одновременно точных значений координаты х и компоненты импульса . Неопределенности значений удовлетворяют соотношению

( - постоянная Планка). Из (20.1) следует, что чем меньше неопределенность одной из переменных или тем больше неопределенность другой. Возможно такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенно неопределенной (ее неопределенность равна бесконечности).

Соотношение, аналогичное (20.1), имеет место для у и , для z и , а также для ряда других пар величин (в классической механике такие пары величин называются канонически сопряженными). Обозначив канонически сопряженные величины буквами А и В, можно написать

(20.2)

Соотношение (20.2) называется соотношением неопределенности для величин А и Б. Это соотношение открыл В. Гейзенберг в 1927 г.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка , называется принципом неопределенности Гейзенберга.

Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенности:

Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный но меньшей мере .

Соотношение неопределенности было установлено из рассмотрения, в частности, следующего примера. Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель ширины , расположенную перпендикулярно к направлению движения частицы (рис. 20.1). До прохождения частицы через щель ее составляющая импульса имеет точное значение, равное нулю (щель по условию перпендикулярна к импульсу), так что , зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность , но это достигается ценой утраты определенности значения Действительно, вследствие дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах угла , где - угол, соответствующий первому дифракционному минимуму (максимумами высших порядков можно пренебречь, поскольку их интенсивность мала по сравнению с интенсивностью центрального максимума). Таким образом, появляется неопределенность:

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели ширины соответствует угол для которого

{см. формулу (129.5) 2-го тома). Следовательно,

Отсюда с учетом (18.1) получается соотношение

согласующееся с (20.1).

Иногда соотношение неопределенности получает следующее толкование: в действительности у микрочастицы имеются точные значения координат и импульсов, однако ощутимое для такой частицы воздействие измерительного прибора не позволяет точно определить эти значения. Такое толкование является совершенно неправильным. Оно противоречит наблюдаемым на опыте явлениям дифракции микрочастиц.

Соотношение неопределенности указывает, в какой мере можно пользоваться понятиями классической механики применительно к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (20.1) вместо произведение тих, получим соотношение

Мы видим, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости и, следовательно, с тем большей точностью применимо понятие траектории. Уже для макрочастицы размером всего 1 мкм неопределенности значений оказываются за пределами точности измерения этих величин, так что практически ее движение будет неотличимо от движения по траектории.

При определенных условиях даже движение микрочастицы может приближенно рассматриваться как происходящее по траектории. В качестве примера рассмотрим движение электрона в электронно-лучевой трубке. Оценим неопределенности координаты и импульса электрона для этого случая. Пусть след электронного пучка на экране имеет радиус порядка , длина трубки порядка 10 см (рис. 20.2). Тогда Импульс электрона связан с ускоряющим напряжением U соотношением

Отсюда При напряжении . В энергия электрона равна Оценим величину импульса:

Следовательно, , наконец, согласно соотношению (20.1):

Полученный результат указывает на то, что движение электрона в электронно-лучевой трубке практически неотличимо от движения по траектории.

Соотношение неопределенности является одним из фундаментальных положений квантовой механики. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на точечное ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности. Этот принцип требует, чтобы неопределенность координаты электрона и неопределенность импульса были связаны условием (20.1), Формально энергия была бы минимальна при Поэтому, производя оценку наименьшей возможной энергии, нужно положить . Подставив эти значения в (20.1), получим соотношение

ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ:

Принцип неопределённости – фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты её центра инерции и импульс одновременно принимают вполне определённые, точные значения. Количественно принцип неопределённости формулируется следующим образом. Если ∆x – неопределённость значения координаты x центра инерции системы, а ∆p x – неопределённость проекции импульса p на ось x, то произведение этих неопределённостей должно быть по порядку величины не меньше постоянной Планка ħ. Аналогичные неравенства дожны выполняться для любой пары т. н. канонически сопряженных переменных, например для координаты y и проекции импульса p y на ось y, координаты z и проекции импульса p z. Если под неопределённостями координаты и импульса понимать среднеквадратичные отклонения этих физических величин от их средних значений, то принцип неопределённости для них имеет вид:

∆p x ∆x ≥ ħ/2, ∆p y ∆y ≥ ħ/2, ∆p z ∆z ≥ ħ/2

Ввиду малости ħ по сравнению с макроскопическими величинами той же разномерности действие принципа неопределённости существенно в основном для явлений атомных (и меньших) масштабов и не проявляются в опытах с макроскопическими телами.

Из принципа неопределённости следует, что чем точнее определена одна из входящих в неравенство величин, тем менее определенно значение другой. Никакой эксперимент не может привести к одновременно точному измерению таких динамичных переменных; при этом неопределённость в измерениях связано не с несовершенством экспериментальной техники, а с объективными свойствами материи.

Принцип неопределённости, открытый в 1927 г. немецким физиком В. Гейзенбергом, явился важным этапом в выяснении закономерностей внутриатомных явлений и построении квантовой механики. Существенной чертой микроскопических объектов является их корпускулярно-волновая природа. Состояние частицы полностью определяется волновой функцией (величина, полностью описывающая состояние микрообъекта (электрона, протона, атома, молекулы) и вообще любой квантовой системы). Частица может быть обнаружена в любой точке пространства, в которой волновая функция отлична от нуля. Поэтому результаты экпериментов по определению, например, координаты имеют вероятностный характер.

(Пример: движение электрона представляет собой распространение его собственной волны. Если стрелять пучком электронов через узкое отверстие в стенке: узкий пучок пройдёт через него. Но если сделать это отверстие ещё меньше, такое, чтобы его диаметр по величине сравнялся с длиной волны электрона, то пучок электронов разойдётся во все стороны. И это не отклонение, вызванное ближайшими атомами стенки, от которого можно избавиться: это происходит вследствие волновой природы электрона. Попробуйте предсказать, что произойдёт дальше с электроном, прошедшим за стенку, и вв окажетесь бессильными. Вам точно известно, в каком месте он пересекает стенку, но сказать, какой импульс в поперечном направлении он приобретёт, вы не можете. Наоборот, чтобы точно определить, что электрон появится с таким-то определённым импульсом в первоначальном направлении, нужно увеличить отверстие настолько, чтобы электронная волна проходила прямо, лишь слабо расходясь во все стороны из-за дифракции. Но тогда невозможно точно сказать, в каком же точно месте электрон-частица прошёл через стенку: отверстие-то широкое. Насколько выигрываешь в точности определения импульса, настолько проигрываешь в точности, с какой известно его положение.

Это и есть принцип неопределённости Гейзенберга. Он сыграл исключительно важную роль при построении математического аппарата для описания волн частиц в атомах. Его строгое толкование в опытах с электронами такого: подобно световым волнам электроны сопротивляются любым попыткам выполнить измерения с предельной точностью. Этот принцип меняет и картину атома Бора. Можно определить точно импульс электрона (а следовательно, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет абсолютно неизвестно: ничего нельзя сказать о том, где он находится. Отсюда ясно, что рисовать себе чёткую орбиту электрона и помечать его на ней в виде кружка лишено какого-либо смысла.)

Следовательно, при проведении серии одинаковых опытов, по тому же определению координаты, в одинаковых системах получаются каждый раз разные результаты. Однако некоторые значения будут более вероятными, чем другие, т. е. будут появляться чаще. Относительная частота появления тех или иных значений координаты пропорционально квадрату модуля волновой функции в соответствующих точках пространства. Поэтому чаще всего будут получаться те значения координаты, которые лежат вблизи максимума волновой функции. Но некоторый разброс в значениях координаты, некоторая их неопределённость (порядка полуширины максимума) неизбежны. То же относится и к измерению импульса.

Таким образом, понятия координаты и импульса в классическом смысле не могут быть применены к микроскопическим объектам. Пользуясь этими величинами при описании микроскопической системы, необходимо внести в их интерпретацию квантовые поправки. Такой поправкой и является принцип неопределённости.

Несколько иной смысл имеет принцип неопределённости для энергии ε и времени t:

∆ε ∆t ≥ ħ

Если система находится в стационарном состоянии, то из принципа неопределённости следует, что энергию системы даже в этом состоянии можно измерить только с точностью, не превышающей ħ/∆t, где ∆t – длительность процесса измерения. Причина этого – во взаимодействии системы с измерительным прибором, и принцип неопределённости применительно к данному случаю означает, что энергию взаимодействия между измерительным прибором и исследуемой системой можно учесть лишь с точностью до ħ/∆t.

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя. Естественно, что необходимо внести некоторые ограничения в применении к объектам микромира понятий классической механики.

В классической механике состояние материальной точки (классической частицы) определяется заданием значений координат, импульса, энергии и т.д. (перечисленные величины называются динамическими переменными). Строго говоря, микрообъекту не могут быть приписаны указанные динамические переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами, представляющими собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, т.е. через значения динамических характеристик. В соответствии с этим измеренные значения динамических переменных приписываются микрочастицам. Например, говорят о состоянии электрона, в котором он имеет такое-то значение энергии, и т.д.

Волновые свойства частиц и возможность задать для частицы лишь вероятность ее пребывания в данной точке пространства приводят к тому, что сами понятия координаты частицы и ее скорости (или импульса ) могут применяться в квантовой механике в ограниченной мере . В этом, вообще говоря, нет ничего удивительного. В классической физике понятие координаты в ряде случаев тоже непригодно для определения положения объекта в пространстве. Например, не имеет смысла говорить о том, что электромагнитная волна находится в данной точке пространства или что положение фронта волновой поверхности на воде характеризуется координатами x , y , z .

Корпускулярно-волновая двойственность свойств частиц, изучаемых в квантовой механике, приводит к тому, что в ряде случаев оказывается невозможным , в классическом смысле, одновременно характеризовать частицу ее положением в пространстве (координатами ) и скоростью (или импульсом ). Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты x и компоненты импульса . Неопределенности значений x и удовлетворяют соотношению:

. (4.2.1)

Из (4.2.1) следует, что чем меньше неопределенность одной величины (x или ), тем больше неопределенность другой. Возможно, такое состояние, в котором одна их переменных имеет точное значение (), другая переменная при этом оказывается совершенно неопределенной ( – ее неопределенность равна бесконечности), и наоборот. Таким образом, для микрочастицы не существует состояний , в которых ее координаты и импульс имели бы одновременно точные значения . Отсюда вытекает и фактическая невозможность одновременного измерения координаты и импульса микрообъекта с любой наперед заданной точностью.

Соотношение, аналогичное (4.2.1), имеет место для y и , для z и , а также для других пар величин (в классической механике такие пары называются канонически сопряженными ). Обозначив канонически сопряженные величины буквами A и B , можно записать:

. (4.2.2)

Соотношение (4.2.2) называется соотношением неопределенностей для величин A и B . Это соотношение ввёл в 1927 году Вернер Гейзенберг.

Утверждение о том, что произведение неопределенностей значений двух сопряженных переменных не может быть по порядку меньше постоянной Планка h , называется соотношением неопределенностей Гейзенберга .

Энергия и время являются канонически сопряженными величинами . Поэтому для них также справедливо соотношение неопределенностей:

. (4.2.3)

Это соотношение означает, что определение энергии с точностью должно занять интервал времени, равный, по меньшей мере,

Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличии у нее волновых свойств. Т.к. в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей указывает, в какой мере возможно пользоваться понятиями классической механики применительно к микрочастицам, в частности с какой степенью точности можно говорить о траекториях микрочастиц. Движение по траектории характеризуется вполне определенными значениями координат и скорости в каждый момент времени. Подставив в (4.2.1) вместо произведение , получим соотношение:

. (4.2.4)

Из этого соотношения следует, что чем больше масса частицы , тем меньше неопределенности ее координаты и скорости , следовательно тем с большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой кг и линейными размерами м, координата которой определена с точностью до 0,01 ее размеров ( м), неопределенность скорости, по (4.2.4),

т.е. не будет сказываться при всех скоростях, с которыми пылинка может двигаться.

Таким образом, для макроскопических тел их волновые свойства не играют никакой роли ; координаты и скорости могут быть измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Предположим, что пучок электронов движется вдоль оси x со скоростью м/с, определяемой с точностью до 0,01% ( м/с). Какова точность определения координаты электрона?

По формуле (4.2.4) получим:

.

Таким образом, положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории иными словами, описывать их движения законами классической механики.

Применим соотношение неопределенностей к электрону, двигающемуся в атоме водорода. Допустим, что неопределенность координаты электрона м (порядка размеров самого атома), тогда, согласно (4.2.4),

.

Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса приблизительно м его скорость м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электронов в атоме по определенной траектории. Иными словами, для описания движения электронов в атоме нельзя пользоваться законами классической физики.