Человеческое мышление представляет собой сложный познавательный процесс, включающий в себя использование множества различных приемов, методов и форм познания. Различия между ними условны, и очень часто все эти термины употребляются как синонимы, однако имеет смысл делать некоторое различие между ними. Под приемами мышления и научного познания понимаются общелогические и общегносеологические операции, используемые человеческим мышлением во всех его сферах и на любом этапе и уровне научного познания. Они в равной степени характеризуют как обыденное мышление, так и научное, хотя в последнем приобретают более определенную и упорядоченную структуру. Приемы мышления, как правило, характеризуют общую, гносеологическую направленность хода мысли на том или ином этапе познавательной деятельности. Например, при движении от целого к части, от частного к общему, от конкретного к абстрактному и т.д.
Методами называют более сложные познавательные процедуры, которые включают в себя целый набор различных приемов исследования.
Метод - это система принципов, приемов, правил, требований, которыми необходимо руководствоваться в процессе познания.
В данном определении метода выражено его операциональное существо; метод содержит в себе совокупность требований, которые характеризуют порядок познавательных операций. Аспекты метода: предметно-содержательный, операциональный, аксиологический.
Предметная содержательность метода состоит в том, что в нем отражено знание о предмете исследования; метод основывается на знании, в частности, на теории, которая опосредует отношение метода и объекта. Многие философы признают, что метод - это та же теория, но повернутая своим острием на познание и преобразование объекта; это система нормативных правил, выводимых из теории (или вообще из определенного знания) с целью дальнейшего познания объекта. Предметная содержательность метода свидетельствует о наличии у него объективного (объектного) основания. Метод содержателен, объективен.
Операциональный аспект указывает на зависимость метода уже не
столько от объекта, сколько от субъекта. На формирование правил-предписаний оказывают существенное влияние уровень научной подготовки специалиста, его умение перевести представления об объективных законах в познавательные приемы, его опыт применения в познании тех или иных приемов, способность их совершенствовать; влияют на выбор и разработку правил соображения удобства и "экономии мышления". Нередко на основе одной и той же теории возникают модификации метода, зависящие лишь от субъектных моментов. Метод субъектен, или субъективен (в данном отношении).
Аксиологический аспект метода выражается в степени его надежности, экономичности, эффективности. Перед ученым порой встает вопрос о выборе одного из двух или нескольких близких по своему характеру методов. Решающую роль в выборе могут сыграть соображения, связанные с большей ясностью, общепонятностью или результативностью метода. Когда в 20-х годах в нашей стране проходила дискуссия по вопросам методологии и перед частью естествоиспытателей встала проблема, какому методу отдать предпочтение - элемента-ристскому (механистическому) или системному ("диалектике") - физиолог А. Ф. Самойлов заявил, в частности: "Те марксисты, которые воодушевлены верою в силу диалектического метода в познании природы, если они при этом специалисты-естественники в какой-нибудь определенной области естествознания, должны на деле доказать, что они, применяя диалектическое мышление, диалектический метод, в состоянии пойти дальше, скорее, с меньшей затратой труда, чем те, которые идут иным путем. Если они это докажут, то этим без всякой борьбы, без излишней бесплодной оскорбительной полемики, диалектический метод завоюет себе свое место в естествознании. Естествоиспытатель прежде всего не упрям. Он пользуется своим теперешним методом только и единственно потому, что его метод есть метод единственный. Такого естествоиспытателя, который желал бы пользоваться худшим методом, а не лучшим, нет на свете. Докажите на деле, что диалектический метод ведет скорее к цели, - завтра же вы не найдете ни одного естествоиспытателя не диалектика" ("Диалектика природы и естествознание" // "Под знаменем марксизма", 1926, № 4-5, стр. 81).
Таковы главные стороны метода научного познания: предметно-содержательная, операциональная и аксиологическая.
Методы научного познания можно подразделить на три группы: специальные, общенаучные, универсальные. Специальные методы применимы только в рамках отдельных наук. Объективной основой таких
методов являются соответствующие специально-научные законы и теории. К этим методам относятся, например, различные методы качественного анализа в химии, метод спектрального анализа в физике и химии, метод Монте-Карло, метод статистического моделирования при изучении сложных систем и т.д. Общенаучные методы характеризуют ход познания во всех науках. Их объективной основой являются общеметодологические закономерности познания, которые включают в себя и гносеологические принципы. К ним относятся: методы эксперимента и наблюдения, метод моделирования, гипотетико-дедуктив-ный метод, метод восхождения от абстрактного к конкретному и т.д. Универсальные методы характеризуют человеческое мышление в целом и применимы во всех сферах познавательной деятельности человека (с учетом их специфики). Их объективной основой выступают общефилософские закономерности понимания окружающего нас мира, самого человека, его мышления и процесса познания и преобразования мира человеком. К этим методам относятся философские методы и принципы мышления, в том числе принцип диалектической противоречивости, принцип историзма и др.
Приемы научного мышления.
Анализ и синтез. Анализ - это прием мышления, связанный с разложением изучаемого объекта на составные части, стороны, тенденции развития и способы функционирования с целью их относительно самостоятельного изучения. Синтез - прямо противоположная операция, которая заключается в объединении ранее выделенных частей в целое и с целью получить знание о целом путем выявления тех существенных связей и отношений, которые объединяют ранее выделенные в анализе части в одно целое. Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод: так, существуют конкретные методы математического, химического и социального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.
Абстрагирование и идеализация. Эти методы относятся к общенаучным приемам исследования. Абстрагирование есть процесс мысленного выделения, вычленения отдельных интересующих нас в контексте исследования признаков, свойств и отношений конкретного предмета или явления и одновременно отвлечение от других свойств, признаков, отношений, которые в данном контексте несущественны. Временное отвлечение от ряда признаков, свойств и отношений изучаемых пред-
метов позволяет глубже понять явление. В зависимости от целей исследований выделяются различные виды абстрагирования. Если требуется образовать общее понятие о классе предметов, используется абстракция отождествления, в ходе которой мысленно отвлекаются от несходных признаков и свойств некоторого класса предметов и выделяют общие признаки, присущие всему этому классу. Существует также такой вид абстракции, как аналитическая, или изолирующая, абстракция.
Идеализация является относительно самостоятельным приемом познания, хотя она и является разновидностью абстрагирования. Результатами идеализации являются такие понятия, как "точка", "прямая" в геометрии, "материальная точка" в механике, "абсолютно черное тело" или "идеальный газ" в физике и т. п. В процессе идеализации происходит предельное отвлечение от всех реальных свойств предмета с одновременным введением в содержание образуемых понятий поизнаков, нереализуемых в действительности. Образуется так называемый идеальный объект, которым может оперировать теоретическое мышление при познании реальных объектов. Например, понятие материальной точки в действительности не соответствует ни одному объекту. Но механик, оперируя этим идеальным объектом, способен теоретически объяснить и предсказать поведение реальных, материальных объектов, таких как снаряд, искусственный спутник, планета Солнечной системы и т.д.
Индукция, дедукция, аналогия. Характерным для опытных наук приемом исследования является индукция. При использовании этого приема мысль движется от знания частного, знания фактов к знанию общего, знанию законов. В основе индукции лежат индуктивные умозаключения. Они проблематичны и не дают достоверного знания. Такие умозаключения как бы "наводят" мысль на открытие общих закономерностей, обоснование которых позже дается иными способами. В буквальном смысле индукция и означает наведение.
Приемом, по гносеологической направленности противоположным индукции, является дедукция. В дедуктивном умозаключении движение мысли идет от знания общего к знанию частного. В специальном смысле слова термин "дедукция" обозначает процесс логического вывода по правилам логики. В отличие от индукции дедуктивные умозаключения дают достоверное знание при условии, что такое знание содержалось в посылках. В научном исследовании индуктивные и дедуктивные приемы мышления органически связаны. Индукция наводит человеческую мысль на гипотезы о причинах и общих законо-
мерностях явлений; дедукция позволяет выводить из общих гипотез эмпирически проверяемые следствия и таким способом экспериментально их обосновывать или опровергать.
Аналогия. При аналогии на основе сходства объектов по некоторым признакам, свойствам и отношениям выдвигают предположение об их сходстве в других отношениях. Вывод по аналогии так же проблематичен, как и в индукции, и требует своего дальнейшего обоснования и проверки.
Моделирование. Умозаключение по аналогии лежит в основании такого ныне очень широко распространенного в науке приема исследования, как моделирование. Вообще моделирование в силу своего сложного комплексного характера скорее может быть отнесено к классу методов исследования, чем приемов. Моделирование - это такой метод исследования, при котором интересующий исследователя объект замещается другим объектом, находящимся в отношении подобия к первому объекту. Первый объект называется оригиналом, а второй - моделью. В дальнейшем знания, полученные при изучении модели, переносятся на оригинал на основании аналогии и теории подобия. Моделирование применяется там, где изучение оригинала невозможно или затруднительно и связано с большими расходами и риском. Типичным приемом моделирования является изучение свойств новых конструкций самолетов на их уменьшенных моделях, помещаемых в аэродинамическую трубу. Моделирование может быть предметным, физическим, математическим, логическим, знаковым. Все зависит от выбора характера модели.
Модель - это объективированная в реальности или мысленно представляемая система, замещающая объект познания. В зависимости от выбора средств построения модели различаются и разные виды моделирования. С возникновением новых поколений ЭВМ в науке получило широкое распространение компьютерное моделирование на основании специально создаваемых для этих целей программ. Компьютерное моделирование включает в себя использование математического и логического моделирования.
Наблюдение является исходным методом эмпирического познания. Наблюдение - это целенаправленное изучение предметов, опирающееся в основном на такие чувственные способности человека, как ощущение, восприятие, представление; в ходе наблюдения мы получаем знание о внешних сторонах, свойствах и признаках рассматриваемого объекта.
Познавательным итогом наблюдения является описание - фикса-
ция средствами языка исходных сведений об изучаемом объекте. Результаты наблюдения могут также фиксироваться в схемах, графиках, диаграммах, цифровых данных и просто в рисунках.
К структурным компонентам наблюдения относятся: сам наблюдатель, объект исследования, условия наблюдения и средства наблюдения - установки, приборы и измерительные инструменты.
С первого взгляда может показаться, что наблюдение относится к пассивным, чисто созерцательным средствам познания и безусловно по отношению к эксперименту оно таковым и является. Но при внешней пассивности в наблюдении в полной мере реализуется то, что именуется активным характером человеческого познания. Активность проявляется прежде всего в целенаправленном характере наблюдения, в наличии исходной установки у наблюдателя: что наблюдать и на какие явления обращать особое внимание. Это обусловливает и второй момент активности наблюдения, а именно его избирательный характер. Однако в процессе наблюдения ученый не игнорирует явления, не входящие в его установки. Они также фиксируются и в конечном счете могут оказаться основанием для установления главных фактов. Активность наблюдения проявляется также и в его теоретической обусловленности. Мы определяли наблюдение как метод, опирающийся на чувственные познавательные способности человека, но в наблюдении постоянно проявляется и рациональная способность в форме теоретических установок. В методологии широко известна фраза: "Ученый смотрит глазами, но видит головой". Так дилетант и геолог, глядя на один и тот же кусок породы, видят, наблюдают разные вещи. Аналогичным образом обыватель и эголог, наблюдая за поведением животных, зафиксируют различные результаты этого наблюдения. Не прав был Ф. Бэкон, который надеялся перед наблюдением очистить сознание от всех "идолов". Практически это означало бы стирание всего знания, которое ученый получил в процессе образования. Лучший пример тому деятельность Галилея, который для наблюдения небесных явлений создал телескоп, что обусловило значительный прогресс в сборе эмпирического материала в этой области. Активность наблюдения проявляется и в отборе исследователем средств описания.
Можно построить достаточно богатую классификацию видов наблюдения, чего мы здесь сделать не сможем. Отметим лишь два важных вида наблюдения, различающихся установкой на качественное и количественное описание явлений. Качественное наблюдение было известно человеку с древнейших времен. Наука нового времени начинается с широкого использования количественных наблюдений и соответст-
венно описаний. В основе такого типа наблюдений лежит процедура измерения. Измерение - это процесс определения отношения одной измеряемой величины, характеризующей изучаемый объект, к другой однородной величине, принятой за единицу. Пример - процедура измерения роста или веса человека. Переход науки к количественным наблюдениям и измерению лежит в основании зарождения точных наук, т. к. открывает путь к их математизации и позволяет сделать экспериментальную проверку теоретических гипотез более эффективной.
Эксперимент является, как и Наблюдение, базисным методом на эмпирическом этапе познания. Он включает в себя элементы метода наблюдения, но не тождествен последнему. Он представляет собой более активный метод изучения объекта, чем наблюдение. Практическое вмешательство в ход исследований в нем связано, в основном, с поиском подходящих условий для наблюдения или использования соответствующих приборов, усиливающих органы чувств человека. Со становлением экспериментального метода ученый превращается из наблюдателя природы в естествоиспытателя. Говоря метафорически, с помощью этого метода ученый обретает возможность "задавать вопросы природе".
Эксперимент - это активный целенаправленный метод изучения явлений в точно фиксированных условиях их протекания, которые могут воссоздаваться и контролироваться самим исследователем. Эксперимент имеет перед наблюдением ряд преимуществ: в ходе эксперимента изучаемое явление может не только наблюдаться, но и воспроизводиться по желанию исследователя; в условиях эксперимента возможно обнаружение таких свойств явлений, которые нельзя наблюдать в естественных условиях; эксперимент позволяет изолировать изучаемое явление от усложняющих обстоятельств путем варьирования условий и изучать явление в "чистом виде"; в условиях эксперимента резко расширяется арсенал используемых приборов, инструментов и аппаратов.
В общей структуре научного исследования эксперимент занимает особое место. С одной стороны, именно эксперимент является связующим звеном между теоретическим и эмпирическим этапами и уровнями научного исследования. По своему замыслу эксперимент всегда опосредован предварительным теоретическим знанием: он задумывается на основании соответствующих теоретических знаний и его целью зачастую является подтверждение или опровержение научной теории или гипотезы. Сами результаты эксперимента нуждаются в определенной теоретической интерпретации. Вместе с тем метод эксперимента
по характеру используемых познавательных средств принадлежит к эмпирическому этапу познания. Итогом экспериментального исследования прежде всего является достижение фактуального знания и установление эмпирических закономерностей.
Другой важной гносеологической особенностью эксперимента является одновременная его принадлежность и к познавательной, и к практической деятельности человека. Целью экспериментального исследования является приращение знания, и в этом отношении он относится к сфере познавательной деятельности. Но поскольку эксперимент включает в себя определенное преобразование материальных систем, он является одной из форм практики. Эксперимент, будучи формой и методом познания, в то же время выступает в качестве основы и критерия истинности знания, хотя и в ограниченных масштабах. Граница между экспериментом и другими формами практической деятельности относительна, и в некоторых случаях, когда речь идет о крупномасштабном производственном или социальном эксперименте, последний оказывается полноценной формой практической деятельности.
Экспериментальный метод, возникнув в недрах физики, нашел затем широкое распространение в химии, биологии, физиологии и других естественных науках. В настоящее время эксперимент все больше распространяется в социологии, выступая и как метод познания, и как средство оптимизации социальных систем. По существу, со времен Галилея экспериментальный метод не претерпел существенных изменений с точки зрения его структуры и роли в познании. Существенные изменения произошли в технической оснащенности эксперимента, возникли новые виды эксперимента, связанные с использованием ЭВМ, расширилась сфера применения экспериментального метода. Принципиальная новизна в понимании эксперимента, пожалуй, касается лишь необходимости учета взаимодействия исследуемого объекта с измерительными приборами, что во времена Галилея не представлялось актуальным.
Выделяются следующие виды эксперимента: 1) исследовательский, или поисковый, эксперимент; 2) проверочный или контрольный эксперимент; 3) воспроизводящий; 4) изолирующий; 5) качественный или количественный; 6) физический, химический, социальный, биологический эксперимент. Исследовательский, или поисковый, эксперимент направлен на обнаружение новых, неизвестных науке явлений или их новых, неожиданных свойств. Например, серия экспериментов с проводниками при различных температурах в свое время закончилась
открытием явления низкотемпературной сверхпроводимости. А эксперименты с проводниками сложного физико-химического состава привели недавно к открытию высокотемпературной сверхпроводимости. Эксперименты с катодными лучами имели своим результатом открытие Рентгеном нового вида проникающего излучения, названного его именем, а опыты с рентгеновскими лучами повлекли за собой открытие А. Беккерелем радиоактивности. В развитых науках большую роль играет проверочный, или контрольный, эксперимент. Объектом проверки является то или иное теоретическое предсказание либо та или иная гипотеза. По отношению к теоретическим гипотезам эксперимент может быть подтверждающим, опровергающим и решающим. Эксперимент является подтверждающим, если он задумывается с целью подтвердить эмпирически проверяемые следствия из гипотезы; соответственно, он будет опровергающим, если ставится с целью опровержения. Его называют решающим, если целью служит опровержение одной и подтверждение другой из двух (или нескольких) соперничающих теоретических гипотез. Это различие относительно. Эксперимент, задуманный как подтверждающий, может по результатам оказаться опровергающим, и наоборот. Что касается решающего эксперимента, то в силу сложного и неоднозначного характера связи теории с опытом многие исследователи отрицают его существование, хотя на определенном этапе соперничества гипотез он может создавать условия для временного предпочтения одной из них. В качестве примера проверочного эксперимента выступает один из экспериментов по проверке волновой теории света. В начале прошлого века С. Пуассон, анализируя математическую часть волновой теории света Френеля, пришел к неожиданному выводу: если эта теория верна, то в центре тени, образуемой непроницаемым экраном на пути точечного источника света должно образоваться белое пятно. Этот вывод был не чем иным, как эмпирически проверяемым следствием из теории Френеля, которое казалось крайне маловероятным как для сторонников корпускулярной, так и для сторонников волновой теории света. По замыслу Пуассона, позже был поставлен опыт с целью опровергнуть теории Френеля, но вместо этого его результаты блестяще подтвердили теорию Френеля. Белое пятно в центре тени было обнаружено и названо пятном Пуассона.
Особым видом эксперимента является мысленный эксперимент. Если в реальном эксперименте ученый для воспроизведения, изоляции или изучения свойств того или иного явления ставит его в различные реальные физические условия и варьирует их, то в мысленном экспе-
рименте эти условия являются воображаемыми, но воображение при этом строго регулируется хорошо известными законами науки и правилами логики. Ученый оперирует чувственными образами или теоретическими моделями. Последние тесно связаны с их теоретической интерпретацией, поэтому мысленный эксперимент относится скорее к теоретическим, чем к эмпирическим методам исследования. Мысленный эксперимент не может рассматриваться как форма практической деятельности человека. Экспериментом в собственном смысле его можно назвать лишь условно, поскольку способ рассуждения в нем аналогичен порядку операций в реальном эксперименте. Классическим примером является мысленный эксперимент Эйнштейна со свободно падающим лифтом. Результатом была формулировка принципа эквивалентности тяжелой и инертной массы, положенного в основание общей теории относительности.
Проведение экспериментального исследования включает в себя ряд стадий. К первой стадии относится планирование эксперимента, в ходе которого определяется его цель, осуществляется выбор типа эксперимента и продумываются его возможные результаты. Все это зависит от той исследовательской проблемы, которую ученый пытается решить. В ходе планирования эксперимента существенное значение имеет выделение тех факторов, которые оказывают влияние на изучаемое явление и его свойства, а также выделение набора тех величин, которые должны контролироваться и измеряться. Второй этап эксперимента связан с выбором технических средств проведения и контроля эксперимента. Техника, используемая в эксперименте, в том числе и измерительные приборы, должна быть практически выверена и теоретически обоснована. В современном эксперименте широко используются статистические методы контроля. Завершается экспериментальное исследование стадией интерпретации результатов эксперимента, которая включает в себя статистический и теоретический анализ, а также истолкование результатов эксперимента.
Гипотеза как форма и метод теоретического исследования.
Цель теоретического исследования заключается в установлении законов и принципов, которые позволяют систематизировать, объяснять и предсказывать факты, установленные в ходе эмпирического исследования. В истории методологии был период, когда некоторые ученые и философы считали, что основным методом теоретического исследования является индуктивный метод, позволяющий логически выводить общие законы и принципы из фактов и эмпирических обобщений. Но уже в конце XIX в. стало ясно, что такого метода построить
нельзя. Однозначного дискурсивного пути, ведущего от знаний о фактах к знаниям о законах, не существует. Это по-своему констатировал А, Эйнштейн. Провозгласив, что высшим долгом физиков является установление общих законов, он добавляет, что "к этим законам ведет не логический путь, а только основанная на проникновении в суть опыта интуиция" (Эйнштейн А. "Физика и реальность". М., 1964, с. 9). Но то, что Эйнштейн называет "основанной на проникновении в суть опыта интуицией", на самом деле является сложным познавательным приемом, именуемым методом гипотезы, в рамках которого и проявляется интуиция исследователя.
В методологии термин "гипотеза" используется в двух смыслах: как форма существования знания, характеризующаяся проблематичностью, недостоверностью, и как метод формирования и обоснования объяснительных предложений, ведущий к установлению законов, принципов, теорий. Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.
Лучше всего представление о методе гипотезы дает ознакомление с его структурой. Первой стадией метода гипотезы является ознакомление с эмпирическим материалом, подлежащим теоретическому объяснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии - выдвижению догадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.
Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными интертеоретическими принципами данной науки. Например, если физик, объясняя факты, обнаружит, что его объясняющее предположение входит в противоречие с принципом сохранения энергии или принципом физической относительности, он будет склонен отказаться от такого предположения и искать новое решение проблемы. Однако в развитии науки бывают такие периоды, когда ученый склонен игнорировать некоторые (но не все) фундаментальные принципы своей науки. Это так называемые революционные, или экстраординарные, периоды,
когда необходима коренная ломка фундаментальных понятий и принципов. Но на этот шаг ученый идет лишь в том случае, если перепробованы все традиционные пути решения проблемы. Так, основатели электродинамики были вынуждены отказаться от принципа дальнодействия, который в ньютоновской физике имел фундаментальное значение. М. Планк, перепробовав множество путей традиционного объяснения излучения абсолютно черного тела, отказался от принципа непрерывности действия, который до этого момента считался в физике "неприкосновенным". Такого рода гипотезы Н. Бор и называл "сумасшедшими идеями". Но от шизофренического бреда эти идеи и догадки отличает то, что, порывая с одним или двумя принципами, они сохраняют согласие с другими фундаментальными принципами, что и обусловливает серьезность выдвигаемой научной гипотезы.
На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей.
На пятой стадии проводится экспериментальная проверка выведенных из теории следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения теоретических объяснительных гипотез пока не увенчались успехом. Статус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказатель-ная сила. Особую ценность имеют гипотезы, из которых выводятся так называемые "рискованные предсказания" (термин К. Поппера), которые предсказывают факты невероятные в свете имеющихся теорий или эмпирической интуиции. К числу таких рискованных предсказаний прежде всего относятся предсказание Менделеевым на основании гипотезы периодического закона существования неизвестных химических элементов и их свойств или предсказание общей теорией относительности отклонения луча света, проходящего вблизи Солнца, от прямолинейного пути. И то, и другое предсказания получили экспериментальное подтверждение, что способствовало превращению периодического закона и общей теории относительности из гипотез в теории.
Знакомство с общей структурой метода гипотезы позволяет определить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.
Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически проверяемых следствий. Но дедуктивные умозаключения - не единственный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы используются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мысленный эксперимент. Что касается интуиции, о которой говорит Эйнштейн, то она вкраплена во все стадии метода гипотезы, начиная от анализа фактов, подлежащих объяснению, до принятия научным сообществом хорошо обоснованной гипотезы в качестве закона или теории. Именно интуитивное озарение может позволить ученому выделить из совокупности фактов главные, ведущие к выдвижению гениальной догадки. Интуитивное озарение может проявляться и в выборе аналогии, наводящей на эвристически ценную догадку, и т.д. Дискурсивное мышление в рамках метода гипотезы постоянно перемежается с интуитивными шагами мысли. Но способность к интуитивному озарению дается гениальному ученому не "от бога", хотя гениальность имеет и врожденные элементы. Как считал Эйнштейн, интуитивное озарение в значительной степени есть продукт "проникновения в суть опыта", что зависит преимущественно от высокого профессионализма и тяжелой постоянной работы ума над решением поставленной проблемы.
Объяснительная гипотеза как предположение о законе - не единственный вид гипотез в науке. Существуют также "экзистенциальные" гипотезы - предположения о существовании неизвестных науке элементарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Способы выдвижения и обоснования таких гипотез отличаются от объяснительных гипотез. Наряду с основными теоретическими гипотезами могут существовать и вспомогательные, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Как правило, такие вспомогательные гипотезы позже элиминируются. Существуют и так называемые рабочие гипотезы, которые
позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение.
Важнейшей разновидностью метода гипотезы является метод математической гипотезы, который характерен для наук с высокой степенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулируются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование. Характеризуя метод математической гипотезы, С. И. Вавилов писал: Положим, что из опыта известно, что изученное явление зависит от ряда переменных и постоянных величин, связанных между собой приближенно некоторым уравнением. Довольно произвольно видоизменяя, обобщая это уравнение, можно получить другие соотношения между переменными. В этом и состоит математическая гипотеза или экстраполяция. Она приводит к выражениям, совпадающим или расходящимся с опытом, и соответственно этому применяется дальше или отбрасывается.
Специалист по методологии науки И. В. Кузнецов попытался выделить различные способы видоизменения исходных уравнений в процессе выдвижения математической гипотезы: 1) изменяется тип, общий вид уравнения; 2) в уравнение подставляются величины другой природы; 3) изменяется и тип уравнения, и вид величины; 4) изменяются предельные граничные условия. Все это дает основание и для типологии метода математической гипотезы.
Сфера применения метода математической гипотезы весьма ограничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследовании. К таким дисциплинам прежде всего относится современная физика. Метод математической гипотезы был использован при открытии основных законов квантовой механики. Так, Э. Шредингер для описания движения элементарных частиц за основу взял волновое уравнение классической физики, но дал иную интерпретацию его членов. В итоге был создан волновой вариант квантовой механики. В. Гейзенберг и М. Борн пошли в решении этой задачи другим путем. Они взяли за исходный пункт в выдвижении математической гипотезы канонические уравнения Гамильтона из классической механики, сохранив их мате-
матическую форму или тип уравнения, но ввели в эти уравнения новый тип величин - матрицы. В результате возник матричный вариант кван-тово-механической теории.
Метод гипотезы демонстрирует творческий характер научного исследования в процессе открытия новых законов, принципов и создания теорий.
Правила метода гипотезы не предопределяют однозначно результатов исследования и не гарантируют истинности полученного знания. Именно творческая интуиция, творческий выбор из многообразия возможных путей решения проблемы приводит ученого к новой теории. Теория не вычисляется логически и не открывается, она создается творческим гением ученого и на ней всегда лежит печать личности ученого, как она лежит на любом продукте духовно-практической деятельности человека.
§ 3. Компьютер и философия*
Возникновение и интенсивное развитие электронно-вычислительной техники при постоянно расширяющейся сфере ее использования, взаимосвязанное с изменениями в жизненно важных сферах общества, включая экономику, социальную структуру, политику, науку, культуру и повседневную жизнь людей, является объектом изучения различных гуманитарных дисциплин, в том числе и философии.
Первые систематические попытки выявления и изучения философских проблем, связанных с компьютерной техникой и открываемыми ею возможностями, были предприняты в рамках того, что может быть названо кибернетическим движением в широком смысле.
Основатель этого интеллектуального движения, американский математик Н. Винер, в годы второй мировой войны занимался разработкой математических средств для управления огнем с использованием вычислительных устройств, обеспечивающих расчеты для выстрела. Вынужденные в ходе этой работы исследовать выполнение человеком тех функций, которые предстояло передать электротехнической системе,- прежде всего функции предсказания будущего,- ученые обратились к проблемам сознательной деятельности человека и нейрофизиологии. Летом 1947 г. появился термин "кибернетика" - так группа ученых, объединившихся вокруг Винера и Розенблюта, решила
* Параграф написан старшим научным сотрудником Института философии РАН кандидатом философских наук И. Ю. Алексеевой.
назвать "теорию управления и связи в машинах и живых организмах" (См.: Винер Н. "Кибернетика или управление и связь в животном и машине". 2-е изд. М., 1968. С. 56-57). Основными понятиями новой теории стали такие понятия, как "информация", "обратная связь", "кодирование", "адаптация", "гомеостазис" и др.
Идеи кибернетики получили большую популярность как среди ученых самых разных специальностей, так и в широкой публике. Употребление термина "кибернетика" не было однозначным. С кибернетикой связывались надежды на создание единой теоретической базы для множества дисциплин, изучавших различные процессы обработки информации в XIX и в XX вв.: теории проводной связи, теории радиосвязи, теории автоматического регулирования, теории математических машин и др. Нередко эти дисциплины стали называть кибернетикой (или технической кибернетикой),- в то же время многие ученые продолжали работать в таких областях, не пользуясь кибернетической терминологией.
Кибернетика характеризовалась и как "общая теория управления, не связанная непосредственно ни с одной прикладной областью и в то же время применимая к любой из них" (Вир Ст. "Кибернетика и управление производством". Пер. с англ. М.: Гос. изд-во физико-математической литературы, 1963. С. 20), и как точная наука об управлении, непременно использующая количественные методы (Берг А. Предисловие к русскому изданию//Там же. С. 5).
Кибернетическое движение в целом включало самые различные направления, в том числе искусственный интеллект, различные типы моделирования, применения логико-математических методов в биологических, медицинских, социально-экономических (и в других гуманитарных) исследованиях. Это обстоятельство нашло выражение в характеристике кибернетики как "исследования процессов управления в сложных динамических системах, основывающегося на теоретическом фундаменте математики и логики и использующего средства автоматики, особенно электронные цифровые вычислительные, управляющие и информационно-логические машины" (Бирюков Б. В. "Кибернетика и методология науки". М., 1974. С. 13).
В русле кибернетического движения осуществлялись философские и логико-методологические исследования управления, информации, мышления, познания, структуры научного знания и перспектив его развития. Характерные для кибернетического движения идея общности (одинаковости или сходства) закономерностей, определяющих процессы управления и переработки информации в самых разных сферах
реальности и идея плодотворности использования математических и логико-математических трактовок этих процессов на различных уровнях абстракции получили специфическое преломление в многочисленных сравнениях человеческого мышления и работы ЭВМ.
Появление компьютерных систем, которые стали называть интеллектуальными системами (ИС), и развитие такого направления, как искусственный интеллект (ИИ), побудило по-новому взглянуть на ряд традиционных теоретико-познавательных проблем, наметить новые пути их исследования, обратить внимание на многие, остававшиеся ранее в тени аспекты познавательной деятельности, механизмов и результатов познания. В ходе бурных дебатов 60-70-х годов на тему "Может ли машина мыслить?" были, по существу, представлены различные варианты ответа на вопрос о том, кто может быть субъектом познания: только ли человек (и, в ограниченном смысле, животные) или же и машина может считаться субъектом мыслящим, обладающим интеллектом и, следовательно, познающим. Сторонники последнего варианта пытались сформулировать такое определение мышления, которое позволяло бы говорить о наличии мышления у машины,- например, мышление определялось как решение задач (См.: Ботвинник M. M. "Почему возникла идея искусственного интеллекта?"// "Кибернетика: перспективы развития". М., 1981). [Нужно отметить, однако, что и способность компьютерной системы к принятию каких-либо решений также может быть поставлена (и ставится) под сомнение]. Оппоненты сторонников "компьютерного мышления", напротив, стремились выявить такие характеристики мыслительной деятельности человека, которые никак не могут быть приписаны компьютеру и отсутствие которых не позволяет говорить о мышлении в полном смысле этого слова. К числу таких характеристик относили, например, способность к творчеству, эмоциональность (См.: Тюхтин В. С. "Соотношение возможностей естественного и искусственного интеллектов"//" Вопросы философии". 1979. № 3).
Компьютерное моделирование мышления дало мощный толчок психологическим исследованиям механизмов познавательной деятельности. Это проявилось, с одной стороны, в проникновении в психологию "компьютерной метафоры", ориентирующей на изучение познавательной деятельности человека по аналогии с переработкой информации на компьютере, и, с другой стороны, в активизации исследований, стремящихся показать плодотворность и самостоятельную ценность иных подходов - например, изучение мышления в контексте общей теории деятельности. O.K. Тихомиров, специально
исследуя "соотношение кибернетического и психологического подходов к изучению мышления", настаивал, что "широко распространенное сближение человеческого мышления и работы вычислительной машины не обосновано". Вместе с тем, отмечает он, "именно развитие кибернетики сделало очевидным неполноту господствовавших в психологии теорий мышления и поведения, выдвинув для изучения новые аспекты" (Тихомиров O.K. "Структура мыслительной деятельности человека. (Опыт теоретического и экспериментального исследования)". Изд-во Моск. ун-та, 1969. С. 4). Характеризуя значение аналогий между человеческим мышлением и компьютерной переработкой информации, английская исследовательница М. Воден пишет: "В той степени, в какой аналогия с компьютером может служить общим человеческим интересам более глубокого познания разума, осторожное использование "психологической" терминологии в отношении определенного типа машин должно скорее поощряться, чем запрещаться... аналогии дают возможность не только обозначить сходные черты между сравниваемыми объектами, но ведут к обнаружению действительно важных сходств и различий" (Boden M. A. "Artificial Intelligence and Natural Man". 2nd ed. L., 1987. P. 421).
Компьютерное моделирование мышления, использование методов математических и технических наук в его исследовании породило в период "кибернетического бума" надежды на создание в скором будущем строгих теорий мышления, столь полно описывающих данный предмет, что это сделает излишними всякие философские спекуляции по его поводу. Надеждам такого рода, однако же, не суждено было сбыться, и сегодня мышление, будучи предметом изучения ряда частных наук (психологии, логики, искусственного интеллекта, когнитив- . ной лингвистики), остается также притягательным объектом философских рассмотрении.
В последние два десятилетия в компьютерных науках заметное внимание стало уделяться такому традиционно входившему в сферу философии предмету, как знание. Слово "знание" стало использоваться в названиях направлений и составляющих компьютерных систем, а также самих систем (системы, основанные на знаниях; базы знаний и банки знаний; представление, приобретение и использование знаний, инженерия знаний). Тема "компьютер и знание" стала предметом обсуждения и в значительно более широком контексте, где на первый
план вышли ее философско-эпистемологические, социальные и политико-технологические аспекты.
Что касается такой области, как ИИ, то не будет преувеличением сказать, что в 80-е годы понятие знания потеснило понятия мышления и интеллекта, традиционно занимавшие почетное место в рефлексии профессионалов ИИ над своей деятельностью. Теория искусственного интеллекта стала иногда характеризоваться как "наука о знаниях, о том, как их добывать, представлять в искусственных системах, перерабатывать внутри системы и использовать для решения задач" (Поспелов Д.А. "Ситуационное управление: теория и практика". М., 1986. С. 7.), а история искусственного интеллекта, исключая ее ранние этапы,- как история исследований методов представления знаний (См.: "Представление и использование знаний"/Под ред. X. Уэно, М. Исидзука. М.,
Расширение сферы применения ИС, переход от "мира кубиков" к таким, более сложным областям, как медицина, геология и химия, потребовал интенсивных усилий по формализации соответствующих знаний. Разработчики ИС столкнулись с необходимостью выявить, упорядочить разнообразные данные, сведения эмпирического характера, теоретические положения и эвристические соображения из соответствующей области науки или иной профессиональной деятельности и задать способы их обработки с помощью компьютера таким образом, чтобы система могла успешно использоваться в решении задач, для которых она предназначается (поиск информации, постановка диагноза и т. д.). Это привело к изменениям в характере данных, находящихся в памяти компьютерной системы,- они стали усложняться, появились структурированные данные - списки, документы, семантические сети, фреймы. Для элементарной обработки данных, их поиска, записи в отведенное место и ряда других операций стали использоваться специальные вспомогательные программы. Процедуры, связанные с обработкой данных, усложнялись, становились самодовлеющими. Появился такой компонент интеллектуальной системы, как база знаний.
Термин "знания" приобрел в ИИ специфический смысл, который Д. А. Поспелов характеризует следующим образом. Под знаниями понимается форма представления информации в ЭВМ, которой присущи такие особенности, как: а) внутренняя интерпретируемость (когда каждая информационная единица должна иметь уникальное имя, по которому система находит ее, а также отвечает на запросы, в которых это имя упомянуто); б) структурированность (включенность одних
информационных единиц в состав других); в) связность (возможность задания временных, каузальных пространственных или иного рода отношений); г) семантическая метрика (возможность задания отношений, характеризующих ситуационную близость); д) активность (выполнение программ инициируется текущим состоянием информационной базы). Именно эти характеристики отличают знания в ИС от данных - "определяют ту грань, за которой данные превращаются в знания, а базы данных перерастают в базы знаний". (См. "Искусственный интеллект. Справочное издание в 3 кн.". Т. 2. М., 1990. С. 8).
Пользуясь терминологией Л. Витгенштейна, можно сказать, что это понимание знаний как формы представления информации "работает" в рамках особой, характерной для ИИ языковой игры. В ходе этой языковой игры могут появляться формулировки, способные вызвать недоумение эпистемолога, пытающегося оценить их с точки зрения привычных философских интерпретаций знания. К такого рода формулировкам относятся ставшее "общим местом" утверждение, что данные не являются знаниями, а также предложения использовать в качестве знаний тот или иной язык или выражения типа "под знаниями будем понимать такого-то вида формулы".
Вместе с тем, только что приведенная характеристика знаний в ИС не является совершенно изолированной от того, что мы обычно понимаем под знанием. Такие черты, как внутренняя интерпретируемость, структурированность, связность, семантическая метрика и активность, присущи любым, более или менее крупным блокам человеческих знаний и в этом смысле знания в компьютерной системе можно рассматривать как модель или образ (в широком понимании данного слова) того или иного фрагмента человеческого знания.
Однако связь знаний в специфическом для ИИ смысле со знанием в более привычном, "обычном", смысле не ограничивается лишь сходством некоторых структурных характеристик. Ведь значительная часть информации, представляемой в базе знаний ИС, есть не что иное, как знания, накопленные в той области, где должна применяться данная система. Исследование этого знания (зафиксированного в соответствующих текстах или существующего как незафиксированное в тексте и даже неартикулированное знание индивида-эксперта) под углом зрения задач построения ИС и определяет технологический подход ИИ к знанию как таковому.
Технологический подход к знанию предполагает постановку, исследование и решение технологических вопросов о знании. К последним относятся вопросы типа "Каким образом следует (можно,
допустимо) обращаться (иметь дело) со знанием, имея в виду достижение такой-то цели?". "Обращаться" или "иметь дело",со знанием предполагает здесь не только приобретение, хранение или обработку знаний, но и любые ментальные и речевые акты, осуществляемые в отношении знания,- например, утверждение, что некто ("а") знает нечто ("р"), может быть истолковано как ментальный акт, совершаемый некоторым "наблюдателем" в отношении знания, которым обладает субъект "а" (в качестве "наблюдателя" может выступать субъект "а").
При самом широком истолковании технологический подход к знанию является неотъемлемым элементом жизни любого человека. В этом смысле и первобытный человек, использующий для передачи информации примитивные сигналы, и наш современник, выбирающий между почтой, телеграфом, телефоном и телефаксом, могут считаться решающими технологические вопросы относительно знания.
Примером технологического подхода к исследованию знания как особой сущности может служить характеристика сократовой майевтики в диалогах Платона. Искусство Сократа задавать наводящие вопросы таким образом, что собеседник в конце концов приходит к верным выводам относительно обсуждаемых предметов (во всяком случае, к таким выводам, которые считает верными сам Платон), характеризуется здесь как искусство пробуждения истинных мнений, живущих в душе человека, в результате чего мнения становятся знаниями. Пожалуй, наиболее выразительная иллюстрация этой процедуры дана в известном примере из диалога "Менон", где мальчик-раб решает геометрическую задачу. Вообще же говоря, все диалоги Платона демонстрируют сократову технику "пробуждения" знания. Однако собственно технологический подход к исследованию знания мы находим у Платона лишь в тех случаях, когда сама эта техника становится предметом осмысления, когда сама она рассматривается как средство для совершения каких-то действий над знанием. Фрагментарные характеристики данной техники встречаются во многих диалогах - примером может служить тот же "Менон", где говорится о пробуждении знаний вопросами. Более подробного рассмотрения она удостоена в диалоге "Теэтет". Здесь Сократ говорил о своем искусстве как аналогичном ремеслу своей матери - повитухи Фенареты, и то, что в "Меноне" характеризовалось как техника пробуждения знаний, здесь характеризуется как своеобразная техника родовспоможения "мужчинам, беременным мыслью" (См.: Платон. Соч. в 3 т. Т. 2. М., 1970. С. 234).
Технологические вопросы о знании могут быть до известной степени противопоставлены экзистенциальным вопросам - т. е. вопро-
сам о том, как существует знание, каково оно есть. К вопросам последнего типа относятся, например, вопросы о соотношении знания с мнением или верой, о структуре знания и его видах, об онтологии знания, о том, как происходит познание.
До второй половины нынешнего столетия экзистенциальный подход в исследовании знания был преобладающим. Это не означает, конечно, что не развивалась сама технология получения, передачи, хранения и обработки знания, а также оценки результатов познания, претендующих на статус знания. Достаточно вспомнить о развитии книгопечатания и технических устройств для передачи информации, о методах обучения и педагогических исследованиях, посвященных технике передачи знаний и воспитанию способности к самостоятельному приобретению и использованию знаний, развитие методов науки и исследований этих методов. Однако, даже когда эти способы работы со знанием становились предметом исследования, их соотносили не столько со знанием как особого рода сущностью, сколько с познаваемой реальностью (которая могла истолковываться как физическая, ментальная или психическая в зависимости от мировоззрения исследователя). Многие из этих рассмотрении могут быть после определенных интерпретаций квалифицированы как технологические, но это все же будет относиться скорее к результату нашей интерпретации, чем к самому исследованию.
Расцвет технологических (в указанном выше смысле) исследований знания связан с развитием эпистемической логики и искусственного интеллекта. Довольно типичной чертой исследований по эпистемической логике является разработка определенных средств для решения вопроса о том, будет ли такого-то вида формула (содержащая эписте-мические операторы, соответствующие словам "знает", "полагает", "сомневается", "отрицает" и др.) доказуемой в таком-то исчислении или общезначимой для такого-то типа моделей. С точки зрения технологического подхода к знанию этот вопрос может быть понят как вопрос о легитимации (узаконении) с использованием определенного символи-ко-концептуального аппарата результатов мертально-речевой деятельности в отношении знания некоторого субъекта (или группы субъектов), выраженных в форме, пригодной для применения данного аппарата. Характер легитимируемых результатов определяется как особенностями используемых формализмов, так и позицией исследователя по отношению к экзистенциальным вопросам о знании.
Технологические вопросы о знании, исследуемые в рамках ИИ, касаются, в значительной степени, способов представления знаний.
Проблемы представления знаний связаны, в свою очередь, с разработкой соответствующих языков и моделей. Существуют различные типы моделей: логические, продукционные, фреймовые, семантические сети и другие. Логические модели предполагают представление знаний в виде формальных систем (теорий), и в качестве языка представления знаний в таких моделях обычно используется язык логики предикатов. Продукционные представления можно охарактеризовать (упрощенным образом) как системы правил вида "Если А, то В", или "Предпосылка - действие". Сетевые модели предполагают выделение некоторых фиксированных множеств объектов и задание отношений на них (это могут быть отношения различного рода: пространственные, временные, отношения именования и др.). Фреймовые представления иногда рассматривают как разновидность семантических сетей, однако для первых характерно наличие фиксированных структур информационных единиц, в которых определены места для имени фрейма, имен слотов и значений слотов. (Характеристику основных моделей представления знаний можно найти в упоминавшемся выше справочном издании "Искусственный интеллект", т. 2, а также, например, в: "The Handbook of Artificial Intelligence". V. 1. Massachusetts ets., 1986). Каждая из упомянутых моделей имеет свои достоинства и недостатки в отношении того или иного круга задач.
Преимущества логических моделей, использующих язык логики предикатов, связаны с дедуктивными возможностями исчисления предикатов, теоретической обоснованностью выводов, осуществляемых в системе. Однако такого рода модели в сложных предметных областях могут оказаться слишком громоздкими и недостаточно наглядными в качестве моделей предметной области или соответствующих фрагментов знания. Продукционные модели получили широкое распространение благодаря таким достоинствам, как простота формулировки отдельных правил, пополнения и модификации, а также механизма логического вывода. В качестве недостатка продукционного подхода отмечают низкую эффективность обработки информации при необходимости решения сложных задач. Преимущества семантических сетей и фреймовых моделей заключаются, с одной стороны, в их удобстве для описания определенных областей знаний (и соответствующих фрагментов реальности, изучаемых в данных областях), когда выделяются основные (с точки зрения задач, для которых создается ИС) объекты предметной области и (или) система понятий, в которых будут анализироваться конкретные ситуации, а также описываются свойства объектов (понятий) и отношения между ними. И хотя в целом для этих
типов моделей существуют значительные проблемы с организацией вывода, фреймовые системы многими были оценены как перспективные благодаря возможностям подведения под них достаточно строгих логических и математических оснований. Разумеется, в ИС вовсе не обязательно должна быть реализована только какая-нибудь одна из упомянутых моделей представления знаний "в чистом виде". Сочетание различных моделей может способствовать созданию более эффективных систем. На уровне теории ИИ это иногда находит отражение в разработке новых типов моделей представления знаний, сочетающих в себе черты моделей, ставших уже традиционными.
В рамках технологического подхода к знанию, осуществляемого ИИ, рассматриваются вопросы экономичности представлений знаний с помощью тех или иных средств, их дедуктивных возможностей, эффективности в решении задач. Вместе с тем влияние теории ИИ (и, в частности, представления знаний) на исследование знания как такового простирается далеко за пределы технологического подхода. Сравнивая влияние тех или иных моделей представления знаний на экзистенциальные исследования знания, мы не можем не заметить различия в той роли, которую играет, с одной стороны, логический подход и, с другой стороны, такие подходы, как продукционный, фреймовый и другие, объединяемые иногда под общим названием эвристического (См.: Попов Э. В. "Экспертные системы". М., 1987) или когнитивного (см.: "Представление и использование знаний"/Под ред. X. Уэно, М. Исидзука. М., 1989) подхода. Нужно отметить, что оба этих подразделения могут быть приняты лишь условно: подразделение "логический - эвристический" или "логический - когнитивный" вызывает сомнения, поскольку для логических моделей характерно наличие эвристик и, кроме того, модели эти могут содержать допущения относительно когнитивного поведения. Пример - разработанная группой В. К. Финна ИС, которая рассматривается своими создателями как реализация логики здравого смысла, объединяющей естественный рационализм и естественный эмпиризм (См.: Финн В. К. "Об обобщенном ДСМ-методе автоматического порождения гипотез"//"Семиотика и информатика". 1989. Вып. 29).
Тем не менее в целом логический подход к представлению знаний в ИС не привел до сих пор к каким-либо серьезным изменениям в экзистенциальных рассмотрения« знания, к появлению новых влиятельных концепций в этой области. Прочие же подходы оказывают более заметное влияние на исследование экзистенциальных вопросов о знании - в качестве примера можно сослаться на фреймовую кон-
цепцию строения знания, получившую известное распространение как в психологии, так и в когнитивной лингвистике. Сказанное было бы неверно истолковывать как аргумент в пользу преимуществ этих типов моделей представления знаний перед логическими.
Дело в том, что логический подход в представлении знаний, как и сами логические исчисления, возник на основе трактовок знания, складывавшихся в течение многих веков - на основе того, что может быть названо классической рационалистической эпистемологией с характерными для нее пропозициональным истолкованием элементарного знания, рассмотрением теорий математизированных наук в качестве образцовых форм организации знания, строгими стандартами правильности рассуждений. Уровень классической эпистемологии и разработанности ее концептуальных основ столь высок, что за период времени, в течение которого ведутся исследования по представлению знаний в компьютерных системах (а этот период ничтожно мал в сравнении с "возрастом" классической эпистемологии), эти исследования, имеющие в качестве своей концептуальной базы саму классическую эпистемологию, закономерно должны были скорее демонстрировать ее возможности в применении к новому кругу задач, чем стимулировать существенные изменения в ней. Утверждение, что неклассические логики, все шире применяемые в представлении знаний, также развиваются на концептуальной основе классической эпистемологии, может, на первый взгляд, показаться парадоксальным. Тем не менее оно справедливо в той степени, в какой неклассические логики являются модификациями классических исчислений и разделяют с ними те глубинные концептуальные предпосылки, которые могут быть в известном смысле противопоставлены концептуальным основам иных подходов. С этой точки зрения, работы по логике естественного языка и рассуждений здравого смысла свидетельствуют о высокой гибкости инструментария, развиваемого на базе классической эпистемологии и о богатстве его возможностей.
Другие подходы в представлении знаний достаточно тесно связаны с развитием когнитивной психологии. Однако само это направление сложилось под влиянием "компьютерной метафоры", когда познавательные процессы стали рассматриваться по аналогии с работой вычислительных машин. Неудивительно поэтому, что происходящее в ИИ оказывало и оказывает заметное воздействие на когнитивную психологию (как и на еще более молодое направление - когнитивную лингвистику). Это справедливо и в отношении собственно представления знаний. И фреймовые, и сетевые модели основываются на соответст-
вующих концепциях структур человеческого восприятия и памяти. Показательно при этом, что концепция фрейма как когнитивной структуры была мотивирована задачами разработки ИС. Вместе с тем, эта концепция имеет самостоятельное значение как концепция психологическая и эпичтемологическая и используется в исследовании проблем, выходящих за рамки собственно разработок компьютерных систем (См., напр.: Филмор И. "Фреймы и семантика понимания"//"Но-вое в зарубежной лингвистике". М., 1988. Вып. 23. "Когнитивные аспекты языка").
Сегодня можно говорить о том, что представлению знаний в ЭВМ в виде систем правил (что характерно, прежде всего, для продукционных моделей) соответствует новый подход в философско-эпистемоло-гических исследованиях, придающий особое значение правилам и предписаниям, регулирующим человеческую деятельность. Этот подход представлен в работах А. И. Ракитова. В середине 80-х годов А. И. Ракитов и Т. В. Андрианова прогнозировали возможность появления новых тенденций в эпистемологии, касающихся прежде всего исследования познавательной функции правил как особой эпистемологиче-ской категории и выявления механизма рационализации и регулятивной трансформации интеллектуального творчества. Такого рода предположения (и постановка задачи развития эпистемологии в этом направлении) были обусловлены тем обстоятельством, что для построения баз знаний компьютерных систем потребовалось изучение механизмов функционирования знания под таким углом зрения, чтобы это позволило выявить правила работы данных механизмов, т. е. "инструкции, указывающие, какие классы действий или отдельные действия и каким образом должны быть выполнены" (Ракитов А. И., Андрианова Т. В. "Философия компьютерной революции"//"Вопросы философии". 1986. № 11. С. 78).
В книге "Философия компьютерной революции" (М., 1991) А. И. Ракитов выдвигает идею "информационной эпистемологии". "Возникновение "интеллектуальной технологии" и жгучий интерес к природе и возможностям машинного мышления, порожденный компьютерной революцией,- пишет он, - привели к формированию нового, нетрадиционного раздела эпистемол
Лекция:
Понятие, виды и функции науки
Одним из социальных институтов духовной сферы общества является наука. Государственное и общественное признание в России наука получила только в начале XVIII века. 28 января (8 февраля) 1724 года указом Петра I было основано первое научное учреждение Академия наук и художеств в Петербурге. Наука играет значительную роль в жизни отдельного человека и общества в целом. Так, профессиональный успех человека напрямую зависит от степени владения научными знаниями. А прогрессивное развитие общества невозможно представить без достижений науки. Что же такое наука? Первое слово, ассоциирующееся с наукой, это знания - основа науки, без которых она теряет смысл. Знания создаются в результате исследовательской деятельности учёных и социальных институтов (научных учреждений). Поэтому формулируем и запоминаем следующее определение:
Наука – это особая система знаний о человеке, обществе, природе, технике, полученная в результате исследовательской деятельности учёных и научных учреждений.
Об особенностях научных знаний было сказано на уроке (см. Научное познание). При необходимости можете повторить или изучить эту тему. На данном уроке акцентируем внимание на видах и функциях научных знаний.
Многообразие явлений реального мира обусловило появление множества видов наук. Их насчитывается около 15 тыс. Все они подразделяются на:
- естественные – науки о природе, среди которых астрономия, физика, химия, биология и др.;
- социально-гуманитарные – науки об обществе и человеке, в их числе история, социология, политология, экономика, правоведение и др.;
- технические виды – науки о технике, к которым относятся информатика, агрономия, архитектура, механика, робототехника и другие науки о технике.
Социальное назначение науки заключается в функциях, которые она выполняет. Для каждой науки характерны специфичные функции, но есть и общие для всех наук:
Познавательная
Культурно-мировоззренческая
: наука влияет на формирование человеческой личности, определяет его отношение к природе и обществу. Человека, не обладающего научными знаниями, основывающегося в своих рассуждениях и действиях только на личный повседневный опыт вряд ли можно назвать культурным. Примеры : группа научных работников выдвинула новую гипотезу происхождения жизни на Нашей планете; философские исследования доказывают, что во Вселенной имеется безграничное число галактик; Н. проверяет и критически осмысливает научную информацию.Производственная
: наука – это особый «цех», призванный снабжать производство новой техникой и технологиями. Примеры : ученые-фармацевты создали новое лекарство для борьбы с вирусами; специалисты по генной инженерии разработали новый метод борьбы с сорняками.Социальная : наука воздействует на условия жизни людей, характер труда, систему общественных отношений. Примеры : исследования доказали, что увеличение расходов на образование на 1% в ближайшие годы приведёт к увеличению темпов экономического развития; в Госдуме состоялись слушания, на которых обсуждались научные прогнозы перспектив развития космической отрасли в РФ.
Прогностическая : наука не только вооружает людей новыми знаниями о мире, но и даёт прогнозы дальнейшего развития мира, указывая на последствия изменений. Примеры : советский физик-теоретик, академик А.Д. Сахаров выступил со статьей «Опасность термоядерной войны»; ученые – экологи предупредили об опасности загрязнения вод реки Волга для живых организмов.
Учёные и социальная ответственность
Наука включает в себя не только систему знаний, но также научные учреждения и научных работников. Признанным центром фундаментальных исследований науки в нашей стране является Российская академия наук (РАН) – наследница Академии наук и художеств Петра Великого, которая в 1934 году переехала в Москву. В составе РАН крупнейшие учёные, проводящие исследования в медицине, сельском хозяйстве, образовании, энергетике и многих других областях. Учёные, исследователи, эксперты, лаборанты – особая категория людей. Они обладают научным мировоззрением и получают огромное удовольствие от научной творческой деятельности. Их труды вносят вклад в развитие определённой отрасли науки. Главной задачей научных работников является получение, обоснование и систематизация новых истинных знаний о реальном мире.
Окружающая нас действительность в научных знаниях отражается в виде понятий и терминов. В этом состоит фундаментальное отличие науки от искусства или религии, отражающих знания о мире образно. Особенностями научного мышления и деятельности учёных являются:
- отбор объективных, достоверных и точных научных фактов;
- формулирование проблемы и построение гипотезы, способной её решить;
- использование специальных методов исследования и сбор данных;
- теоретическое обоснование понятий, принципов, законов;
- проверка знаний с помощью доказательств.
- принцип "не навреди";
- в науке нет места субъективности;
- истина дороже всего;
- честно признавай заслуги своих предшественников и многие другие.
Задание: Проиллюстрируйте примером любую функцию науки🎓
Каждый человек по мере продвижения по линии жизни познает окружающий мир. Для этого он применяет органы чувств и логику, сравнивая внешний вид предметов, запахи, фактуру, расстояния, размеры, а так же влияние свойств предметов друг на друга при их взаимодействии. Думаю ни для кого не секрет: кому-то достаточно поверхностных знаний, а кто-то хочет дойти до сути вещей. Есть мнение, что второй подход не только позволяет понять многие стороны нашей жизни, но и провести её спокойно и счастливо.
Наверняка вы задумывались о том, что зачастую наши умозаключения лишены объективности, искажены неполным знанием фактов и предвзяты ввиду неосведомленности. Тем не менее, качество жизни и того, что мы делаем, напрямую зависит от образа нашего мышления. В итоге можно дорого заплатить за такое легкомыслие, или же – постараться развить в себе мастерство научного познания в широком смысле этого слова.
Научное мышление – это способ восприятия мира, при котором совершенствуется качество познания, благодаря умелому контролю над составляющими этого процесса и следованию критериям интеллектуальности.
В результате такой работы над собой у человека появляется ряд неоспоримых преимуществ. Он способен поднимать важные для себя вопросы, выражая их ясно и точно. Собирать о них информацию и трезво её оценивать, используя абстрактное мышление для более эффективного представления. Приходить к обоснованным заключениям и решениям, проверяя их в соответствующих условиях. Для него открывается возможность мыслить непредубежденно в рамках различных понятий и осознавать их смысл, выдвигать предположения и проверять их на практике. В итоге, человек может продуктивно взаимодействовать с людьми, предлагая решения для комплексных задач.
В то же время исследователь должен обладать определенной степенью смелости, отстаивая свое мнение, даже если оно является непопулярным.
За счет чего такие результаты могут быть достигнуты? Какими инструментами стоит пользоваться? Одной из составляющих научного мышления является . В предыдущем абзаце прозвучала фраза «критерии интеллектуальности» – что это такое? Это черты личности, мыслительного процесса и речи, которые помогают структурировать информацию о предмете размышления и получить более полную картину поставленной проблемы.
Среди них, в первую очередь, такие качества, как точность и ясность. Ясность поставленной проблемы формируется за счет уточнения. Например, совершенно по разному звучит постановка вопроса «Как мне расставить мебель в спальне?» и «Как мне расставить мебель в спальне, чтобы было достаточно места для утренней зарядки и была возможность смотреть фильмы?». Дабы не тратить время на лишнюю информацию, сведения должны относиться к поставленной проблеме – быть релевантными.
Очевидно, что для решения вопроса расположения мебели, цвет её не всегда так важен. Кроме того, рассмотрение проблемы должно быть глубоким и учитывать всю широту аспектов и мнений. Так, стоит задуматься, смотреть фильм с проектора или же лучше повесить плазменную панель? Если проектор, то достаточно ли будет места между ним и стеной для комфортного просмотра картинки? Не будет ли цвет стены сильно менять цвет изображения? Какого рода зарядку я буду делать – крутить холохуп или разминаться на коврике? Сколько именно места мне понадобится?
Таков начальный инструментарий научного мышления. Ученые, изучающие различные области знания, применяют его для формирования звеньев цепи научного исследования, сочетая теоретические и эмпирические методы. Давайте разберем, чем занимается такая историческая дисциплина, как археология. Начнем с постановки задачи – поиск вещественных источников прошлого и их интерпретация в целях изучения истории человечества.
Очевидно, что место раскопок выбирается не случайно: перед этим ученые задумываются – где удастся собрать больше полезной информации, требуемой для ответа на конкретный исторический вопрос? Для этого они проводят анализ имеющихся данных путем исследования местности, исторических письменных источников и трудов других исследователей.
Такие качества характера, как сопереживание и честность позволят развивать точки зрения, отличные от собственных.
Во время раскопок, археологи строго фиксируют обстоятельства обнаружения артефактов, классифицируют найденные предметы, устанавливают их возраст, рассматривая весь комплекс археологического материала в контексте той местности, где они были обнаружены. На основе этого они выдвигают версии и предположения, которые могут быть подтверждены найденными древностями. В то же время, археологи понимают, что будущие исследования могут заставить пересмотреть убеждения прошлого.
Помимо соответствия критериям интеллектуальности и применения научных методов, ученый должен обладать некоторыми чертами характера, которые помогут ему развить объективность своих суждений. Скромный ученый способен быть чутким к своим знаниям, отдавая себе отчет в том, где он может заблуждаться и по каким вопросам его точка зрения будет ограниченной. В то же время исследователь должен обладать определенной степенью смелости, отстаивая свое мнение, даже если оно является непопулярным.
При этом такие качества характера, как сопереживание и честность позволят осознавать ценность взглядов других людей и развивать точки зрения, отличные от собственных, а также избегать двойных стандартов. Однако не стоит забывать об уверенности в своих рассуждениях, сохраняя интеллектуальную автономность – умение следовать логике, вместо того чтобы слепо принимать мнение других. Конечно же, на исследовательском пути будут встречаться сложности, которые невозможно будет преодолеть без настойчивости.
Научное мышление – термин, хорошо знакомый для работников сферы науки, ученых и исследователей. Однако, стиль научного мышления подразумевает связь с обыденным мышлением, и многие его элементы мы знаем и используем неосознанно всю жизнь.
Научное мышление - это способ мышления, отличающийся определенными характеристиками от мышления обыденного, или эмпирического (эмпирические – пер. с греч. основанные на опыте, наблюдении).
Чтобы уловить связь и разницу между ними, определим два ключевых понятия:
- Что такое мышление? Это процесс исследовательской и познавательной активности человека, целью которого является объективное отражение в сознании сути предметов, явлений и объектов окружающей действительности.
- Что такое наука? Это определенная деятельность людей, заключающаяся в разработке, систематизации информации о мире, целью которой является объяснение событий и явлений окружающего мира на базе законов.
Обыденное мышление человек регулярно использует в своей жизни. Оно базируется на повседневном субъективном опыте, с использованием простейшей формы анализа. Тип мышления, характеризующийся научностью, в своем функционировании использует методы доказательности, системности и объективности. Формирование научного вида мышления произошло достаточно недавно, хотя основа его была заложена еще философами Древней Греции.
Особенности
Перечисленные ниже основные особенности научного мышления являются универсальными и определяют основные отличия от обыденного мышления.
- Объективность. Другие методы познания характеризуются в соединении объективного и субъективного восприятия, например, образ художественной деятельности подразумевает оценку, которую дает человек, создающий ее. И если ее убрать – образ теряет свою ценность. Наука же ориентируется на отделение личностного от объективного (закон Ньютона не дает нам информации о личности этого ученого, о том, что он любил или ненавидел, в то время как любой портрет, выполненный художником, несет в себе отпечаток субъективного видения)
- Нацеленность на будущее. Стиль научного мышления подразумевает исследование не только объектов, предметов и явлений, актуальных для настоящего времени, но и тех, которые будут важны в будущем . Для науки важно предвидеть как объекты в их изначальном виде будут видоизменяться в какие-либо необходимые для человечества продукты. Это определяет одну из задач науки в целом – определить законы, в соответствии с которыми развиваются объекты. Способ научного мышления определяет возможность конструирования будущего из отдельных фрагментов, существующих в настоящем. Наука занимается тем, что выделяет верные «кусочки», части, формы, которые впоследствии станут нужными человечеству объектами или предметами.
- Системность. Теоретические принципы, на основании которых строится комплекс знаний, формируют определенную систему . Она строится годами и веками, содержит в себе описание и объяснение фактов и явлений, которые впоследствии определяют понятия и определения.
- Осознанность. Заключается в том, что методы, которыми осуществляется изучение предметов, объектов, их связей между собой осознаются и контролируются ученым.
- Наличие своего концептуального материала. Научное познание закрепляет теории, понятия, законы на своем языке – формулы, символы и тп. Формирование этого языка происходит на протяжении всего периода существования науки, и он регулярно обновляется.
- Обоснованность. В науке существует много предположений и гипотез, которые могут быть на определенном отрезке времени не доказаны. Однако, все они имеют своей целью стать объективно доказанными и обоснованными.
- Использование эксперимента. Как и эмпирические методы познания, научные методы подразумевают использование экспериментов в ситуациях, когда происходит формирование понятий и теорий . Однако, стиль научного мышления позволяет использовать полученные результаты для большего количества выводов и объектов.
- Построение теорий. Экспериментальный способ получения информации, человек запечатлевает в форме теории. Теоретические принципы сохраняются на века и передаются из поколения в поколение.
Научная картина мира
Стиль научного мышления определяет формирование научной картины мира.
Научная картина мира – тип системы знаний из разных областей, объединенных одной общенаучной доктриной.
Она соединяет в себе математические, физические, химические, биологические теории и законы, которые дают общее описание мира. Помимо научной картины мира, человек имеет религиозный, художественный, философский и другие взгляды на действительность. Однако только научный тип восприятия характеризуется объективностью, системностью, анализом и синтезом . С течением развития общества, познание мира все больше опиралось на научный способ, что отражается в современной философии, религии, художественных произведениях.
Связь научного и обыденного мышлений
В процессе развития науки, человек пришел к выводу, что разница между данными видами мышлений не является категоричной.
Научный и ненаучный способ познания окружающего мира строится на одном механизме – абстрагировании.
Суть данного явления заключается в способности отвлекаться от конкретных свойств предмета, чтобы выделить его существенные свойства. Признаки начального уровня абстрагирования заключаются в сопоставлении и «сортировке» объектов, предметов, людей в повседневной жизни. Например, человек делит свое окружение на близкое и не приятное ему, на начальников и подчиненных, пищу – на вкусную и не вкусную – для того, чтобы понимать, как вести себя придерживаясь своих целей.
Так же, научный тип и обыденный тип мышления склонны к одним ошибкам: например, если событие следует после чего-либо, значит, оно произошло вследствие него.
Научное мышление в современном обществе
Большинство людей, являясь далекими от науки в целом, регулярно используют в своей жизни ее плоды и способы познания. С 17 века наука занимает в обществе прочное положение, отодвинув на второй план религиозную, философскую картины мира . Однако, ученые отмечают, что в последние десятилетия ситуация снова стала меняться и все большее количество людей выбирают ненаучный способ познания. В связи с такой ситуацией, ведутся разговоры, что происходит формирование двух типов людей:
- Первый тип – люди, которым близок стиль научного мышления. Этот человек активен, независим, гибок, любит все новое и позитивно относится к переменам. Такой тип любит споры и дискуссии, старается придерживаться объективной оценки мира.
- Другой тип людей ориентирован на ненаучный способ познания. Им близко все загадочное, интересное, имеющее практическую пользу. Чувства для них важнее сути вещей, они не стремятся к получению доказательств и проверке полученных результатов. Важное место в жизни такого человека определяется вере, авторитетным личностям, их мнениям.
Ученые задаются вопросом: почему современный человек выбирает переориентацию с научного на ненаучный способ познания мира? И приходят к выводу, что во многих вопросах наука оказалась бессильна, а порой и приносила вред. Человек, стремясь защититься, погружается в религию и философию – эти формы картины мира приносят ему успокоение и уверенность в завтрашнем дне.
Не потеряйте. Подпишитесь и получите ссылку на статью себе на почту.
Несмотря на то, что понятие мышления очень многогранно и включает в себя множество особенностей, способы мышления всегда можно условно разделить на эмпирический и научный.
Эмпирический способ мышления, считающийся обыденным, повседневным, предполагает то, что человек воспринимает мир субъективно, просто постоянно с ним взаимодействуя. Научный же способ отличается. Чем, что это и какое мышление считать научным – разберем в этой статье.
Суть научного мышления и его место в нашей жизни
Формирование научного мышления в качестве основного способа познания окружающей действительности началось относительно недавно, однако его основы и базовые закономерности начали закладывать еще древнегреческие мыслители. И невзирая на то, что сейчас понятие «научное мышление» больше знакомо ученым, исследователям и научным работникам, оно тесно связано с эмпирическим мышлением человека, и определенные его элементы каждый из нас знает и применяет в жизни.
Но все же для установления разницы между обычным и научным мышлением нам стоит обозначить два центральных понятия:
- Мышление – это познавательная и исследовательская активность человека, стремящегося к объективному отражению в своем сознании сути объектов, предметов и явлений реальности вокруг себя.
- Наука – это деятельность, состоящая в сборе, разработке и систематизации данных о мире, ставящая перед собой цель объяснить события и явления окружающего мира на основе научных законов.
Отсюда можно сделать вывод: если при эмпирическом мышлении человек оперирует своим субъективным опытом и использует самые простые формы анализа, то при мышлении научном он применяет методы объективности, системности и доказательности.
Но по мере развития науки человек пришел к заключению, что различия между двумя рассматриваемыми способами мышлений вовсе не является настолько категоричными, как может показаться на первый взгляд. Они оба выстраиваются на едином механизме – абстрагировании.
Это означает, что человек, познавая мир, применяет свою способность «отключаться» от конкретных характеристик предметов и явлений, чтобы увидеть существенное. В качестве примера можно назвать сопоставление объектов и явлений, людей и предметов и их сортировку.
Чтобы проиллюстрировать это, достаточно вспомнить, как мы делим свое окружение на близких людей и тех, с кем не желаем общаться, разделяем коллег на подчиненных и начальников, определяем пищу как вкусную или невкусную и т.д. Все это требуется нам, чтобы мы могли лучше понимать, как действовать в тех или иных ситуациях, исходя из своих целей и задач.
Но, так или иначе, мы все равно можем выделить две категории людей:
- Люди, ориентированные на стиль научного мышления . Как правило, они очень активны, психологически гибки, независимы, охотно принимают новое и готовы к переменам. Они предпочитают , стремятся оценивать мир объективно.
- Люди, ориентированные на стиль ненаучного мышления . Такие люди тяготеют ко всему интересному, загадочному и несущему практическую пользу. В жизни они руководствуются чувствами, оставляя суть вещей, доказательства и проверку результатов на втором плане.
Мы не беремся судить, какой стиль мышления лучше, ведь каждый может придерживаться своих взглядов на этот счет. Но все-таки можем указать на то, что научное мышление (даже если оно применяется лишь иногда) обладает рядом ощутимых плюсов. Во-первых, оно способствует получению основных знаний о множестве объектов и явлений окружающего мира, а значит, служит страховкой от невежества, глупости и безграмотности.
Во-вторых, такой способ мыслить прекрасно развивает не только точное и математическое, но и творческое и .
В-третьих, научное мышление формирует пытливый ум и мотивирует человека к решению огромного количества задач – учебных, профессиональных, деловых, личных. Кроме того, оно закладывает основы командной работы, а значит, и создает ценность взаимопонимания и взаимной поддержки. Впрочем, о значении науки в жизни человека и общества очень хорошо рассказывается в этом видеоролике.
Особенности научного мышления
Наука – это особая сфера жизнедеятельности человека, в которой вырабатываются и теоретически систематизируются знания об окружающей действительности, она одновременно представляет собой и деятельность по получению новых знаний, и ее результат, т.е. совокупность тех знаний, которые лежат в основе научной картины мира.
И, конечно же, мышление людей, тяготеющих к науке, отличается от мышления «обычных людей». Вот какие особенности научного мышления мы можем выделить:
- Объективность . Если взять любой другой способ мышления и познания, то мы увидим симбиоз объективного и субъективного восприятия. При научном мышлении субъективное и объективное четко разграничиваются. Например, когда мы смотрим на картину художника, вы всегда увидим отпечаток его субъективного взгляда, а когда изучаем законы Ньютона, никакой информации о личности ученого не получаем.
- Системность . Теоретические основы, на которых зиждется любой комплекс научных знаний, создает конкретную систему. Эта система может выстраиваться десятками и даже сотнями лет, и включает в себя как описания, так и объяснения явлений и фактов, определяющих впоследствии термины и понятия.
- Обоснованность . Массив научных знаний включает в себя огромнейшее количество теорий, гипотез и предположений. Какие-то из них доказаны, а какие-то – нет. Но в любом случае каждая из них преследует цель быть обоснованно доказанной или опровергнутой в будущем.
- Устремленность в будущее . Наука и научное мышление предполагают изучение явлений, предметов и объектов, не только актуальных на текущий временной период, но и тех, что будут важны в перспективе. Наука стремится к предвидению развития, видоизменения и трансформации того, что она изучает, в нечто, что будет полезно человечеству в будущем. Этим и обусловлена одна из фундаментальных задач науки – определение законов и закономерностей развития объектов и явлений. Научное мышление позволяет конструировать будущее из отдельных элементов настоящего.
- Концептуальность . При научном способе мышления все законы, термины и теории закрепляются на конкретном языке – с помощью символов, формул и других знаков. При этом данный язык формируется на протяжении всего времени, пока существует наука, а также находится в состоянии постоянного развития, дополнения и усовершенствования.
- . Абсолютно все научные методы, которые применяют в своей работе ученые и исследователи, изучая явления, объекты и связи между ними, предельно точно осознаются людьми и находятся под их постоянным контролем.
- Экспериментальный подход . Подобно эмпирическим методам познания, научное познание подразумевает проведение экспериментов, в частности в тех случаях, когда формируются какие-либо понятия и теории. Но только научный способ мышления способствует получению достаточного объема результатов, с помощью которых можно делать достоверные выводы.
- Построение теорий . Используя экспериментальный способ получения сведений, ученые составляют из информации теории.
Кроме перечисленных особенностей научного мышления мы можем указать и еще несколько:
- логическая непротиворечивость – научные знания и их элементы не должны противоречить друг другу;
- подтверждаемость и воспроизводимость – все достоверные научные знания должны при необходимости снова подтверждаться опытным путем;
- простота – максимально возможный круг явлений должен объясняться с помощью относительно небольшого количества оснований и без использования произвольных допущений;
- преемственность – из множества новых идей, конкурирующих друг с другом, предпочтение следует отдавать той, что «менее агрессивна» относительно предшествующего знания;
- наличие методологии – научное знание должно предполагать использование специальных методов и приемов, и они должны быть обоснованными;
- точность и формализация – знания, полученные благодаря научному мышлению, должны быть предельно точны и фиксироваться в форме четких законов, принципов и понятий.
Если обобщить все вышесказанное, можно заключить, что научное мышление может выполнять познавательную, практически-деятельностную, культурную и культурно-мировоззренческую функции, а также функцию социальную, ведь оно способствует изучению жизни и деятельности людей и нередко определяет пути и способы практического применения имеющихся у нас знаний и навыков.
Здесь же будет уместно сказать и о том, что у любого научного знания (знания, полученного посредством научного мышления) есть два уровня – эмпирический и теоретический.
Эмпирический уровень знания
Эмпирическое знание – это знание, достоверность которого удалось доказать; знание, основанное на неопровержимых фактах. Вещи, существующие отдельно, фактами назвать нельзя. К примеру, гроза, Пушкин или Енисей – это не факты. Фактами будут служить утверждения, которые фиксируют конкретное отношение или свойство: во время грозы идет дождь, роман «Евгений Онегин» написал А. С. Пушкин, Енисей впадает в Карское море и т.п.
Говоря о научном мышлении, мы можем сказать, что наука никогда не оперирует «чистыми» фактами. Все знания, полученные эмпирическим путем, требуют толкования, исходящего из конкретных предпосылок. В этом плане факты будут иметь смысл лишь в рамках определенных теорий. Эмпирический закон является законом, справедливость которого установлена исключительно из опытных данных, но не из теоретических соображений.
Теоретический уровень знания
Теоретические знания могут иметь одну из четырех базовых форм:
- Теория . Она определяется либо как система центральных идей относительно какой-то области знания, либо как форма научного знания, благодаря которой можно получить целостное представление о закономерностях и взаимосвязях окружающего мира.
- Гипотеза . Ее можно трактовать либо как форму научного познания, либо как предположительное суждение о причинных связях явлений окружающего мира.
- Проблема . В качестве нее всегда выступает противоречивая ситуация, в которой при объяснении каких-то явлений возникают противоречия. Проблема требует наличия для своего разрешения объективной теории.
- Закон . Законом является устоявшееся, повторяющееся и значимое отношение между какими-либо явлениями окружающего мира. Законы могут быть общими (для больших групп явлений), универсальными и частными (для отдельных явлений).
Эти формы научного мышления призваны стимулировать научные изыскания и способствовать обоснованию получаемых при их помощи результатов. Также они наглядно показывают всю сложность характера представленного типа мысли.
Особенностями научного мышления и наличием двух основных уровней научного знания обусловлены, помимо прочего, еще и принципы и методы научного мышления. Рассмотрим их основные положения.
Принципы и методы научного мышления
Одним из основных принципов научного мышления является использование эксперимента. Это схоже с эмпирическим мышлением, но разница состоит в том, что при научном подходе результаты экспериментов распространяются на более широкий круг явлений, а у исследователя есть возможность делать более разнообразные выводы.
Делается это посредством построения теорий. Другими словами, одна из особенностей научного подхода заключается в том, что мы можем анализировать и обобщать данные, получаемые в результате экспериментов.
Другой принцип научного мышления гласит, что исследователь всегда должен стремиться к отстраненности и объективности. В то время как эмпирическое мышление всегда предполагает прямое участие человека в эксперименте и последующую его оценку происходящего, научное мышление позволяет наблюдать со стороны. Благодаря этому мы уже не рискуем случайно или намеренно исказить результаты эксперимента.
И, согласно еще одному важному принципу научного мышления, исследователь должен систематизировать данные для построения теорий. Еще на так давно (до XIX столетия) чаще всего использовался эмпирический подход, когда явления рассматривались в отдельности друг от друга, а взаимосвязи между ними почти не изучались. Но сейчас намного большее значение имеет теоретический синтез знаний и их систематизация.
Что же касается получения самих знаний, то научный способ мышления требует для этого применение специальных методов – способов достижения конкретной цели или решения конкретной задачи. Методы научного мышления (познания), как и уровни научного знания, делятся на эмпирические и теоретические, а также универсальные.
К эмпирическим методам можно отнести:
- Наблюдение – целенаправленное и осмысленное восприятие происходящего, обусловленное поставленной задачей. Главным условием здесь выступает объективность, дающая возможность повторить наблюдение или использовать какой-то другой метод исследования, к примеру, эксперимент.
- Эксперимент – целенаправленное участие исследователя в процессе изучения объекта или явления, предполагающее активное воздействие на него (объект или явление) с помощью каких-либо средств.
- Измерение – комплекс действий, преследующих цель определить отношение измеряемой величины к другой величине. При этом последняя принята исследователем за единицу, хранящуюся в средстве измерения.
- Классификация – распределение явлений и объектов по видам, разрядам, отделам или классам на основе их общих признаков.
Теоретические методы разделяются на следующие:
- Формализация – метод, при котором научные знания выражаются через знаки искусственно созданного языка.
- Математизация – метод, при котором в изучаемую область знания или сферу деятельности человека внедряются математические достижения и методы.
При этом важно помнить, что теоретические методы рассчитаны на работу с историческими, абстрактными и конкретными знаниями и понятиями:
- историческим называется то, что сложилось с течением времени;
- абстрактным называется неразвитое состояние объекта или явления, при котором еще нельзя наблюдать устоявшиеся его особенности и свойства;
- конкретным называется состояние объекта или явления в его органической целостности, когда проявляется все многообразие его свойств, связей и сторон.
Универсальных методов существует чуть больше:
- Анализ – реальное или мысленное расчленение явления или объекта на отдельные элементы.
- Синтез – реальное или мысленное соединение отдельных элементов явления или объекта в единую систему.
- – выделение из общего частного, из общих положений – положений особенных.
- Индукция – рассуждения, ведущие от частных положений и фактов к общим выводам.
- Применение аналогий – логический метод, при котором по сходству объектов и явлений по одним признакам делаются выводы об их сходстве по другим признакам.
- Абстрагирование – мысленное выделение существенных признаков и связей объекта и отвлечение их от других, являющихся несущественными.
- Моделирование – изучение явлений и объектов через построение и исследование их моделей.
- Идеализация – мысленное конструирование понятий о явлениях и объектах, не существующих в реальном мире, но имеющих в нем прообразы.
Таковы основные методы научного мышления. Естественно, мы опустили множество деталей и указали лишь основы, но мы и не претендуем на всесторонне рассмотрение этого вопроса. Наша задача – познакомить вас с базовыми идеями и понятиями, и думаем, что мы с ней справились. Поэтому остается лишь подвести итог.
Краткое резюме
Развитие научного мышления повлияло на формирование научной картины мира – особого типа системы знаний из разных областей, объединенных единой общенаучной доктриной. В ней соединяются биологические, химические, физические и математические законы, дающие общее описание мира.
Кроме научной картины, у людей есть философские, художественные и религиозные воззрения на окружающую реальность. Но только научное восприятие можно назвать объективным, системным, синтезирующим и анализирующим. Кроме того, отражение научного восприятия можно найти и в религии, и в философии, и в продуктах художественной деятельности.
Научное познание и научное мышление самым серьезным образом повлияли на альтернативные способы мировосприятия. В современном мире можно наблюдать, что на основании достижений науки происходят изменения в церковных догматах, социальных нормах, искусстве и даже обыденной бытовой жизни людей.
Можно смело утверждать, что, что научное мышление – это метод восприятия реальности, улучшающий само качество познания, способствующий . В результате у человека возникает комплекс ощутимых преимуществ: он начинает осознавать и понимать наиболее актуальные индивидуальные задачи, ставить более реалистичные и достижимые цели, и эффективнее преодолевать трудности.
Научное мышление способствует улучшению жизни каждого отдельного человека и общества в целом, а также пониманию смысла жизни и своего предназначения.