ОПРЕДЕЛЕНИЕ
Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.
Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.
Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.
Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.
Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:
называется периодом (постоянной) дифракционной решетки.
Картина дифракции на одномерной дифракционной решетке
Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:
Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:
Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:
где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.
Условием главных максимумов для дифракционной решетки служит выражение:
Так как величина синуса не может быть больше единицы, то количество главных максимумов:
Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.
Примеры решения задач
ПРИМЕР 1
Задание | Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м? |
Решение | В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:
Максимальным значением является единица, поэтому: Из (1.2) выразим , получим: Проведем вычисления: |
Ответ |
ПРИМЕР 2
Задание | Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально? |
Решение | Сделаем рисунок. |
При перпендикулярном (нормальном) падении параллельного пучка монохроматического света на дифракционную решётку на экране в фокальной плоскости собирающей линзы, расположенной параллельно дифракционной решётке, наблюдается неоднородная картина распределения освещённости разных участков экрана (дифракционная картина).
Главные максимумы этой дифракционной картины удовлетворяют следующим условиям:
где n - порядок главного дифракционного максимума, d - постоянная (период) дифракционной решётки, λ - длина волны монохроматического света, φ n - угол между нормалью к дифракционной решётке и направлением на главный дифракционный максимум n -го порядка.
Постоянная (период) дифракционной решётки длиной l
где N - количество щелей (штрихов), приходящихся на участок дифракционной решётки длиной I.
Наряду с длиной волны часто используется частота v волны.
Для электромагнитных волн (света) в вакууме
где с = 3 *10 8 м/с - скорость распространения света в вакууме.
Выделим из формулы (1) наиболее трудно математически определяемые формулы для порядка главных дифракционных максимумов:
где обозначает целую часть числа d*sin(φ/λ).
Недоопределённые аналоги формул (4, а,б) без символа [...] в правых частях содержат в себе потенциальную опасность подмены физически обоснованной операции выделения целой части числа операцией округления числа d*sin(φ/λ) до целочисленного значения по формальным математическим правилам.
Подсознательная тенденция (ложный след) подмены операции выделения целой части числа d*sin(φ/λ) операцией округления
этого числа до целочисленного значения по математическим правилам ещё более усиливается, когда речь идёт о тестовых заданиях типа В на определение порядка главных дифракционных максимумов.
В любых тестовых заданиях типа В численные значения искомых физических величин по договорённости округляются до целочисленных значений. Однако в математической литературе нет единых(го) правил(а) округления чисел.
В справочной книге В. А. Гусева, А. Г. Мордковича по математике для учащихся и белорусском учебном пособии Л. А. Латотина, В. Я. Чеботаревского по математике для IV класса приводятся по существу одни и те же два правила округления чисел. В они сформулированы так: "При округлении десятичной дроби до какого-нибудь разряда все следующие за этим разрядом цифры заменяются нулями, а если стоят после запятой, то их отбрасывают. Если первая следующая за этим разрядом цифра больше или равна пяти, то последнюю оставшуюся цифру увеличивают на 1. Если же первая следующая за этим разрядом цифра меньше 5, то последнюю оставшуюся цифру не изменяют".
В справочнике М. Я. Выгодского по элементарной математике , выдержавшем двадцать семь (!) изданий, написано (с. 74): "Правило 3. Если отбрасывается цифра 5, а за ней нет значащих цифр, то округление производится до ближайшего чётного числа, т.е. последняя сохраняемая цифра остаётся неизменной, если она чётная, и усиливается (увеличивается на 1), если она нечётная".
Ввиду существования различных правил округления чисел следовало бы правила округления десятичных чисел явно сформулировать в "Инструкции для учащихся", прилагаемой к заданиям централизованного тестирования по физике. Это предложение приобретает дополнительную актуальность, так как в белорусские вузы поступают и проходят обязательное тестирование не только граждане Беларуси и России, но и других стран, и заведомо неизвестно, какими правилами округления чисел они пользовались при обучении в своих странах.
Во всех случаях округление десятичных чисел будем производить по правилам , приведённым в , .
После вынужденного отступления, возвратимся к обсуждению рассматриваемых физических вопросов.
С учётом нулевого (n = 0) главного максимума и симметричного расположения остальных главных максимумов относительно него общее количество наблюдаемых главных максимумов от дифракционной решётки подсчитывается по формулам:
Если расстояние от дифракционной решётки до экрана, на котором наблюдается дифракционная картина, обозначить через Н, то координата главного дифракционного максимума n -го порядка при отсчёте от нулевого максимума равна
Если то (радиан) и
Задачи на рассматриваемую тему часто предлагают на тестированиях по физике.
Начнём обзор с рассмотрения российских тестов, использовавшихся белорусскими вузами на начальном этапе, когда тестирование в Беларуси было необязательным и проводилось отдельными учебными заведениями на свой страх и риск как альтернатива обычной индивидуальной письменно-устной форме проведения вступительных экзаменов.
Тест № 7
А32. Наибольший порядок спектра, который можно наблюдать при дифракции света с длиной волны λ на дифракционной решётке с периодом d=3,5λ равен
1) 4; 2) 7; 3) 2; 4) 8; 5) 3.
Решение
Монохроматическим светом ни о каких спектрах не может быть и речи. В условии задачи речь должна идти о главном дифракционном максимуме наибольшего порядка при перпендикулярном падении монохроматического света на дифракционную решётку.
По формуле (4, б)
Из недоопределённого условия
на множестве целых чисел, после округления получаем n mах =4.
Только благодаря несовпадению целой части числа d/λ с его округлённым целочисленным значением правильное решение (n mах =3) отличается от неправильного (n max =4) на тестовом уровне.
Изумительная миниатюра, несмотря на огрехи формулировки, с филигранно выверенным по всем трём версиям округления чисел ложным следом!
А18. Если постоянная дифракционной решётки d= 2 мкм, то для нормально падающего на решётку белого света 400 нм <λ < 700 нм наибольший полностью наблюдаемый порядок спектра равен
1)1; 2)2; 3)3; 4)4; 5)5.
Решение
Очевидно, что n сп =min(n 1max , n 2max )
По формуле (4, б)
Округляя числа d/λ до целочисленных значений по правилам - , получаем:
Благодаря тому, что целая часть числа d/λ 2 отличается от его округлённого целочисленного значения, данное задание позволяет на тестовом уровне объективно отличить правильное решение (n сп = 2) от неправильного (n сп =3). Прекрасная задача с одним ложным следом!
ЦТ 2002 г. Тест № 3
В5. Найдите наибольший порядок спектра для жёлтой линии Na (λ = 589 нм), если постоянная дифракционной решётки d = 2 мкм.
Решение
Задание сформулировано научно некорректно. Во-первых, при освещении дифракционной решётки монохроматическим светом, как уже отмечалось выше, не может быть и речи о спектре (спектрах). В условии задачи речь должна идти о наибольшем порядке главного дифракционного максимума.
Во-вторых, в условии задания должно быть указано, что свет падает нормально (перпендикулярно) на дифракционную решётку, ибо только этот частный случай рассматривается в курсе физики средних общеобразовательных учреждений. Считать это ограничение подразумевающимся по умолчанию нельзя: в тестах все ограничения должны быть указаны явно ! Тестовые задания должны представлять собою самодостаточные, научно корректные задания.
Число 3,4, округлённое до целочисленного значения по правилам арифметики - , также даёт 3. Именно поэтому данное задание следует признать простым и, по большому счёту, неудачным, так как на тестовом уровне оно не позволяет объективно различить правильное решение, определяемое по целой части числа 3,4, от неправильного решения, определяемого по округлённому целочисленному значению числа 3,4. Различие обнаруживается только при подробном описании хода решения, что и сделано в данной статье.
Дополнение 1. Решите вышеприведённую задачу, заменив в её условии d=2 мкм на d= 1,6 мкм. Ответ: n max = 2.
ЦТ 2002 г. Тест 4
В5 . На дифракционную решётку направляется свет от газоразрядной лампы. На экране получаются дифракционные спектры излучения лампы. Линия с длиной волны λ 1 = 510 нм в спектре четвёртого порядка совпадает с линией длины волны λ 2 в спектре третьего порядка. Чему равна λ 2 (в [нм])?
Решение
В данной задаче основной интерес представляет не решение задачи, а формулировка её условия.
При освещении дифракционной решётки немонохроматическим светом(λ 1 , λ 2 ) вполне естественно говорить (писать) о дифракционных спектрах, которых в принципе нет при освещении дифракционной решётки монохроматическим светом.
В условии задания следовало бы указать, что свет от газоразрядной лампы падает нормально на дифракционную решётку.
Кроме того, следовало бы изменить филологический стиль третьего предложения в условии задания. Режет слух оборот "линия с длиной волны λ "" , его можно было бы заменить на "линия, соответствующая излучению длиной волны λ "" или на более краткий - "линия, соответствующая длине волны λ "" .
Формулировки тестов должны быть научно корректными и литературно безупречными. Тесты формулируют совсем не так, как исследовательские и олимпиадные задачи! В тестах всё должно быть точно, конкретно, однозначно.
С учётом приведённого уточнения условия задания имеем:
Так как по условию задания то
ЦТ 2002 г. Тест № 5
В5. Найдите наибольший порядок дифракционного максимума для жёлтой линии натрия с длиной волны 5,89·10 -7 м, если период дифракционной решётки равен 5 мкм.
Решение
По сравнению с заданием В5 из теста № 3 ЦТ 2002 г. данное задание сформулировано точнее, тем не менее в условии задания речь следовало бы вести не о "дифракционном максимуме", а о "главном дифракционном максимуме ".
Наряду с главными дифракционными максимумами всегда имеются ещё и вторичные дифракционные максимумы . Не объясняя этого нюанса в школьном курсе физики, тем более надо строго соблюдать сложившуюся научную терминологию и вести речь только о главных дифракционных максимумах.
Кроме того, следовало бы указать, что свет падает нормально на дифракционную решётку.
С учётом вышеприведённых уточнений
Из неопределённого условия
по правилам математического округления числа 8,49 до целочисленного значения опять же получаем 8. Поэтому данное задание, как и предыдущее, следует признать неудачным.
Дополнение 2 . Решите вышеприведённое задание, заменив в его условии d =5 мкм на (1=А мкм. Ответ: n max =6.)
Пособие РИКЗ 2003 г. Тест № 6
В5. Если второй дифракционный максимум находится на расстоянии 5 см от центра экрана, то при увеличении расстояния от дифракционной решётки до экрана на 20% этот дифракционный максимум будет находиться на расстоянии... см.
Решение
Условие задания сформулировано неудовлетворительно: вместо "дифракционный максимум" надо "главный дифракционный максимум", вместо "от центра экрана" - "от нулевого главного дифракционного максимума".
Как видно из приведённого рисунка,
Отсюда
Пособие РИКЗ 2003 г. Тест № 7
В5. Определите наибольший порядок спектра в дифракционной решётке, имеющей 500 штрихов на 1 мм, при освещении её светом с длиной волны 720 нм.
Решение
Условие задания сформулировано крайне неудачно в научном отношении (см. уточнения заданий № 3 и 5 из ЦТ 2002 г.).
Есть претензии и к филологическому стилю формулировки задания. Вместо словосочетания "в дифракционной решётке" надо было бы использовать словосочетание "от дифракционной решётки", а вместо "свет с длиной волны" - "светом, длина волны которого". Длина волны - не нагрузка к волне, а её основная характеристика.
С учётом уточнений
По всем трём вышеприведённым правилам округления чисел округление числа 2,78 до целочисленного значения даёт 3.
Последний факт даже при всех недостатках формулировки условия задания делает его интересным, так как позволяет на тестовом уровне различить правильное (n max =2) и неправильное (n max =3) решения.
Много заданий на рассматриваемую тему содержится в ЦТ 2005 г. .
В условиях всех этих заданий (В1) надо добавить ключевое слово "главный" перед словосочетанием "дифракционный максимум" (см. комментарии к заданию В5 ЦТ 2002 г. Тест № 5).
К сожалению, во всех вариантах тестов В1 ЦТ 2005 г. численные значения d (l,N) и λ подобраны неудачно и всегда дают в дробях
число "десятых" меньше 5, что не позволяет на тестовом уровне отличить операцию выделения целой части дроби (правильное решение) от операции округления дроби до целочисленного значения (ложный след). Это обстоятельство ставит под сомнение целесообразность использования этих заданий для объективной проверки знаний абитуриентов по рассматриваемой теме.
Похоже на то, что составители тестов увлеклись, образно говоря, приготовлением различных "гарниров к блюду", не думая об улучшении качества основной компоненты "блюда" - подборе численных значений d (l,N) и λ с целью увеличения числа "десятых" в дробях d/λ=l/(N* λ).
ЦТ 2005 г. Вариант 4
В1. На дифракционную решётку, период которой d 1 =1,2 мкм, падает нормально параллельный пучок монохроматического света с длиной волны λ =500 нм. Если её заменить на решётку, период которой d 2 =2,2 мкм, то число максимумов увеличится на... .
Решение
Вместо "свет с длиной волны λ"" надо "свет длиной волны λ "" . Стиль, стиль и ещё раз стиль!
Так как
то с учётом того, что X - const, a d 2 >di,
По формуле (4, б)
Следовательно, ΔN общ. max =2(4-2)=4
При округлении чисел 2,4 и 4,4 до целочисленных значений тоже получаем соответственно 2 и 4. По этой причине данное задание следует признать простым и даже неудачным.
Дополнение 3 . Решите вышеприведённую задачу, заменив в её условии λ =500 нм на λ =433 нм (синяя линия в спектре водорода).
Ответ: ΔN общ. max =6
ЦТ 2005 г. Вариант 6
В1 . На дифракционную решётку с периодом d= 2 мкм падает нормально параллельный пучок монохроматического света с длиной волны λ =750 нм. Количество максимумов, которые можно наблюдать в пределах угла а =60°, биссектриса которого перпендикулярна плоскости решётки, равно... .
Решение
Словосочетание "света с длиной волны λ " уже обсуждалось выше в ЦТ 2005 г., вариант 4.
Второе предложение в условии данного задания можно было бы упростить и записать так: "Количество наблюдаемых главных максимумов в пределах угла а = 60°" и далее по тексту исходного задания.
Очевидно, что
По формуле (4, а)
По формуле (5, а)
Это задание, как и предыдущее, не позволяет на тестовом уровне объективно определить уровень понимания обсуждаемой темы абитуриентами.
Дополнение 4. Выполните вышеприведённое задание, заменив в его условии λ =750 нм на λ = 589 нм (жёлтая линия в спектре натрия). Ответ: N o6щ =3.
ЦТ 2005 г. Вариант 7
В1. На дифракционную решётку, имеющую N 1 - 400 штрихов на l =1 мм длины, падает параллельный пучок монохроматического света с длиной волны λ =400 нм. Если её заменить решёткой, имеющей N 2 =800 штрихов на l =1 мм длины, то количество дифракционных максимумов уменьшится на... .
Решение
Опустим обсуждение неточностей формулировки задания, так как они те же, что и в предыдущих заданиях.
Из формул (4, б), (5, б) следует, что
Дифракционная решётка - оптический прибор, действие которого основано на использовании явления дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.
Энциклопедичный YouTube
-
1 / 5
Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.
Формулы
Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .
Если известно число штрихов ( N {\displaystyle N} ), приходящихся на 1 мм решётки, то период решётки находят по формуле: d = 1 / N {\displaystyle d=1/N} мм.
Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:
d sin α = k λ {\displaystyle d\,\sin \alpha =k\lambda } d {\displaystyle d} - период решётки, α {\displaystyle \alpha } - угол максимума данного цвета, k {\displaystyle k} - порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, λ {\displaystyle \lambda } - длина волны.Если же свет падает на решётку под углом θ {\displaystyle \theta } , то:
d { sin α + sin θ } = k λ {\displaystyle d\ \{\sin \alpha +\sin \theta \}=k\lambda }Характеристики
Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить, если продифференцировать формулу дифракционной решётки
D = Δ φ Δ λ = k d cos φ {\displaystyle D={\frac {\Delta \varphi }{\Delta \lambda }}={\frac {k}{d\cos \varphi }}}Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .
Вторая характеристика дифракционной решетки - разрешающая способность. Она обусловлена угловой шириной главного максимума и определяет возможность раздельного наблюдения 2 близких спектральных линий. При увеличения порядка спектра m возрастает
R = λ ∂ λ = m N {\displaystyle R={\frac {\lambda }{\partial \lambda }}=mN}
Также существует еще одна характеристика Дифракционной решетки - Дисперсионная область. Она определяет для каждого порядка спектральный диапазон от перекрытия спектров. Данный параметр обратно-пропорционален порядку спектра m
G = Δ λ = λ m {\displaystyle G=\Delta \lambda ={\frac {\lambda }{m}}}
Изготовление
Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.
CD-R диск, и пустой DVD диск, поскольку на них имеется спиральная дорожка для направления луча лазера при записи информации. Причём период решётки для DVD - 0,74 мкм.
ОПРЕДЕЛЕНИЕ
Дифракционная решетка - это простейший спектральный прибор, состоящий из системы щелей (прозрачных для света участков), и непрозрачных промежутков, которые сравнимы с длиной волны.
Одномерная дифракционная решетка, состоит из параллельных щелей одинаковой ширины, которые лежат в одной плоскости, разделяемых одинаковыми по ширине непрозрачными для света промежутками. Лучшими считаются отражательные дифракционные решетки. Они состоят из совокупности участков, отражающих свет и участков, которые свет рассеивают. Данные решетки представляют собой отшлифованные металлические пластины, на которые рассеивающие свет штрихи нанесены резцом.
Картиной дифракции на решетке — является результат взаимной интерференции волн, идущих ото всех щелей. С помощью дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, подвергшихся дифракции и которые идут от всех щелей.
Характеристикой дифракционной решетки служит ее период. Периодом дифракционной решетки (d) (ее постоянной) называют величину, равную:
где a — ширина щели; b — ширина непрозрачного участка.
Дифракция на одномерной дифракционной решетке
Допустим, что перпендикулярно к плоскости дифракционной решетки падает световая волна с длиной . Так как щели у решетки расположены на равных расстояниях друг от друга, то разности хода лучей (), идущих от двух соседних щелей, для направления будут одинаковы для всей рассматриваемой дифракционной решетки:
Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:
Кроме главных минимумов, в результате взаимной интерференции лучей света, которые идут от двух щелей, в некоторых направлениях лучи гасят друг друга. В результате возникают дополнительные минимумы интенсивности. Они появляются в тех направлениях, где разность хода лучей составляют нечетное число полуволн. Условием дополнительных минимумов является формула:
где N - количество щелей дифракционной решетки; — целые значения кроме 0, В том случае, если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.
Условием главных максимумов для дифракционной решетки является:
Величина синуса не может быть больше единицы, то количество главных максимумов:
Примеры решения задач по теме «Дифракционная решетка»
ПРИМЕР 1
Задание На дифракционную решетку, перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны . На плоский экран картина дифракции проецируется при помощи линзы. Расстояние между двумя максимумами интенсивности первого порядка составляет l. Какова постоянная дифракционной решетки, если линза размещена в непосредственной близости от решетки и расстояние от нее до экрана равно L. Считайте, что Решение В качестве основы для решения задачи используем формулу, которая связывает постоянную дифракционной решетки, длину волны света и угол отклонения лучей, который соответствует дифракционному максимуму номер m: По условию задачи Так как угол отклонения лучей можно считать малым (), то примем, что:
Из рис.1 следует, что:
Подставим в формулу (1.1) выражение (1.3) и учтем, что , получим:
Из (1.4) выразим период решетки:
Ответ ПРИМЕР 2
Задание Используя условия примера 1, и результат решения, найдите количество максимумов, которое даст рассматриваемая решетка. Решение Для того чтобы определить максимальный угол отклонения лучей света в нашей задаче найдем число максимумов, которое может дать наша дифракционная решетка. Для этого используем формулу: где положим, что при . Тогда, получим:
Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.
Понятие дифракции
Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.
Понятие дифракционной решетки
Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.
Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.
Виды решёток
Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.
Принцип действия
Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.
Разрешающая способность дифракционной решетки
Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.
В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.
Применение дифракционных решеток
С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.
В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.
Изготовление
Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.
Современные дифракционные решетки для спектральных приборов
В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.
Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.