» » Какой вид колебаний представляет собой переменный ток. Электрические колебания и электромагнитные волны. Смотреть что такое "электрические колебания" в других словарях

Какой вид колебаний представляет собой переменный ток. Электрические колебания и электромагнитные волны. Смотреть что такое "электрические колебания" в других словарях

Период колебания такого тока много больше времени распространения что значит что процесс за время τ почти не изменится. Свободные колебания в контуре без активного сопротивления Колебательный контур – цепь из индуктивности и емкости. Найдем уравнение колебания.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция

Электрические колебания

План

  1. Квазистационарные токи
  2. Свободные колебания в контуре без активного сопротивления
  3. Переменный ток
  4. Излучение диполя
  1. Квазистационарные токи

Электромагнитное поле распространяется со скоростью света.

l – длина проводника

Условие квазистационарных токов:

Период колебания такого тока много больше времени распространения, что значит, что процесс за время τ почти не изменится.

Мгновенные значения квазистационарных токов подчиняются законам Ома и Кирхгофа.

2)Свободные колебания в контуре без активного сопротивления

Колебательный контур – цепь из индуктивности и емкости.

Найдем уравнение колебания. Положительным будем считать ток зарядки конденсатора.

Разделив обе части уравнения на L , получим

Пусть

Тогда уравнение колебаний примет вид

Решение такого уравнения имеет вид:

Формула Томсона

Сила тока опережает по фазе U на π /2

  1. Свободные затухающие колебания

Всякий реальный контур обладает активным сопротивлением, энергия идет на нагревание, колебания затухают.

При

Решение:

Где

Частота затухающих колебаний меньше собственной частоты

При R=0

Логарифмический декремент затухания:

Если затухание невелико

Добротность:

  1. Вынужденные электрические колебания

Напряжение на емкости отстает по фазе от силы тока на π /2, а напряжение на индуктивности опережает по фазе ток на π /2. Напряжение на активном сопротивлении изменяется в фазе с током.

  1. Переменный ток

Полное электрическое сопротивление (импеданс)

Реактивное индуктивное сопротивление

Реактивное емкостное сопротивление

Мощность в цепи переменного тока

Действующие значения в цепи переменного тока

с osφ - коэффициент мощности

  1. Излучение диполя

Простейшая система, излучающая ЭМВ – электрический диполь.

Дипольный момент

r – радиус-вектор заряда

l – амплитуда колебаний

Пусть

Волновая зона

Волновой фронт сферический

Сечения волнового фронта через диполь – меридианы , через перпендикуляры к оси диполя – параллели .

Мощность излучения диполя

Средняя мощность излучения диполя пропорциональна квадрату амплитуды электрического момента диполя и 4 степени частоты.

а – ускорение колеблющегося заряда.

Большинство естественных и искусственных источников электромагнитного излучения удовлетворяет условию

d – размер области излучения

Или

v – средняя скорость зарядов

Такой источник электромагнитного излучения – диполь Герца

Область расстояний до диполя Герца называется волновой зоной

Полная средняя интенсивность излучения диполя Герца

Всякий заряд, движущийся с ускорением, возбуждает электромагнитные волны, причем мощность излучения пропорциональна квадрату ускорения и квадрату заряда

Другие похожие работы, которые могут вас заинтересовать.вшм>

6339. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ 48.84 KB
Колебаниями называются процессы движения или изменения состояния в той или иной степени повторяющиеся во времени. В зависимости от физической природы повторяющегося процесса различают: ― механические колебания колебания маятников струн частей машин и механизмов мостов крыльев самолетов...
5890. КОЛЕБАНИЯ РОТОРОВ 2.8 MB
Положение сечения вала для различных значений фазы колебаний изображено на рис. Резонансное увеличение амплитуды колебаний будет продолжаться до тех пор пока вся энергия колебаний не будет уходить на преодоление сил трения или пока вал не разрушится.
21709. УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ И ПРЕОБРАЗОВАТЕЛИ 34.95 KB
Они могут быть использованы для преобразования электрической энергии в механическую и обратно. В качестве материалов для преобразователей применяются вещества с сильно выраженной связью упругого и электрического или магнитного состояний. выше порога слышимости для человеческого уха то такие колебания называют ультразвуковыми УЗК. Для получения УЗ-колебаний применяют пьезоэлектрические магнитострикционные электромагнитно-акустические ЭМА и другие преобразователи.
15921. Электрические станции 4.08 MB
Под энергосистемой понимают совокупность электростанций электрических и тепловых сетей соединенных между собой и связанных общностью режима в непрерывном процессе производства преобразования и распределения электрической энергии и тепла при общем управлении этим режимом...
2354. ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МЕТАЛЛИЧЕСКИХ СПЛАВОВ 485.07 KB
Преимущества меди обеспечивает ей широкое применение в качестве проводникового материала следующие: Малое удельное сопротивление. Интенсивное окисление меди происходит только при повышенных температурах. Получение меди. Зависимость скорости окисления от температуры для железа вольфрама меди хрома никеля на воздухе После ряда плавок руды и обжигов с интенсивным дутьем медь предназначаемую для электротехнических целей обязательно подвергают электролитической очистке полученные после электролиза катодные пластины...
6601. 33.81 KB
Явлением стробоскопического эффекта является применение схем включения ламп таким образом чтобы соседние лампы получали напряжение со сдвигом фаз т. Защитный угол светильника – угол заключённый между горизонталью проходящей через тело накала лампы и линией соединяющей крайнюю точку тела накала с противоположным краем отражателя. где h расстояние от тела накала лампы до уровня выходного отверстия светильника...
5773. Гибридные электрические станции на территории острова Сахалин 265.76 KB
Основные виды возобновляемых природных энергетических ресурсов ВПЭР Сахалинской области это геотермальные ветроэнергетические и приливные. Наличие значительных ресурсов ветра и приливной энергии обусловлено уникальностью островного расположения области а присутствие ресурсов термальных вод и парогидротерм перспективных для освоения активной вулканической...
2093. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕПЕЙ КАБЕЛЬНЫХ ЛИНИЙ СВЯЗИ 90.45 KB
Эквивалентная схема цепи связи R и G обусловливают потери энергии: первый потери на тепло в проводниках и других металлических частях экран оболочка броня второй потери в изоляции. Активное сопротивление цепи R складывается из сопротивления проводников самой цепи и дополнительного сопротивления обусловленного потерями в окружающих металлических частях кабеля соседние проводники экран оболочка броня. При расчете активного сопротивления обычно суммируются...
2092. ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЛОКОННО-ОПТИЧЕСКИХ КАБЕЛЕЙ СВЯЗИ 60.95 KB
В одномодовых световодах диаметр сердечника соизмерим с длиной волны d^λ и по нему передается лишь один тип волны мода. В многомодовых световодах диаметр сердечника больше длины волны d λ и по нему распространяется большое число волн. Информация передается через диэлектрик световод в форме электромагнитной волны. Направление волны осуществляется за счет отражений от границы с разными значениями показателя преломления у сердечника и оболочки п1 и п2 световода.
11989. Специальные электрические детонаторы мгновенного действия и специальные водостойкие капсюли-детонаторы с различными степенями замедления 17.47 KB
Пиротехнические замедлители для СКД разработаны на базе окислительновосстановительных реакций имеющих высокую стабильность горения среднеквадратичное отклонение менее 15 от общего времени горения даже после длительного хранения в негерметичном состоянии в сложных климатических условиях. Разработано два состава: со скоростью горения 0004÷004м с и временем замедления – до 10с размер замедляющего элемента до 50мм; со скоростью горения 004÷002м с обладает повышенными воспламенительными свойствами.

Электрические колебания и электромагнитные волны

Колебательные изменения в электрической цепи величин заряда, тока или напряжения называют электрическими колебаниями. Переменные электрический ток является одним из видов электрических колебаний.

Электрические колебания высокой частоты получают в большинстве случаев с помощью колебательного контура.

Колебательный контур представляет замкнутую цепь, состоящую из индуктивности L и емкости C .

Период собственных колебаний контура:

а ток в контуре изменяется но закону затухающих колебаний:

При воздействии на колебательный контур переменной ЭДС в контуре устанавливаются вынужденные колебания. Амплитуда вынужденных колебаний тока при постоянных значениях L , C , R зависит от отношения собственной частоты колебаний контура и частоты изменения синусоидальной ЭДС (рис.1).

Согласно закону Био–Савара–Лапласа ток проводимости создает магнитное поле с замкнутыми силовыми линиями. Такое поле называется вихревым .

Переменный ток проводимости создает переменное магнитное поле. Переменный ток в отличие от постоянного проходит через конденсатор; но этот ток не является током проводимости; он называется током смещении . Ток смещения представляет собой изменяющееся но времени электрическое поле; он создает переменное магнитное поле, как и переменный ток проводимости. Плотность тока смещения:

В каждой точке пространства изменение во времени индукции электрического поля создает переменное вихревое магнитное поле (рис.2а). Векторы B возникающего магнитного ноля лежат в плоскости, перпендикулярной к вектору D . Математическое уравнение, выражающее эту закономерность, называется первым уравнением Максвелла .

При электромагнитной индукции возникает электрическое поле с замкнутыми силовыми линиями (вихревое ноле), которое проявляется как ЭДС индукции. В каждой точке пространства изменение во времени вектора индукции магнитного поля создает переменное вихревое электрическое поле (рис.2б). Векторы D возникающего электрического поля лежат в плоскости, перпендикулярной к вектору B . Математическое уравнение, описывающее эту закономерность, называется вторым уравнением Максвелла .

Совокупность переменных электрических и магнитных полей, которые неразрывно связаны друг с другом, называется электромагнитным полем.

Из уравнений Максвелла следует, что возникшее в какой-либо точке изменение во времени электрического (или магнитного) поля будет перемещаться от одной точки к другой, при этом будут происходить взаимные превращения электрических и магнитных полей.

Электромагнитные волны представляют собой процесс одновременного распространения в пространстве изменяющихся электрического и магнитного полей. Векторы напряженностей электрического и магнитного полей (E и H ) к электромагнитной волне перпендикулярны друг к другу, а вектор v скорости распространения перпендикулярен к плоскости, в которой лежат оба вектора E и H (рис.3), Это справедливо при распространении электромагнитных волн и неограниченном пространстве.

Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна

Скорость электромагнитных волн в различных средах меньше скорости в вакууме.

Под электрическими колебаниями понимают периодические изменения заряда, силы тока и напряжения. Простейшая система, в которой возможны свободные электрические колебания, - это так называемый колебательный контур. Это устройство, состоящее из соединенных между собой конденсатора и катушки. Будем полагать, что активное сопротивление катушки отсутствует, в этом случае контур называют идеальным. При сообщении этой системе энергии в ней будут происходить незатухающие гармонические колебания заряда на конденсаторе, напряжения и тока.

Сообщить колебательному контуру энергию можно разными способами. Например, зарядив конденсатор от источника постоянного тока или возбудив ток в катушке индуктивности. В первом случае энергией обладает электрическое поле между обкладками конденсатора. Во втором, энергия заключена в магнитном поле тока, текущего по цепи.

§1 Уравнение колебаний в контуре

Докажем, что при сообщении контуру энергии в нем будут происходить незатухающие гармонические колебания. Для этого необходимо получить дифференциальное уравнение гармонических колебаний вида .

Допустим, конденсатор зарядили и замкнули на катушку. Конденсатор начнет разряжаться, по катушке потечет ток. Согласно второму закону Кирхгофа сумма падений напряжений вдоль замкнутого контура равна сумме ЭДС в этом контуре .

В нашем случае падение напряжения поскольку контур идеальный. Конденсатор в цепи ведет себя как источник тока, в качестве ЭДС выступает разность потенциалов между обкладками конденсатора , где - заряд на конденсаторе, - электроемкость конденсатора. Кроме того, при протекании через катушку изменяющегося тока в ней возникает ЭДС самоиндукции , где - индуктивность катушки, - скорость изменения тока в катушке. Поскольку ЭДС самоиндукции препятствует процессу разрядки конденсатора второй закон Кирхгофа принимает вид

Но ток в контуре – это ток разрядки или зарядки конденсатора, следовательно . Тогда

Дифференциальное уравнение преобразуется к виду



Введя обозначение , получим известное нам дифференциальное уравнение гармонических колебаний .

Это означает, что заряд на конденсаторе в колебательном контуре будет изменяться по гармоническому закону

где - максимальное значение заряда на конденсаторе, - циклическая частота, - начальная фаза колебаний.

Период колебаний заряда . Это выражение носит название формулы Томпсона.

Напряжение на конденсаторе

Ток в цепи

Видим, что кроме заряда на конденсаторе по гармоническому закону будут изменять еще ток в контуре и напряжение на конденсаторе. Напряжение колеблется в одной фазе с зарядом, а сила тока опережает заряд по

фазе на .

Энергия электрического поля конденсатора

Энергия магнитного поля тока

Таким образом, энергии электрического и магнитного полей тоже изменяются по гармоническому закону, но с удвоенной частотой.

Подведем итог

Под электрическими колебаниями следует понимать периодические изменения заряда, напряжения, силы тока, энергии электрического поля, энергии магнитного поля. Эти колебания, как и механические, могут быть как свободными, так и вынужденными, гармоническим и негармоническим. Свободные гармонические электрические колебания возможны в идеальном колебательном контуре.

§2 Процессы, происходящие в колебательном контуре

Мы математически доказали факт существования свободных гармонических колебаний в колебательном контуре. Однако, остается неясным, почему такой процесс возможен. Что является причиной возникновения колебаний в контуре?

В случае свободных механических колебаний такая причина была найдена – это внутренняя сила, возникающая при выведении системы из по- ложения равновесия. Эта сила в любой момент направлена к положению равновесия и пропорциональна координате тела (со знаком «минус»). Попробуем найти аналогичную причину возникновения колебаний в колебательном контуре.

Пусть колебания в контуре возбуждают, зарядив конденсатор и замкнув его на катушку.

В начальный момент времени заряд на конденсаторе максимален. Следовательно, напряжение и энергия электрического поля конденсатора тоже максимальны.

Ток в контуре отсутствует, энергия магнитного поля тока равна нулю.

Первая четверть периода – разрядка конденсатора.

Обкладки конденсатора, имеющие разные потенциалы, соединили проводником, поэтому конденсатор начинает разряжаться через катушку. Заряд, напряжение на конденсаторе и энергия электрического поля убывают.

Ток, появившийся в цепи, нарастает, однако, его нарастанию препятствует ЭДС самоиндукции, возникающая в катушке. Энергия магнитного поля тока увеличивается.

Прошла четверть периода - конденсатор разрядился.

Конденсатор разрядился, напряжение на нем стало равным нулю. Энергия электрического поля в этот момент тоже равна нулю. По закону сохранения энергии исчезнуть она не могла. Энергия поля конденсатора полностью перешла в энергию магнитного поля катушки, которая в этот момент достигает своего максимального значения. Максимален ток в цепи.

Казалось бы, в этот момент ток в цепи должен прекратиться, ибо исчезла причина возникновения тока – электрическое поле. Однако, исчезновению тока опять таки препятствует ЭДС самоиндукции в катушке. Теперь она будет поддерживать убывающий ток, и он будет продолжать течь в прежнем направлении, заряжая конденсатор. Начинается вторая четверть периода.

Вторая четверть периода – перезарядка конденсатора.

Ток, поддерживаемый ЭДС самоиндукции, продолжает течь в прежнем направлении, постепенно уменьшаясь. Этот ток заряжает конденсатор в противоположной полярности. Заряд и напряжение на конденсаторе увеличиваются.

Энергия магнитного поля тока, убывая, переходит в энергию электрического поля конденсатора.

Прошла вторая четверть периода – конденсатор перезарядился.

Конденсатор перезаряжается до тех пор, пока существует ток. Поэтому в тот момент, когда ток прекращается, заряд и напряжение на конденсаторе принимают максимальное значение.

Энергия магнитного поля в этот момент полностью перешла в энергию электрического поля конденсатора.

Ситуация в контуре в этот момент, эквивалентна исходной. Процессы в контуре повторятся, но в обратном направлении. Одно полное колебание в контуре, длящееся в течение периода, закончится, когда система вернется в исходное состояние, то есть когда конденсатор перезарядится в первоначальной полярности.

Нетрудно видеть, что причиной возникновения колебаний в контуре служит явление самоиндукции. ЭДС самоиндукции препятствует изменению тока: она не дает ему мгновенно нарастать и мгновенно исчезать.

Кстати, будет не лишним сопоставить выражения для расчета квазиупругой силы в механической колебательной системе и ЭДС самоиндукции в контуре:

Ранее были получены дифференциальные уравнения для механической и электрической колебательной систем:

Несмотря на принципиальные отличия физических процессов к механических и электрических колебательных системах, явно просматривается математическая тождественность уравнений, описывающих процессы в этих системах. Об этом следует поговорить подробнее.

§3 Аналогия между электрическими и механическими колебаниями

Внимательный анализ дифференциальных уравнений для пружинного маятника и колебательного контура, а так же формул, связывающих величины, характеризующих процессы в этих системах, позволяет выявить, какие величины ведут себя одинаково (таблица 2).

Пружинный маятник Колебательный контур
Координата тела () Заряд на конденсаторе ()
Скорость тела Сила тока в контуре
Потенциальная энергия упруго деформированной пружины Энергия электрического поля конденсатора
Кинетическая энергия груза Энергия магнитного поля катушки с током
Величина, обратная жесткости пружины Емкость конденсатора
Масса груза Индуктивность катушки
Сила упругости ЭДС самоиндукции, равная напряжению на конденсаторе

Таблица 2

Важно не просто формальное сходство между величинами, описывающими процессы колебания маятника и процессы в контуре. Тождественны сами процессы!

Крайние положения маятника эквивалентны состоянию контура, когда заряд на конденсаторе максимален.

Положение равновесия маятника эквивалентно состоянию контура, когда конденсатор разряжен. В этот момент сила упругости обращается в ноль, а в контуре отсутствует напряжение на конденсаторе. Скорость маятника и сила тока в контуре максимальны. Потенциальная энергия упругой деформации пружины и энергия электрического поля конденсатора равны нулю. Энергия системы состоит из кинетической энергии груза или из энергии магнитного поля тока.

Разрядка конденсатора протекает аналогично движению маятника из крайнего положения в положение равновесия. Процесс перезарядки конденсатора тождественен процессу удаления груза из положения равновесия в крайнее положение.

Полная энергия колебательной системы или остается неизменной с течением времени.

Подобная аналогия может быть прослежена не только между пружинным маятником и колебательным контуром. Всеобщи закономерности свободных колебаний любой природы! Эти закономерности, проиллюстрированные на примере двух колебательных систем (пружинном маятнике и колебательном контуре) не просто можно, а нужно видеть в колебаниях любой системы.

В принципе, можно решить задачу о любом колебательном процессе, заменив его колебаниями мятника. Для этого достаточно грамотно построить эквивалентную механическую систему, решить механическую задачу и провести замену величин в окончательном результате. Например, нужно найти период колебаний в контуре, содержащем конденсатор и две катушки, соединенные параллельно.

Колебательный контур содержит один конденсатор и две катушки. Поскольку катушка ведет себя как груз пружинного маятника, а конденсатор как пружина, то эквивалентная механическая система должна содержать одну пружину и два груза. Вся проблема в том, как грузы прикреплены к пружине. Возможны два случая: один конец пружины закреплен, а к свободному концу прикреплен один груз, второй находится на первом или грузы прикреплены к разным концам пружины.

При параллельном соединении катушек разной индуктивности токи по ним текут разные. Следовательно, скорости грузов в тождественной механической системе тоже должны быть разными. Очевидно, это возможно лишь во втором случае.

Период этой колебательной системы нами уже найден. Он равен . Заменяя массы грузов на индуктивности катушек, а величину, обратную жесткости пружины, на емкость конденсатора, получаем .

§4 Колебательный контур с источником постоянного тока

Рассмотрим колебательный контур, содержащий источник постоянного тока. Пусть конденсатор первоначально не заряжен. Что будет происходить в системе после замыкания ключа К? Будут ли в этом случае наблюдаться колебания и какова их частота и амплитуда?

Очевидно, после замыкания ключа конденсатор начнет заряжаться. Записываем второй закон Кирхгофа:

Ток в контуре – это ток зарядки конденсатора, следовательно . Тогда . Дифференциальное уравнение преобразуется к виду

*Решаем уравнение заменой переменных.

Обозначим . Дифференцируем дважды и с учетом того, что , получаем . Дифференциальное уравнение приобретает вид

Это дифференциальное уравнение гармонических колебаний, его решением является функция

где - циклическая частота, константы интегрирования и находятся из начальных условий.

Заряд на конденсаторе меняется по закону

Сразу после замыкания ключа заряд на конденсаторе равен нулю и ток в контуре отсутствует . С учетом начальных условий получаем систему уравнений:

Решая систему, получаем и . После замыкания ключа заряд на конденсаторе изменяется по закону .

Нетрудно видеть, что в контуре происходят гармонические колебания. Наличие в контуре источника постоянного тока не повлияло на частоту колебаний, она осталась равной . Изменилось «положение равновесия» - в тот момент, когда ток в цепи максимален, конденсатор заряжен. Амплитуда колебаний заряда на конденсаторе равна Cε.

Этот же результат можно получить проще, используя аналогию между колебаниями в контуре и колебаниями пружинного маятника. Источник постоянного тока эквивалентен постоянному силовому полю, в которое помещен пружинный маятник, например, полю тяготения. Отсутствие заряда на конденсаторе в момент замыкания цепи тождественно отсутствию деформации пружины в момент приведения маятника в колебательное движение.

В постоянном силовом поле период колебаний пружинного маятника не изменяется. Период колебаний в контуре ведет себя так же – он остается неизменным при введении в контур источника постоянного тока .

В положении равновесия, когда скорость груза максимальна, пружина деформирована:

Когда ток в колебательном контуре максимален . Второй закон Кирхгофа запишется следующим образом

В этот момент заряд на конденсаторе равен Этот же результат можно было получить на основании выражения (*), выполнив замену

§5 Примеры решения задач

Задача 1 Закон сохранения энергии

L = 0,5 мкГн и конденсатора емкостью С = 20 пФ происходят электрические колебания. Чему равно максимальное напряжение на конденсаторе, если амплитуда тока в контуре 1 мА? Активное сопротивление катушки пренебрежимо мало.

Решение:

2 В тот момент, когда напряжение на конденсаторе максимально (максимален заряд на конденсаторе), ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

3 В момент, когда ток в цепи максимален, конденсатор полностью разряжен. Полная энергия системы состоит только из энергии магнитного поля катушки

4 На основании выражений (1), (2), (3) получаем равенство . Максимальное напряжение на конденсаторе равно

Задача 2 Закон сохранения энергии

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с периодом Т = 1 мкс. Максимальное значение заряда . Чему равен ток в контуре в тот момент, когда заряд на конденсаторе равен ? Активное сопротивление катушки пренебрежимо мало.

Решение:

1 Поскольку активным сопротивлением катушки можно пренебречь, полная энергия системы, состоящая из энергии электрического поля конденсатора и энергии магнитного поля катушки, остается неизменной с течением времени:

2 В тот момент, когда заряд на конденсаторе максимален, ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

3 На основании (1) и (2) получаем равенство . Ток в контуре равен .

4 Период колебаний в контуре определяется формулой Томсона . Отсюда . Тогда для тока в контуре получаем

Задача 3 Колебательный контур с двумя параллельно соединенными конденсаторами

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с амплитудой заряда . В тот момент, когда заряд на конденсаторе максимален, замыкают ключ К. Каким станет период колебаний в контуре после замыкания ключа? Чему равна амплитуда тока в контуре после замыкания ключ? Омическим сопротивлением контура пренебречь.

Решение:

1 Замыкание ключа приводит к появлению в контуре еще одного конденсатора, подключенного параллельно первому. Общая емкость двух параллельно соединенных конденсаторов равна .

Период колебаний в контуре зависит только от его параметров и не зависит от того, как в системе возбудили колебания и какую энергию сооб- щили системе для этого. Согласно формуле Томсона .

2 Для нахождения амплитуды тока выясним, какие процессы происходят в контуре после замыкания ключа.

Второй конденсатор подключили в тот момент, когда заряд на первом конденсаторе был максимален, следовательно, ток в контуре отсутствовал.

Контурный конденсатор должен начать разряжаться. Ток разрядки, дойдя до узла, должен бы разделиться на две части. Однако, в ветви с катушкой, возникает ЭДС самоиндукции, препятствующая нарастанию тока разрядки. По этой причине весь ток разрядки потечет в ветвь с конденсатором, омическое сопротивление которой равно нулю. Ток прекратится, как только сравняются напряжения на конденсаторах, при этом первоначальный заряд конденсатора перераспределится между двумя конденсаторами. Время перераспределения заряда между двумя конденсаторами ничтожно мало вследствие отсутствия омического сопротивления в ветвях с конденсаторами. За это время ток в ветви с катушкой возникнуть не успеет. Колебания в новой системе продолжатся уже после перераспределения заряда между конденсаторами.

Важно понять, что в процессе перераспределения заряда между двумя конденсаторами энергия системы не сохраняется! До замыкания ключа энергией обладал один конденсатор, контурный:

После перераспределения заряда энергией обладает батарея конденсаторов:

Нетрудно видеть, что энергия системы уменьшилась!

3 Новую амплитуду тока найдем, воспользовавшись законом сохранения энергии. В процессе колебаний энергия батареи конденсаторов переходит в энергию магнитного поля тока:

Обратите внимание, закон сохранения энергии начинает «работать» только после завершения перераспределения заряда между конденсаторами.

Задача 4 Колебательный контур с двумя последовательно соединенными конденсаторами

Колебательный контур состоит из катушки индуктивностью L и двух последовательно соединенных конденсаторов С и 4С. Конденсатор емкостью С заряжен до напряжения , конденсатор емкостью 4С не заряжен. После замыкания ключа в контуре начинаются колебания. Чему равен период этих колебаний? Определите амплитуду тока, максимальное и минимальное значения напряжения на каждом конденсаторе.

Решение:

1 В момент, когда ток в цепи максимален, ЭДС самоиндукции в катушке отсутствует . Записываем для этого момента второй закон Кирхгофа

Видим, что в тот момент, когда ток в контуре максимален, конденсаторы заряжены до одинакового напряжения, но в противоположной полярности:

2 До замыкания ключа полная энергия системы состояла только из энергии электрического поля конденсатора С:

В момент, когда ток в цепи максимален, энергия системы складывается из энергии магнитного поля тока и энергии двух заряженных до одинакового напряжения конденсаторов:

Согласно закону сохранения энергии

Для нахождения напряжения на конденсаторах воспользуемся законом сохранения заряда – заряд нижней обкладки конденсатора С частично перешел на верхнюю обкладку конденсатора 4С:

Подставляем найденное значение напряжения в закон сохранения энергии и находим амплитуду тока в контуре:

3 Найдем, в каких пределах изменяется напряжение на конденсаторах в процессе колебаний.

Понятно, что в момент замыкания цепи на конденсаторе С было максимальное напряжение . Конденсатор 4С был не заряжен, следовательно, .

После замыкания ключа конденсатор С начинает разряжаться, а конденсатор емкостью 4С – заряжаться. Процесс разрядки первого и зарядки второго конденсаторов заканчивается, как только прекращается ток в цепи. Это произойдет через половину периода. Согласно законам сохранения энергии и электрического заряда:

Решая систему, находим:

Знак «минус» означает, что через полпериода конденсатор емкости С заряжен в полярности, обратной первоначальной.

Задача 5 Колебательный контур с двумя последовательно соединенным катушками

Колебательный контур состоит из конденсатора емкостью С и двух катушек индуктивностью L 1 и L 2 . В тот момент, когда ток в контуре принял максимальное значение , в первую катушку быстро (по сравнению с периодом колебаний) вносят железный сердечник, что приводи к увеличению ее индуктивности в μ раз. Чему равна амплитуда напряжения в процессе дальнейших колебаний в контуре?

Решение:

1 При быстром внесении сердечника в катушку должен сохраниться магнитный поток (явление электромагнитной индукции). Поэтому быстрое изменение индуктивности одной из катушек приведет к быстрому изменению тока в контуре.

2 За время внесения сердечника в катушку заряд на конденсаторе измениться не успел, он остался незаряженным (сердечник вносили в тот момент, когда ток в цепи был максимален). Через четверть периода энергия магнитного поля тока перейдет в энергию заряженного конденсатора:

Подставляем в полученное выражение значение тока I и находим амплитуду напряжения на конденсаторе:

Задача 6 Колебательный контур с двумя параллельно соединенным катушками

Катушки индуктивности L 1 и L 2 подключены через ключи К1 и К2 к конденсатору емкостью С. В начальный момент оба ключа разомкнуты, а конденсатор заряжен до разности потенциалов . Сначала замыкают ключ К1 и, когда напряжение на конденсаторе станет равным нулю, замыкают К2. Определите максимальное напряжение на конденсаторе после замыкания К2. Сопротивлениями катушек пренебречь.

Решение:

1 При разомкнутом ключе К2 в контуре, состоящем из конденсатора и первой катушки, происходят колебания. К моменту замыкания К2 энергия конденсатора перешла в энергию магнитного поля тока в первой катушке :

2 После замыкания К2 в колебательном контуре оказываются две катушки, соединенные параллельно.

Ток в первой катушке не может прекратиться вследствие явления самоиндукции. В узле он делится: одна часть тока идет во вторую катушку, а другая заряжает конденсатор .

3 Напряжение на конденсаторе станет максимальным, когда прекратится ток I , заряжающий конденсатор. Очевидно, что в этот момент токи в катушках сравняются .

: На грузы действуют одинаковые по модулю силы – оба груза прикреплены к пружине Сразу после замыкания К2 в первой катушке существовал ток В начальный момент первый груз имел скорость Сразу после замыкания К2 ток во второй катушке отсутствовал В начальный момент второй груз покоился Каково максимальное значения напряжения на конденсаторе? Чему равна максимальная сила упругости, возникающая в пружине в процессе колебаний?

Маятник двигается поступательно со скоростью центра масс и совершает колебания относительно центра масс.

Сила упругости максимальна в момент максимальной деформации пружины. Очевидно, в этот момент относительная скорость грузов становится равной нулю, а относительно стола грузы двигаются со скоростью центра масс. Записываем закон сохранения энергии:

Решая систему, находим

Производим замену

и получаем для максимального напряжения найденное ранее значение

§6 Задания для самостоятельного решения

Упражнение1 Расчет периода и частоты собственных колебаний

1 В колебательный контур входят катушка переменной индуктивности, изменяющаяся в пределах L 1 = 0,5 мкГн до L 2 = 10 мкГн, и конденсатор, емкость которого может изменяться в пределах от С 1 = 10 пФ до

С 2 =500 пФ. Какой диапазон частот можно охватить настройкой этого контура?

2 Во сколько раз изменится частота собственных колебаний в контуре, если его индуктивность увеличить в 10 раз, а емкость уменьшить в 2,5 раза?

3 Колебательный контур с конденсатором емкость 1 мкФ настроен на частоту 400 Гц. Если подключить к нему параллельно второй конденсатор, то частота колебаний в контуре становится равной 200 Гц. Определите емкость второго конденсатора.

4 Колебательный контур состоит из катушки и конденсатора. Во сколько раз изменится частота собственных колебаний в контуре, если в контур последовательно включить второй конденсатор, емкость которого в 3 раза меньше емкости первого?

5 Определите период колебаний контура, в состав которого входит катушка (без сердечника) длины в = 50 см м площади поперечного сечения

S = 3 cм 2 , имеющая N = 1000 витков, и конденсатора емкости С = 0,5 мкФ.

6 В состав колебательного контура входит катушка индуктивности L = 1,0 мкГн и воздушный конденсатор, площади пластин которого S = 100 cм 2 . Контур настроен на частоту 30 МГц. Определите расстояние между пластинами. Активное сопротивление контура пренебрежимо мало.

Важнейшими частями радиопередатчиков и радиоприемников являются колебательные контуры, в которых возбуждаются электрические колебания, т. е. переменные токи высокой частоты.

Для более ясного представления о работе колебательных контуров рассмотрим сначала механические колебания маятника (рис.1).

Рис.1 — Колебания маятника

Если ему сообщить некоторый запас энергии, например толкнуть его или отвести в сторону и отпустить, то он будет совершать колебания. Такие колебания происходят без участия внешних сил только благодаря начальному запасу энергии, и поэтому называются свободными колебаниями.

Движение маятника из положения 1 в положение 2 и обратно является одним колебанием. После первого колебания следует второе, затем третье, четвертое и т. д.

Наибольшее отклонение маятника от положения 0 называется амплитудой колебания. Время одного полного колебания называется периодом и обозначается буквой Т. Число колебаний в одну секунду есть частота f. Период измеряется в секундах, а частота в герцах (гц). Свободные колебания маятника имеют следующие свойства:

1). Они всегда являются затухающими, т.е. амплитуда их постепенно уменьшается (затухает) вследствие потерь энергии на преодоление сопротивления воздуха и на трение в точке подвеса;

3). Частота свободных колебаний маятника зависит от его длины и не зависит от амплитуды.При затухании колебаний амплитуда уменьшается, но период и частота остаются неизменными;

4). Амплитуда свободных колебаний зависит от начального запаса энергии. Чем сильнее толкнуть маятник или чем дальше отвести его от положения равновесия, тем больше амплитуда.

В процессе колебаний маятника потенциальная механическая энергия переходит в кинетическую и обратно. В положении 1 или 2 маятник останавливается и имеет наибольшую потенциальную энергию, а его кинетическая энергия равна нулю. По мере движения маятника к положению 0 скорость движения увеличивается и возрастает кинетическая энергия - энергия движения. При переходе маятника через положение 0 его скорость и кинетическая энергия имеют максимальное значение, а потенциальная энергия равна нулю. Далее скорость уменьшается и кинетическая энергия переходит в потенциальную. Если бы не было потерь энергии, то такой переход энергии из одного состояния в другое продолжался бы бесконечно и колебания были бы незатухающими. Однако практически всегда имеются потери энергии. Поэтому для создания незатухающих колебаний нужно подталкивать маятник, т.е. добавлять ему периодически энергию, возмещающую потери, как это делается, например, в часовом механизме.

Перейдем теперь к изучению электрических колебаний. Колебательный контур представляет собой замкнутую цепь, состоящую из катушки L и конденсатора С. На схеме (рис.2), такой контур образуется при положении 2 переключателя П. Каждый контур обладает еще и активным сопротивлением, влияние которого пока не будем рассматривать.

Рис.2 — Схема для возбуждения свободных колебаний в контуре

Назначение колебательного контура - создание электрических колебаний.

Если присоединить к катушке заряженный конденсатор, то его разряд будет иметь колебательный характер. Для заряда конденсатора надо в схеме (рис.2) поставить переключатель П в положение 1. Если затем его перевести на контакт 2, то конденсатор начнет разряжаться на катушку.

Процесс колебаний удобно проследить с помощью графика, показывающего изменения напряжения и и тока i (рис.3).

Рис.3 — Процесс свободных электрических колебаний в контуре

В начале конденсатор заряжен до наибольшей разности потенциалов Um, а ток I равен нулю. Как только конденсатор начинает разряжаться, возникает ток, который постепенно увеличивается На (рис.3) показано стрелками направление движения эчектронов этого тока. Быстрому изменению тока препятствует эдс самоиндукции катушки. По мере возрастания тока напряжение на конденсаторе уменьшается, в некоторый момент (момент 1 на рис.3) конденсатор полностью разрядится. Ток пристановится первоначальное состояние контура (момент 4 на рис.3).

Электроны в колебательном контуре совершили одно полное колебание, период которого показан на (рис.3) буквой Т. За этим колебанием следует второе, третье и т. д.

В контуре происходят свободные электрические колебания. Они совершаются самостоятельно без воздействия каких-либо внешних эдс, только благодаря начальному заряду конденсатора.

Эти колебания являются гармоническими, т. е. представляют собой синусоидальный переменный ток.
В процессе колебаний электроны не переходят с одной обкладки конденсатора на другую. Хотя скорость распространения тока очень велика (близка к 300 000 км/сек), электроны перемещаются в проводниках с весьма малой скоростью - доли сантиметра в секунду. За время одного полупериода электроны могут пройти только небольшой участок провода. Они уходят с обкладки, имеющей отрицательный заряд, в ближайший участок соединительного провода, а на другую обкладку приходят в таком же количестве электроны из участка провода, ближайшего к этой обкладке. Таким образом, в проводах контура совершается лишь смещение электронов на небольшое расстояние.

Заряженный конденсатор обладает запасом потенциальной электрической энергии, сосредоточенной в электрическом поле между обкладками. Движение электронов сопровождается возникновением магнитного поля. Поэтому кинетическая энергия движущихся электронов есть энергия магнитного поля.

Электрическое колебание в контуре представляет собой периодический переход потенциальной энергии электрического поля в кинетическую энергию магнитного поля и обратно.

В начальный момент вся энергия сосредоточена в электрическом поле заряженного конденсатора. Когда конденсатор разряжается, его энергия уменьшается и растет энергия магнитного поля катушки. При максимальном токе вся энергия контура сосредоточена в магнитном поле.

Дальше процесс идет обратным порядком: магнитная энергия уменьшается и возникает энергия электрического поля. Через полпериода после начала колебаний вся энергия опять сосредоточится в конденсаторе, а затем снова начнется переход энергии электрического поля в энергию магнитного поля и т. д.

Максимум тока (или магнитной энергии) соответствует нулю напряжения (или нулю электрической энергии) и наоборот, т. е. сдвиг фаз между напряжением и током равен четверти периода, или 90°. В первую и третью четверти периода конденсатор играет роль генератора, а катушка является приемником энергии. Во вторую и четвертую четверти, наоборот, катушка работает в качестве генератора, отдавая энергию обратно в конденсатор.

Особенностью контура является равенство индуктивного сопротивления катушки и емкостного сопротивления конденсатора для тока свободных колебаний. Это вытекает из следующего.

План лекции

1. Колебательные контуры. Квазистационарные токи.

2. Собственные электрические колебания.

2.1. Собственные незатухающие колебания.

2.2. Собственные затухающие колебания.

3. Вынужденные электрические колебания.

3.1. Сопротивление в цепи переменного тока.

3.2. Ёмкость в цепи переменного тока.

3.3. Индуктивность в цепи переменного тока.

3.4. Вынужденные колебания. Резонанс.

3.5. Проблема косинуса фи.

  1. Колебательные контуры. Квазистационарные токи.

Колебания электрических величин - заряда, напряжения, тока - можно наблюдать в цепи, состоящей из последовательно соединённых сопротивления (R ), ёмкости (C ) и катушки индуктивности (L ) (рис. 11.1).

Рис. 11.1.

При положении 1 переключателя К , конденсатор заряжается от источника.

Если теперь переключить его в положение 2, то в цепи RLC возникнут колебания с периодомT , аналогичные колебаниям груза на пружине.

Колебания, происходящие только за счёт внутренних энергетических ресурсов системы, называются собственными. Первоначально энергия была сообщена конденсатору и локализована в электростатическом поле. При замыкании конденсатора на катушку, в цепи появляется разрядный ток, а в катушке - магнитное поле. Э.д.с. самоиндукции катушки будет препятствовать мгновенной разрядке конденсатора. Через четверть периода конденсатор полностью разрядится, но ток будет продолжать течь, поддерживаемый электродвижущей силой самоиндукции. К моментуэта э.д.с. перезарядит конденсатор. Ток в контуре и магнитное поле уменьшатся до нуля, заряд на обкладках конденсатора достигнет максимального значения.

Эти колебания электрических величин в контуре будут происходить неограниченно долго, если сопротивление контура R = 0. Такой процесс называютсобственные незатухающие колебания . Подобные колебания мы наблюдали и в механической колебательной системе, когда в ней отсутствует сила сопротивления. Если сопротивлением резистораR (силой сопротивления в механическом осцилляторе) пренебречь нельзя, то в подобных системах будут происходитьсобственные затухающие колебания .

На графиках рис. 11.2. представлены зависимости заряда конденсатора от времени в случае незатухающих (а ) и затухающих (б ,в ,г ) колебаний. Характер затухающих колебаний меняется с увеличением сопротивления резистораR . Когда сопротивление превысит определённоекритическое значениеR к, колебания в системе не возникают. Происходит монотонный апериодический разряд конденсатора (рис. 11.2.г .).

Рис. 11.2.

Прежде, чем перейти к математическому анализу колебательных процессов, сделаем одно важное замечание. При составлении уравнений колебаний мы будем пользоваться правилами Кирхгофа (законами Ома), которые справедливы, строго говоря, для постоянного тока. Но в колебательных системах ток меняется во времени. Однако, и в этом случае можно воспользоваться этими законами для мгновенного значения тока, если скорость изменения тока не слишком высока. Такие токи называются квазистационарными («квази» (лат.) - как будто). Но что значит скорость «слишком» или «не слишком» высока? Если ток изменится на некотором участке цепи, тот импульс этого изменения достигнет самой дальней точки контура спустя время:

.

Здесь l - характерный размер контура, ас - скорость света, с которой сигнал распространяется в цепи.

Скорость изменения тока считается не слишком высокой, а ток квазистационарным, если:

,

где Т - период изменения, тот есть характерное время колебательного процесса.

Например, для цепи длиной 3 м запаздывание сигнала составит ==
= 10 ‑8 с. То есть переменный ток в этой цепи можно считать квазистационарным, если его период более10 –6 с, что соответствует частоте=10 6 Гц. Таким образом, для частот 010 6 Гц в рассматриваемой цепи могут быть использованы правила Кирхгофа для мгновенных значений тока и напряжений.