» » Формула концентрации изопроцессы в газах. Законы идеальных газов. Кривая изохорного процесса называется изохорой

Формула концентрации изопроцессы в газах. Законы идеальных газов. Кривая изохорного процесса называется изохорой
Темы кодификатора ЕГЭ : изопроцессы - изотермический, изохорный, изобарный процессы.

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными . Иными словами, мы считаем, что:

То есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

То есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация - распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой . Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева - Клапейрона).

Термодинамический процесс (или просто процесс ) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры.

Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля - Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором - . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

(1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным :

(2)

Данное утверждение называется законом Бойля - Мариотта .

Записав закон Бойля - Мариотта в виде

(3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму . Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда. При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки - давление газа падает. Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:


-диаграмма: ось абсцисс , ось ординат ;
-диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой .

Изотерма на -диаграмме - это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру - график функции ). Изотерма-гипербола изображена на рис. 1 .

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на -диаграмме .

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2 ). Первый процесс идёт при температуре , второй - при температуре .

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй - class="tex" alt="p_2 > p_1"> . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, class="tex" alt="T_2 > T_1"> .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3 ):

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс - это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где - атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части - только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

(4)

А отсюда теперь - ввиду произвольности выбора состояний! - получаем закон Гей-Люссака :

(5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре :

(6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой . На -диаграмме изобара является прямой линией (рис. 4 ):

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать. В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый). Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на -диаграмме .
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5 ):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля - Мариотта!).

Стало быть, class="tex" alt="p_2 > p_1"> .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6 ):

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, - это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

(7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля :

(8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре :

(9)

Увеличение давления газа фиксированного объёма при его нагревании - вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Графики изохорного процесса

График изохорного процесса называется изохорой . На -диаграмме изохора является прямой линией (рис. 7 ):

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля - Мариотта). Стало быть, class="tex" alt="V_2 > V_1"> .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9 ):

Рис. 9. Изохоры на и -диаграммах

Законы Бойля - Мариотта, Гей-Люссака и Шарля называются также газовыми законами .

Мы вывели газовые законы из уравнения Менделеева - Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Изобарный процесс

Графики изопроцессов в различных системах координат

Изобарный процесс (др.-греч. ισος, isos - «одинаковый» + βαρος, baros - «вес») - процесс изменения состояния термодинамической системы при постоянном давлении ()

Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака : При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

Изохорный процесс

Изохорный процесс (от греч. хора - занимаемое место) - процесс изменения состояния термодинамической системы при постоянном объёме (). Для идеальных газов изохорический процесс описывается законом Шарля : для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

Линия, изображающая изохорный процесс на диаграмме, называется изохорой.

Ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* ν*R*T/2=3*V*ΔP, где R - универсальная газовая постоянная, ν количество молей в газе, T температура в Кельвинах, V объём газа, ΔP приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание.

Изотермический процесс

Изотермический процесс (от греч. «термос» - тёплый, горячий) - процесс изменения состояния термодинамической системы при постоянной температуре ()(). Изотермический процесс описывается законом Бойля - Мариотта :

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

Изоэнтропийный процесс

Изоэнтропийный процесс - процесс изменения состояния термодинамической системы при постоянной энтропии (). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

где - показатель адиабаты , определяемый типом газа.


Wikimedia Foundation . 2010 .

Смотреть что такое "Изопроцессы" в других словарях:

    Изопроцессы термодинамические процессы, во время которых масса и ещё одна из физических величин параметров состояния: давление, объём или температура остаётся неизменной. Так, неизменному давлению соответствует изобарный процесс, объёму изохорный … Википедия

    Молекулярно кинетическая теория (сокращённо МКТ) теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений: все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов; частицы… … Википедия

    - (сокращённо МКТ) теория, рассматривающая строение вещества с точки зрения трёх основных приближенно верных положений: все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов; частицы находятся в непрерывном… … Википедия

Книги

  • Статистическое прогнозирование деформационно-прочностных характеристик конструкционных материалов , Г. Плювинаж , В. Т. Сапунов , В настоящей книге представлен новый метод, предлагающий общую методологию прогнозирования характеристик кинетических процессов, единую для металлических и полимерных материалов. Метод… Категория: Учебники для ВУЗов Издатель:

Термодинамический процесс (тепловой процесс) – изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Виды тепловых процессов:

Адиабатный процесс - без теплообмена с окр. средой;

Изохорный процесс - происходящий при постоянном объёме;

Изобарный процесс - происходящий при постоянном давлении;

Изотермический процесс - происходящий при постоянной температуре;

Изоэнтропийный процесс - происходящий при постоянной энтропии;

Изоэнтальпийный процесс - происходящий при постоянной энтальпии;

Политропный процесс - происходящий при постоянной теплоёмкости.

Уравнение Менделеева-Клайперона (уравнение состояния идеального газа):

PV = nRT, где n – число молей газа, P – давление газа, V – объем газа, T – температура газа, R – универсальная газовая постоянная

Изопроцессы идеального газа. Их изображение в P - V диаграммах.

1) Изобарный процесс p = const, V/T = const

2) Изохорный процесс V = const, p/T = const

3) Изотермический процесс T = const, pV = const

Термодинамические процессы. Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Их изображение на Р- V диаграммах.

Термодинамические процессы. Совокупность изменяющихся состояний рабочего тела называется термодинамическим процессом.

Идеальный газ - изучаемый в термодинамике воображаемый газ, у которого отсутствуют силы межмолекулярного притяжения н отталкивания, а сами молекулы представляют собой материальные точки, не имеющие объема. Многие реальные газы по своим физическим свойствам весьма близки к идеальному газу.

Основными процессами в термодинамике являются:

    изохорный , протекающий при постоянном объеме;

    изобарный , протекающий при постоянном давлении;

    изотермический , происходящий при постоянной температуре;

    адиабатный , при котором теплообмен с окружающей средой отсутствует;

Изохорный процесс

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv =RT) следует:

p/T =R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 =T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q =c v (T 2 - T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu =q , а значит изменение внутренней энергии можно определить по формуле:

Δu =c v (T 2 - T 1 ).

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v / T =R / p =const

v 2 /v 1 =T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l =p (v 2 – v 1 ).

Т. к. pv 1 =RT 1 иpv 2 =RT 2 , то

l =R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q =c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 / p 1 =v 1 / v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l =RT ln (v 2 – v 1 ) =RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q =l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs =R ln(p 1 /p 2 ) =R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du +p dv = 0

Δu +l = 0,

следовательно

Δu = -l.

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq =c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v =k

и уравнение кривой адиабатного процесса (адиабаты) в p, v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит названиепоказателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = - Δu = c v (T 1 – T 2 );

i 1 – i 2 = c p (T 1 – T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 – i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . ВT, s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называетсяреальным адиабатным процессом .

Уравнение Менделеева-Клапейрона

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = n RT

где n – число молей газа;

P – давление газа (например, в атм ;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O 2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1атм .

Билет 16

Вывод основного уравнения молекулярно-кинетической теории. Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Вывод основного уравнения МКТ.

Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Билет 17.

Первое начало термодинамики. Работа газа при изменении объема. Вычислить работу изотермического расширения газа.

Количество теплоты , полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. В циклическом процессе внутренняя энергия не изменяется.

Работа при изотермическом расширении газа вычисляется как площадь фигуры под графиком процесса.


Билет 18.

Теплоемкость идеального газа.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT).

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

C p = C V + R.

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

Билет 19.

Цикл Карно. Тепловая и холодильная машины. КПД цикла Карно.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно

Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тх и рабочего тела .

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура ) и S (энтропия ).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру Тн, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно , состоящий из следующих стадии: адиабатического сжатия за счёт совершения работы (на рис. 1 - процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 - процесс Б→А); адиабатического расширения (на рис. 1 - процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 - процесс Г→В).

Билет 20.

Второе начало термодинамики. Энтропия. Третье начало термодинамики.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах .

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода , показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом , не доказываемым в рамках классической термодинамики . Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса ).

Постулат Томсона (Кельвина) : «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона ).

Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии ).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю . Является одним из постулатов термодинамики , принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение). Третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики).

Термодинамическая энтропия S , часто просто именуемая энтропия , - физическая величина , используемая для описания термодинамической системы , одна из основных термодинамических величин . Энтропия является функцией состояния и широко используется в термодинамике , в том числе химической .

Основными процессами в термодинамике являются:

  • изохорный , протекающий при постоянном объеме;
  • изобарный , протекающий при постоянном давлении;
  • изотермический , происходящий при постоянной температуре;
  • адиабатный , при котором теплообмен с окружающей средой отсутствует;
  • политропный , удовлетворяющий уравнению pv n = const.

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в p v иT s координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Изохорный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT ) следует:

p/T = R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 = T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q = c v (T 2 T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu = q , а значит изменение внутренней энергии можно определить по формуле:

Δu = c v (T 2 — T 1) .

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v/T = R/p = const

v 2 /v 1 = T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l = p (v 2 v 1 ).

Т. к. pv 1 = RT 1 и pv 2 = RT 2 , то

l = R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q = c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

Изотермический процесс в p , v — , T , s — и i , s -координатах (диаграммах)

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 /p 1 = v 1 /v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l = RT ln (v 2 – v 1 ) = RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q = l .

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs = R ln(p 1 /p 2 ) = R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатный процесс в p , v — , T , s — и i , s -координатах (диаграммах)

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du + p dv = 0

Δu + l = 0,

следовательно

Δu = —l .

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq = c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v = k

и уравнение кривой адиабатного процесса (адиабаты) в p , v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = — Δu = c v (T 1 T 2 );

i 1 i 2 = c p (T 1 T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . В T , s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом .

Политропный процесс

Политропным называется процесс, который описывается уравнением:

pv n = const.

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p , v и T в любых двух точках на политропе:

p 2 /p 1 = (v 1 /v 2 ) n ; T 2 /T 1 = (v 1 /v 2 ) n-1 ; T 2 /T 1 = (p 2 /p 1 ) (n-1)/n .

Работа расширения газа в политропном процессе равна:

В случае идеального газа эту формулу можно преобразовать:

Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:

q = (u 2 – u 1 ) + l .

Поскольку

представляет собой теплоемкость идеального газа в политропном процессе.

При c v , k и n = const c n = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p , v координатах в зависимости от показателя политропа n .

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

pv k = const (n = k ) – адиабата.

n > 0 – гиперболические кривые,

n < 0 – параболы.

По материалам моего конспекта лекций по термодинамике и учебника «Основы энергетики». Автор Г. Ф. Быстрицкий. 2-е изд., испр. и доп. - М. :КНОРУС, 2011. - 352 с.

, термодинамическим процессом называют изменение состояния системы , в результате которого хотя бы один из ее параметров (температура, объем или давление) изменяет свое значение. Впрочем, если учесть, что все параметры термодинамической системы неразрывно взаимосвязаны, то изменение любого из них неизбежно влечет изменение хотя бы одного (в идеале) или нескольких (в реальности) параметров. В общем случае можно сказать, что термодинамический процесс связан с нарушением равновесия системы, и если система находится в равновесном состоянии, то никаких термодинамических процессов в ней протекать не может.

Равновесное состояние системы - понятие абстрактное, поскольку невозможно изолировать что-либо материальное от окружающего мира, поэтому в любой реальной системе неизбежно протекают разнообразные термодинамические процессы. При этом в некоторых системах могут иметь место настолько медленные, почти незаметные изменения, что связанные с ними процессы можно условно считать состоящими из последовательности равновесных состояний системы. Такие процессы называют равновесными или квазистатическими .
Еще один возможный сценарий последовательных изменений в системе, после которых она возвращается к исходному состоянию, называют круговым процессом или циклом . Понятия равновесного и кругового процесса лежат в основе многих теоретических выводов и прикладных приемов термодинамики.

Изучение термодинамического процесса заключается в определении работы, совершенной в данном процессе, изменения внутренней энергии, количества теплоты, а также в установлении связи между отдельными величинами, характеризующими состояние газа.

Из всех возможных термодинамических процессов наибольший интерес представляют изохорный , изобарный , изотермический , адиабатный и политропный процессы.

Изохорный процесс

Изохорным называют термодинамический процесс, протекающий при постоянном объеме. Такой процесс может совершаться при нагревании газа, помещенного в закрытый сосуд. Газ в результате подвода теплоты нагревается, и его давление возрастает.
Изменение параметров газа в изохорном процессе описывает закон Шарля : p 1 /T 1 = p 2 /T 2 , или в общем случае:

p/T = const .

Давление газа на стенки сосуда прямо пропорционально абсолютной температуре газа.

Так как в изохорном процессе изменение объема dV равно нулю, то можно сделать вывод, что вся подведенная к газу теплота расходуется на изменение внутренней энергии газа (никакая работа не совершается) .

Изобарный процесс

Изобарным называют термодинамический процесс, протекающий при постоянном давлении. Такой процесс можно осуществить, поместив газ в плотный цилиндр с подвижным поршнем, на который действует постоянная внешняя сила при отводе и подводе теплоты.
При изменении температуры газа поршень перемещается в ту или иную сторону; при этом объем газа изменяется в соответствии с законом Гей-Люссака :

V/T = const .

Это означает, что в изобарном процессе объем занимаемый газом, прямо пропорционален температуре.
Можно сделать вывод, что изменение температуры в этом процессе неизбежно приведет к изменению внутренней энергии газа, а изменение объема связано с выполнением работы, т. е. при изобарном процессе часть тепловой энергии тратится на изменение внутренней энергии газа, а другая часть – на выполнение газом работы по преодолению действия внешних сил. При этом соотношение между затратами теплоты на увеличение внутренней энергии и на выполнение работы зависит от теплоемкости газа.

Изотермический процесс

Изотермическим называют термодинамический процесс, протекающий при неизменной температуре.
Практически осуществить изотермический процесс с газом очень трудно. Ведь необходимо соблюсти условие, чтобы в процессе сжатия или расширения газ успевал обмениваться температурой с окружающей средой, поддерживая собственную температуру постоянной.
Изотермический процесс описывается законом Бойля-Мариотта : pV = const , т. е. при постоянной температуре величина давления газа обратно пропорциональна его объему.

Очевидно, что при изотермическом процессе внутренняя энергия газа не изменяется, поскольку его температура постоянна.
Чтобы выполнялось условие постоянства температуры газа, от него необходимо отводить теплоту, эквивалентную работе, затраченной на сжатие:

dq = dA = pdv .

Используя уравнение состояния газа, проделав ряд преобразований и подстановок, можно сделать вывод, что работа газа при изотермическом процессе определяется выражением:

A = RT ln(p 1 /p 2).



Адиабатный процесс

Адиабатным называют термодинамический процесс, протекающий без теплообмена рабочего тела с окружающей средой. Подобно изотермическому, осуществить на практике адиабатный процесс очень сложно. Такой процесс может протекать с рабочим телом, помещенным в сосуд, например, цилиндр с поршнем, окруженный высококачественным теплоизолирующим материалом.
Но какой бы качественный теплоизолятор мы не применяли в данном случае, некоторым, пусть даже ничтожно малым, количеством теплоты рабочее тело и окружающая среда неизбежно будут обмениваться.
Поэтому на практике можно создать лишь приближенную модель адиабатного процесса. Тем не менее, многие термодинамические процессы, осуществляемые в теплотехнике, протекают настолько быстро, что рабочее тело и среда не успевают обмениваться теплотой, поэтому с некоторой степенью погрешности такие процессы можно рассматривать как адиабатные.

Для вывода уравнения, связывающего давление и объем 1 кг газа в адиабатном процессе, запишем уравнение первого закона термодинамики:

dq = du + pdv .

Поскольку для адиабатного процесса теплопередача dq равна нулю, а изменение внутренней энергии есть функция теплопроводности от температуры: du = c v dT , то можно записать:

c v dT + pdv = 0 (3) .

Продифференцировав уравнение Клапейрона pv = RT , получим:

pdv + vdp = RdT .

Выразим отсюда dT и подставим в уравнение (3) . После перегруппировки и преобразований получим:

pdvc v /(R + 1) + c v vdp/R = 0 .

С учетом уравнения Майера R = c p – c v последнее выражение можно переписать в виде:

pdv(c v + c p - c v)/(c p – c v) + c v vdp/(c p – c v) = 0 ,

c p pdv + c v vdp = 0 (4) .

Разделив полученное выражение на c v и обозначив отношение c p /c v буквой k , после интегрирования уравнения (4) получим (при k = const) :

ln vk + ln p = const или ln pvk = const или pvk = const .

Полученное уравнение является уравнением адиабатного процесса, в котором k – показатель адиабаты.
Если предположить, что объемная теплоемкость c v является величиной постоянной, т. е. c v = const , то работу адиабатного процесса можно представить в виде формулы (приводится без вывода) :

l = c v (T 1 – T 2) или l = (p 1 v 1 – p 2 v 2)/(k-1) .

Политропный процесс

В отличие от рассмотренных выше термодинамических процессов, когда какой-либо из параметров газа оставался неизменным, политропный процесс характеризуется возможностью изменения любого из основных параметров газа. Все рассмотренные выше термодинамические процессы являются частными случаями политропных процессов.
Общее уравнение политропного процесса имеет вид pv n = const , где n – показатель политропы - постоянная для данного процесса величина, которая может принимать значения от - ∞ до + ∞ .

Очевидно, что придавая показателю политропы определенные значения, можно получить тот или иной термодинамический процесс – изохорный, изобарный, изотермический или адиабатный.
Так, если принять n = 0 , получим p = const – изобарный процесс, если принять n = 1 , получим изотермический процесс, описываемый зависимостью pv = const ; при n = k процесс является адиабатным, а при n равном - ∞ или + ∞ . мы получим изохорный процесс.