Карлики и гиганты среди бактерий
Бактерии – мельчайшие живые организмы, являющиеся самой распространенной формой жизни на Земле. Обычные бактерии примерно в 10 раз мельче человеческой клетки. Их размер составляет порядка 0,5 микрон, а разглядеть их можно только при помощи микроскопа. Однако, в мире бактерий, оказывается, тоже есть свои карлики и гиганты. Одной из таких гигантов считается бактерия Epulopiscium fishelsoni, размеры которой достигают половины миллиметра! То есть, она достигает по величине размеров песчинки или крупинки соли и ее можно разглядеть невооруженным взглядом.
Размножение Epulopiscium
В Корнуэлльской академии были проведены исследования, направленные на определение причин таких крупных размеров. Как оказалось, бактерия хранит в себе 85 000 копий ДНК. Для сравнения, в клетках человека содержится только 3 копии. Это милое создание проживает в пищеварительном тракте тропической рифовой рыбы Acanthurus nigrofuscus (рыбы-хирурга).
Обычные виды бактерий очень малы и примитивны, у них нет органов и питание происходит через оболочку. Питательные вещества равномерно распределяются по телу бактерий, поэтому они должны быть небольшие. В отличие от них, Epulopiscium многократно копирует свою ДНК, равномерно, вдоль оболочки распределяет копии, и они в достаточном объеме получают питание. Такое строение дает ей возможность мгновенного реагирования на внешние раздражители. Непохож на остальные бактерии и способ ее деления. Если обычные бактерии просто делятся пополам, то она выращивает внутри себя две клетки, которые после ее смерти просто выходят наружу.
Намибийская серная жемчужина
Однако, даже эта, далеко не маленькая бактерия, не может сравниться с самой большой бактерией в мире , которой считается Thiomargarita namibiensis , по другому «Намибийская серная жемчужина» - грам-отрицательная морская бактерия, открытая в 1997 году. Она не только состоит всего из одной клетки, но при этом, у неё нет поддерживающего скелета также, как и у эукариотов. Размеры Thiomargarita достигают 0,75-1 мм, что позволяет увидеть её невооруженным взглядом.
По типу обмена веществ Тиомаргарита является организмом, который получает энергию в результате восстановительно-окислительных реакций и может использовать нитрат, как конечный объект, получающий электроны. Клетки Намибийской серной жемчужины неподвижны, а потому содержание нитрата может колебаться. Thiomargarita может запасать нитрат в вакуоли, занимающей около 98% от всей клетки. При низкой концентрации нитрата, её содержимое используется для дыхания. Сульфиды окисляются нитратами до серы, которая собирается во внутренней среде бактерии в виде мелких гранул, чем и объясняется жемчужная окраска Тиомаргариты.
Исследование Тиомаргариты
Исследования, проведённые не так давно, показали, что Thiomargarita namibiensis может быть не облигатным, а факультативным организмом, получающим энергию без присутствия кислорода. Она способна к кислородному дыханию, если этого газа достаточно. Ещё одна отличительная черта данной бактерии – возможность палинтомического деления, происходящего без увеличения промежуточного роста. Этот процесс используется Thiomargarita namibiensis в стрессовых состояниях, вызванных голоданием.
Бактерия была открыта в донных осадках выровненной окраины материка, вблизи Намибийского побережья, Хайде Шульц, немецким биологом и её коллегами в 1997 году, а в 2005 году, в холодных клюдах дна Мексиканского залива, обнаружили близкий штамм, что является подтверждением широкого распространения Намибийской серной жемчужины.
Виктор Островский, Samogo.Net
С бактерий началась жизнь на нашей планете. Ученые полагают, что ими все и закончится. Ходит шутка, что когда инопланетяне изучали Землю, то они не могли понять, кто же ее настоящий хозяин - человек или бацилла. Самые интересные факты о бактериях подобраны ниже.
Бактерия - это отдельный организм, который и размножается с помощью деления. Чем благоприятней среда обитания, тем скорее она делится. Живут эти микроорганизмы во всех живых существах, а также в воде, продуктах питания, в трухлявых деревьях, в растениях.
Этим список не ограничивается. Бациллы прекрасно выживают на предметах, которые трогал человек. Например, на поручне в общественном транспорте, на ручке холодильника, на кончике карандаша. Интересные факты о бактериях недавно открыли из Аризонского университета. По их наблюдениям на Марсе обитают «спящие» микроорганизмы. Ученые уверены, что это одно из доказательств существования жизни на других планетах, кроме того, по их мнению, инопланетные бактерии можно «оживить» на Земле.
Впервые микроорганизм рассмотрел в оптический микроскоп голландский ученый Антоний ван Левенгук еще в конце 17 века. В настоящий момент известных видов бацилл насчитывается порядка двух тысяч. Все их можно условно разделить на:
- вредные;
- полезные;
- нейтральные.
При этом вредные обычно воюют с полезными и нейтральными. Это одна из наиболее частных причин, из-за которых болеет человек.
Самые любопытные факты
В целом, одноклеточные организмы участвуют во всех жизненных процессах.
Бактерии и люди
С рождения человек попадает в мир полный различных микроорганизмов. Какие-то помогают ему выжить, другие вызывают инфекции и болезни.
Самые любопытные интересные факты о бактериях и людях:
Получается, бацилла может как полностью излечить человека, так и уничтожить наш вид. В настоящее время уже существует и бактериальные токсины.
Как бактерии помогли нам выжить?
Вот еще некоторые интересные факты о бактериях, которые приносят пользу человеку:
- некоторые виды бацилл защищают человека от аллергии;
- с помощью бактерий можно утилизировать опасные отходы (например, продукты из нефти);
- без микроорганизмов в кишечнике человек бы не выжил.
Как рассказать малышам о бациллах?
Малыши о бациллах готовы разговаривать уже в 3-4 года. Чтобы правильно донести информацию, стоит рассказать интересные факты о бактериях. Для детей, к примеру, очень важно понимание того, что существуют злые и добрые микробы. Что добрые способны превратить молоко в ряженку. А также, что они помогают животику переваривать пищу.
Внимание нужно обращать на злых бактерий. Рассказывать, что они очень маленькие, поэтому их не видно. Что, попадая в тело человека, микробов быстро становится много, и они начинают нас кушать изнутри.
Ребенок должен знать, чтобы злой микроб не попал в организм нужно:
- Мыть руки после улицы и перед едой.
- Не есть много сладкого.
- Ставить прививки.
Лучше всего показать бактерии с помощью картинок и энциклопедий.
Что должен знать каждый школьник?
С ребенком постарше лучше говорить уже не о микробах, а рассказывать про бактерии. Интересные факты для школьников важно аргументировать. То есть, рассказывая о важности мытья рук, можно поведать, что на ручках туалетов живут 340 колоний вредных бацилл.
Можно вместе найти информацию о том, какие бактерии вызывают кариес. А также рассказать школьнику, что шоколад в небольшом количестве обладает антибактериальным эффектом.
Даже ученик младших классов сможет понять, что такое вакцина. Это когда в организм вводится небольшое количество вируса или бактерий, а иммунная система их побеждает. Поэтому так важно ставить прививки.
Уже с детских лет должно прийти понимание, что страна бактерий - это целый, еще не до конца изученный, мир. И пока есть эти микроорганизмы, есть и сам человеческий вид.
Я думаю, в школе вы слышали про бактерии Это такие маленькие существа, которых везде тьма-тьмущая, и без которых мы бы не смогли существовать. Так вот, оказывается, среди них есть свои гиганты и карлики. Причем, самая большая из них - величиной с гору по сравнению с остальными! Эта гигантская бактерия называется Epulopiscium. Размерами (до 0.5 мм) она может сравниться с песчинкой соли - огромный размер в мире микроскопических существ. Ее даже можно увидеть невооруженным взгядом. Эта зверушка может достигать размеров маленьких насекомых и ракообразных существ.
В академии Корнуэлла были проведены и опубликованы исследования с целью определить причины таких больших размеров. Оказалось, что эта бактерия хранит в себе до 85 тысяч копий ДНК. Для сравнения - в человеческих клетках содержится максимум 3 копии. Живет это милое существо с помощью симбиоза в пищеварительном тракте рыбы-хирурга (тропическая рифовая рыба). Это было обнаружено в 1985 году.
«Другие бактерии также содержат в себе множество копий ДНК, но количество их не больше 100-200. Но эта единственная хранит целый банк своей генетической информации», - говорит Эшер Ангерт, профессор микробиологии университета Корнуэлла.
Обычные бактерии очень малы и просты по строению. Они лишены каких-либо органов (в клетках они называются органеллы), способствующих росту клеток, как, например, клетки растений или животных. Питаются бактерии с помощью всасывания питательных веществ сквозь оболочку клетки. Внутри питательные вещества распределяются «самоходом», поэтому бактерии вынуждены быть небольшими, иначе питательные вещества не смогут распространиться по всему их объему.
Но вышеупомянутая гигантская бактерия самокопирует свою ДНК многократно, и распределяет копии равномерно вблизи оболочки, чтобы они получали питательные вещества быстро и в достаточном объеме.
«Наличие тысяч копий ДНК, распределенных по периферии, дает возможность мгновенно реагировать на внешние факторы - температуру, раздражение и прочие», - добавляет Эшер Ангерт. Поэтому, несмотря на большие размеры, эта бактерия мгновенно реагирует на атаки хищников в своем мире, которых в пищеварительном тракте рыбы весьма много. Еще одна особенность ее - особый способ деления. Большинство бактерий просто делятся на 2 части, но Epulopiscium выращивает две дочерних клетки внутри себя, которые после ее смерти выходят наружу.
Но оказывается, есть и еще большие бактерии! В 1999 году был обнаружен еще больший вид - Thiomargarita namibiensis. Она достигает размера 0.75 мм. Питается это создание нитратами, синтезируя из них органические вещества. Живут эти гиганты на побережье Намибии, а некоторые их дальние родственники - в водах Мексиканского залива.
Бактерии - мельчайшие клеточные организмы, меньше их только вирусы. Обычная бактерия в 10 раз меньше клетки человека, составляя 0.5-5.0 микрометров (такие можно рассмотреть только в микроскопе). Тысячи бактерий десятков видов находятся, к примеру, в капельке слюны. В грамме почвы содержится около 40 миллионов бактерий, в мельчайшей капле сырой воды количество бактерий также составляет миллионы. На планете содержится (приблизительно, конечно) 5.000.000.000.000.000.000.000.000.000.000 бактерий (30 нулей). Они представляют собой самую распространенную форму жизни, присутствующую везде - от дна океана до высокогорных снегов.
ps. На фото изображена героиня статьи. Другие бактерии на этом фото выглядят еле заметными маленькими точками вокруг.
Бактерии - первые «жители» нашей планеты. Эти примитивные безъядерные микроорганизмы, большинство которых состоит только из одной клетки, впоследствии дали начало другим, более сложным формам жизни. Ученые исследовали более десяти тысяч их видов, однако неизученными остаются еще около миллиона. Стандартный размер представителя микромира: 0,5-5 мкм, однако самая крупная бактерия имеет размер более 700 мкм.
Бактерии – древнейшая форма жизни на Земле
Бактерии могут иметь сферическую, спиралевидную, шаровидную формы. Их можно встретить везде, они густо населяют воду, почву, кислые среды, радиоактивные источники. Ученые находят живые одноклеточные микроорганизмы в условиях вечной мерзлоты и в извергающейся лаве вулканов. Увидеть их можно благодаря микроскопу, но некоторые бактерии вырастают до гигантских размеров, полностью изменяя представление человека о микромире.
- Thiomargarita namibiensis, Намибийская серная жемчужина – так называется самая крупная из известных человеку бактерий. Чтобы ее увидеть, не нужен микроскоп, длина ее составляет 750 мкм. Гигант микромира был обнаружен немецким ученым в придонных водах во время экспедиции на российском научном судне.
- Epulopiscium fishelsoni обитает в кишечнике рыбы-хирурга и имеет длину 700 мкм. Объем этой бактерии в 2000 раз превышает объем микроорганизма стандартных размеров. Первоначально крупное одноклеточное было найдено внутри рыб-хирургов, населяющих Красное море, но после было обнаружено и в других видах рыб в районе Большого Барьерного рифа.
- Спирохеты – бактерии с длинными, спиральными клетками. Очень подвижны. Живут в воде, в почве или в другой питательной для них среде. Многие спирохеты – это возбудители серьезных болезней человека, другие разновидности являются сапрофитами – разлагают отмершую органику. Эти бактерии могут вырасти до длины 250 мкм.
- Цианобактерии – древнейшие микроорганизмы. Учеными были найдены продукты их жизнедеятельности, возраст которых составляет более 3,5 млрд лет. Эти одноклеточные являются частью океанического планктона и производят 20-40% кислорода на Земле. Спирулину высушивают, перемалывают и добавляют в пищу. Оксигенный фотосинтез характерен для водорослей и высших растений. Цианобактерии – единственные одноклеточные, которые в процессе фотосинтеза выделяют кислород. Именно благодаря цианобактериям в атмосфере Земли появился большой запас кислорода. Ширина клеток у этих бактерий варьируется от 0,5 до 100 мкм.
- Актиномицеты обитают в кишечнике большинства беспозвоночных. Их диаметр - 0,4-1,5 мкм. Существуют патогенные формы актиномицетов, живущие в зубном налете и в дыхательных путях человека. Благодаря актиномицетам человек также ощущает специфический «запах дождя».
- Beggiatoa alba. Протеобактерии этого рода населяют места, богатые серой, пресные реки и моря. Размер этих бактерий - 10х50 мкм.
- Азотобактер имеет диаметр 1-2 мкм, живет в слабощелочных или нейтральных средах, играет большую роль в круговороте азота, повышает плодородие почвы и стимулирует рост растений.
- Mycoplasma mycoides – возбудитель легочных заболеваний у коров и коз. Эти клетки имеют размер 0,25-0,75 мкм. Бактерии не имеют жесткой оболочки, от внешней среды они защищены лишь цитоплазматической мембраной. Геном этого вида бактерий является одним из самых простых.
Археи не являются бактериями, но так же, как и они, состоят из единственной клетки. Эти одноклеточные были выделены вблизи термальных подводных источников, внутри нефтяных скважин и под ледяной поверхностью северных районов Аляски. Археи имеют свою собственную эволюцию развития и отличаются от других форм жизни некоторыми биохимическими особенностями. Средний размер археи – 1 мкм.
Теоретически самый минимальный размер одноклеточного микроорганизма: 0,15-0,20 мкм. При меньшем размере клетка не сможет воспроизводить себе подобных, так как в ней не поместятся биополимеры в нужном составе и в необходимом количестве.
Роль бактерий в природе
В организме человека сосуществует более миллиона видов разных одноклеточных микроорганизмов. Одни из них чрезвычайно полезны, другие могут нанести непоправимый урон здоровью. Первую «порцию» бактерий младенец получает при рождении – во время прохождения через родовые пути матери и в первые минуты после родов.
Если ребенок появляется на свет путем кесарева сечения, организм малыша заселяется не родственными для него микроорганизмами. Как следствие, у него понижается естественный иммунитет, повышается риск возникновения аллергических реакций. К трем годам большая часть микробиома ребенка является сформированной. У каждого человека есть свой уникальный набор населяющих его микроорганизмов.
Бактерии используются человеком при производстве лекарств и пищевых продуктов. Они расщепляют органические соединения, очищая их и превращая грязные стоки в безвредную воду. Почвенные микроорганизмы производят азотные соединения, необходимые для роста растений. Одноклеточные активно перерабатывают органику и осуществляют круговорот веществ в природе, который является основой жизни на нашей планете.
Попытки отсеквенировать геном гигантской серной бактерии Achromatium oxaliferum дали парадоксальный результат: оказалось, что каждая бактериальная клетка содержит не один, а множество различающихся геномов. Уровень внутриклеточного генетического разнообразия A. oxaliferum сопоставим с разнообразием многовидового бактериального сообщества. По-видимому, различающиеся хромосомы размножаются в разных участках цитоплазмы, подразделенной крупными кальцитовыми включениями на множество слабо сообщающихся отсеков (компартментов). Важную роль в поддержании внутреннего генетического разнообразия играют многочисленные мобильные генетические элементы, способствующие переносу генов с хромосомы на хромосому. Авторы открытия предполагают, что естественный отбор у этого уникального организма идет не столько на уровне клеток, сколько на уровне отдельных компартментов внутри одной гигантской клетки.
1. Загадочная бактерия
Гигантская серная бактерия Achromatium oxaliferum была открыта еще в XIX веке, однако ее биология до сих пор остается загадочной - во многом потому, что ахроматиум не поддается культивированию в лаборатории. Клетки ахроматиума могут достигать 0,125 мм в длину, что делает его крупнейшей из пресноводных бактерий (в морях есть еще более крупные серные бактерии, такие как Thiomargarita , о которой рассказано в новости Древнейшие докембрийские эмбрионы оказались бактериями? , «Элементы», 15.01.2007).
Achromatium oxaliferum живет в донных осадках пресных озер, где он обычно встречается на границе кислородной и бескислородной зон, но проникает и в полностью бескислородные слои. Другие разновидности (или виды) ахроматиума обитают в минеральных источниках и в соленых осадках приливно-отливных маршей .
Ахроматиум получает энергию за счет окисления сероводорода сначала до серы (которая хранится в виде гранул в цитоплазме), а затем и до сульфатов. Он способен к фиксации неорганического углерода, но может усваивать и органические соединения. Неясно, способен ли он обходиться только автотрофным метаболизмом или ему необходима органическая подкормка.
Уникальной особенностью ахроматиума является наличие в его клетках многочисленных крупных включений коллоидного кальцита (рис. 1). Зачем это нужно бактерии и какую роль играет карбонат кальция в его метаболизме, точно не известно, хотя есть правдоподобные гипотезы (V. Salman et al., 2015. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh).
Цитоплазма ахроматиума ютится в просветах между кальцитовыми гранулами, которые фактически подразделяют ее на множество сообщающихся отсеков (компартментов). Хотя отсеки и не изолированы полностью, обмен веществом между ними, по-видимому, затруднен, тем более что у прокариот гораздо слабее, чем у эукариот, развиты системы активного внутриклеточного транспорта.
И вот теперь выяснилось, что кальцитовые гранулы - не единственная уникальная особенность ахроматиума. И даже не самая поразительная. В статье, опубликованной в журнале Nature Communications , немецкие и британские биологи сообщили о парадоксальных результатах, к которым привели попытки прочесть геномы индивидуальных клеток A. oxaliferum из донных отложений озера Штехлин (Stechlin) на северо-востоке Германии. Результаты эти настолько необычны, что в них трудно поверить, хотя оснований сомневаться в их достоверности, по-видимому, нет: работа выполнена в методологическом отношении очень тщательно.
2. Подтверждение полиплоидности
Хотя ахроматиум, как уже говорилось, относится к некультивируемым бактериям, это неудобство отчасти компенсируется гигантскими размерами клеток. Их отлично видно в световой микроскоп даже при небольшом увеличении, и их можно отбирать вручную из проб донных осадков (предварительно пропущенных через фильтр, чтобы удалить крупные частицы). Именно так авторы и собирали материал для своего исследования. Клетки A. oxaliferum покрыты органическим чехлом, на поверхности которого кишат разнообразные сожители - мелкие бактерии. Всю эту сопутствующую микробиоту авторы тщательно смывали с отобранных клеток, чтобы уменьшить долю посторонней ДНК в пробах.
Для начала исследователи покрасили клетки ахроматиума специальным флуоресцентным красителем для ДНК, чтобы понять, сколько в клетке генетического материала и как он распределен. Оказалось, что молекулы ДНК не приурочены к какому-то одному участку цитоплазмы, а образуют множество (в среднем около 200 на клетку) локальных скоплений в просветах между гранулами кальцита (рис. 1, b, d).
Учитывая всё, что известно на сегодняшний день о крупных бактериях и их генетической организации, этого факта уже достаточно, чтобы считать доказанным, что A. oxaliferum является полиплоидом, то есть в каждой его клетке содержится не одна, а множество копий генома.
Впрочем, задним числом и так понятно, что такая огромная прокариотическая клетка не могла бы обойтись единственной копией. Ее бы просто не хватило, чтобы обеспечить всю клетку необходимыми для синтеза белка транскриптами .
Судя по тому, что скопления ДНК различаются по яркости флуоресценции, эти скопления, скорее всего, содержат разное количество хромосом. Здесь нужно оговориться, что обычно весь геном прокариотической клетки помещается на одной кольцевой хромосоме. Для ахроматиума это не доказано, но весьма вероятно. Поэтому авторы для простоты пользуются термином «хромосома» как синонимом термина «одна копия генома», и мы поступим так же.
На данном этапе ничего сенсационного еще не было обнаружено. Прошли те времена, когда все думали, что у прокариот всегда или почти всегда только одна кольцевая хромосома в каждой клетке. Сегодня уже известно много видов полиплоидных бактерий и архей (см. , «Элементы», 14.06.2016).
3. Метагеном многовидового сообщества - в одной клетке
Чудеса начались, когда авторы приступили к выделению ДНК из отобранных и отмытых клеток и к секвенированию. Из 10 000 клеток был получен метагеном (см. Метагеномика), то есть множество (около 96 млн) коротких отсеквенированных случайных фрагментов хромосом (ридов), принадлежащих разным индивидуумам и в совокупности дающих представление о генетическом разнообразии популяции.
Затем исследователи приступили к секвенированию ДНК из индивидуальных клеток. Сначала из 27 клеток были выделены фрагменты гена 16s-рРНК, по которому принято классифицировать прокариот и по которому обычно определяют присутствие того или иного вида микробов в анализируемой пробе. Практически все выделенные фрагменты принадлежали ахроматиуму (то есть примерно совпадали с последовательностями 16s-рРНК ахроматиума, уже имеющимися в генетических базах данных). Из этого следует, что изучаемая ДНК не была загрязнена генетическим материалом каких-то посторонних бактерий.
Оказалось, что каждая клетка A. oxaliferum, в отличие от подавляющего большинства других прокариот, содержит не один, а несколько различающихся вариантов (аллелей) гена 16s-рРНК. Точное число вариантов определить трудно, потому что мелкие различия могут объясняться ошибками секвенирования, а если считать «разными» только сильно различающиеся фрагменты, то встает вопрос, насколько сильно они должны различаться. С использованием самых строгих критериев получилось, что в каждой клетке присутствует примерно 4–8 разных аллелей гена 16s-рРНК, причем это минимальная оценка, а на самом деле их, скорее всего, больше. Это резко контрастирует с ситуацией, характерной для других полиплоидных прокариот, у которых, как правило, на всех хромосомах одной клетки сидит один и тот же вариант данного гена.
Более того, оказалось, что аллели гена 16s-рРНК, присутствующие в одной и той же клетке A. oxaliferum , нередко образуют весьма далекие друг от друга веточки на общем генеалогическом дереве всех вариантов этого гена, обнаруженных (ранее и сейчас) у A. oxaliferum. Иными словами, аллели 16s-рРНК из одной клетки не более родственны друг другу, чем аллели, взятые наугад из разных клеток.
Наконец, авторы провели тотальное секвенирование ДНК из шести индивидуальных клеток. Для каждой клетки было прочтено примерно по 12 млн случайных фрагментов - ридов. В нормальной ситуации этого с избытком хватило бы, чтобы при помощи специальных компьютерных программ собрать из ридов, используя их перекрывающиеся части, шесть весьма качественных (то есть прочтенных с очень высоким покрытием, см. Coverage) индивидуальных геномов.
Но не тут-то было: хотя практически все риды бесспорно принадлежали ахроматиуму (примесь посторонней ДНК была пренебрежимо малой), прочтенные фрагменты наотрез отказались собираться в геномы. Дальнейший анализ прояснил причину неудачи: оказалось, что фрагменты ДНК, выделенные из каждой клетки, в действительности принадлежат не одному, а множеству довольно сильно различающихся геномов. Фактически то, что авторы получили из каждой отдельной клетки, представляет собой не геном, а метагеном. Подобные наборы ридов обычно получают при анализе не одного организма, а целой популяции, обладающей к тому же высоким уровнем генетического разнообразия.
Этот вывод был подтвержден несколькими независимыми способами. В частности, известны десятки генов, которые практически всегда присутствуют в бактериальных геномах в единственном экземпляре (single copy marker genes). Эти однокопийные маркерные гены широко используются в биоинформатике для проверки качества сборки геномов, оценки числа видов в метагеномных пробах и других подобных задач. Так вот, в геномах (или «метагеномах») индивидуальных клеток A. oxaliferum большая часть этих генов присутствует в виде нескольких различающихся копий. Как и в случае с 16s-рРНК, аллели этих однокопийных генов, находящиеся в одной клетке, как правило, не более родственны друг другу, чем аллели из разных клеток. Уровень внутриклеточного генетического разнообразия оказался сопоставим с уровнем разнообразия всей популяции, оцененным на основе метагенома 10 000 клеток.
Современная метагеномика уже располагает методами, позволяющими из множества разнородных обрывков ДНК, обнаруженных в пробе, выделить фрагменты, с большой вероятностью принадлежащие одному и тому же геному. Если таких фрагментов наберется достаточно много, то из них можно собрать значительную часть генома и даже полный геном. Именно таким способом недавно был открыт и подробно охарактеризован новый надтип архей - асгардархеи (см. Описан новый надтип архей, к которому относятся предки эукариот , «Элементы», 16.01.2017). Авторы применили эти методы к «метагеномам» индивидуальных клеток A. oxaliferum. Это позволило выявить в каждом «метагеноме» по 3–5 наборов генетических фрагментов, соответствующих, скорее всего, индивидуальным кольцевым геномам (хромосомам). Или, скорее, каждый такой набор соответствует целой группе похожих друг на друга геномов. Число различающихся геномов в каждой клетке A. oxaliferum скорее всего больше, чем 3–5.
Уровень различий между геномами, присутствующими в одной и той же клетке A. oxaliferum , примерно соответствует межвидовому: бактерии с таким уровнем различий, как правило, относятся к разным видам одного рода. Иными словами, генетическое разнообразие, присутствующее в каждой отдельной клетке A. oxaliferum, сопоставимо даже не с популяцией, а с многовидовым сообществом. Если бы ДНК из одной-единственной клетки ахроматиума анализировали современными методами метагеномики «вслепую», не зная, что вся эта ДНК происходит из одной клетки, то анализ бы однозначно показал, что в пробе присутствует несколько видов бактерий.
4. Внутриклеточный перенос генов
Итак, у A. oxaliferum обнаружен принципиально новый, прямо-таки неслыханный тип генетической организации. Безусловно, открытие порождает массу вопросов, и прежде всего вопрос «как такое вообще может быть?!»
Не будем рассматривать самый неинтересный вариант, состоящий в том, что всё это - результат грубых ошибок, допущенных исследователями. Если так, мы скоро об этом узнаем: Nature Communications - журнал серьезный, исследование захотят повторить другие коллективы, так что вряд ли опровержение заставит себя долго ждать. Гораздо интереснее обсудить ситуацию, исходя из допущения, что исследование проведено тщательно и результат достоверен.
В таком случае нужно прежде всего попытаться выяснить причины обнаруженного у A. oxaliferum беспрецедентного внутриклеточного генетического разнообразия: как оно формируется, почему оно сохраняется, и как сам микроб при этом ухитряется выжить. Все эти вопросы - очень непростые.
У всех остальных изученных на сегодняшний день полиплоидных прокариот (в том числе у известной читателям «Элементов» солелюбивой археи Haloferax volcanii ) все копии генома, присутствующие в клетке, сколько бы их ни было, очень похожи друг на друга. Ничего похожего на колоссальное внутриклеточное разнообразие, обнаруженное у A. oxaliferum, у них не наблюдается. И это отнюдь не случайность. Полиплоидность дает прокариотам ряд преимуществ, однако она способствует бесконтрольному накоплению рецессивных вредных мутаций, что в конечно счете может привести к вымиранию (подробнее см. в новости Полиплоидность предков эукариот - ключ к пониманию происхождения митоза и мейоза , «Элементы», 14.06.2016).
Чтобы избежать накопления мутационного груза, полиплоидные прокариоты (и даже полиплоидные пластиды растений) активно используют генную конверсию - асимметричный вариант гомологичной рекомбинации , при котором два аллеля не меняются местами, переходя с хромосомы на хромосому, как при кроссинговере , а один из аллелей замещается другим. Это ведет к унификации хромосом. Благодаря интенсивной генной конверсии вредные мутации либо быстро «затираются» неиспорченной версией гена, либо переходят в гомозиготное состояние, проявляются в фенотипе и отбраковываются отбором.
У A. oxaliferum генная конверсия и унификация хромосом, скорее всего, тоже происходят, но не в масштабах всей клетки, а на уровне отдельных «компартментов» - просветов между гранулами кальцита. Поэтому в разных частях клетки накапливаются разные варианты генома. Авторы проверили это при помощи избирательного окрашивания разных аллельных вариантов гена 16s-рРНК (см. Fluorescent in situ hybridization). Выяснилось, что в разных частях клетки концентрация разных аллельных вариантов действительно различается.
Впрочем, этого еще недостаточно, чтобы объяснить высочайший уровень внутриклеточного генетического разнообразия, обнаруженный у A. oxaliferum . Авторы видят его главную причину в высоких темпах мутагенеза и внутриклеточных геномных перестроек. Сравнение фрагментов хромосом из одной и той же клетки показало, что эти хромосомы, по-видимому, живут очень бурной жизнью: постоянно мутируют, перестраиваются и обмениваются участками. У A. oxaliferum из озера Штехлин резко повышено число мобильных генетических элементов по сравнению с другими бактериями (в том числе и с ближайшими родственниками - ахроматиумами из соленых маршей, у которых уровень внутриклеточного разнообразия, судя по предварительным данным, гораздо ниже). Активность мобильных элементов способствует частым геномным перестройкам и переносу участков ДНК с одной хромосомы на другую. Авторы даже придумали для этого специальный термин: «внутриклеточный перенос генов» (intracellular gene transfer, iGT), по аналогии со всем известным горизонтальным переносом генов (HGT).
Одно из ярких свидетельств частых перестроек в хромосомах A. oxaliferum - различающийся порядок генов в разных версиях генома, в том числе и в пределах одной клетки. Даже в некоторых консервативных (редко меняющихся в ходе эволюции) оперонах отдельные гены иногда располагаются в разной последовательности на разных хромосомах в пределах одной клетки.
На рисунке 2 схематично показаны основные механизмы, которые, по мнению авторов, создают и поддерживают высокий уровень внутриклеточного генетического разнообразия у A. oxaliferum .
5. Внутриклеточный отбор
Частые перестройки, внутриклеточный перенос генов, высокий темп мутагенеза - даже если всё это и может худо-бедно объяснить высокое внутриклеточное генетическое разнообразие (а я думаю, что не может, об этом мы поговорим ниже), то остается неясным, как ухитряется ахроматиум в таких условиях сохранять жизнеспособность. Ведь подавляющее большинство ненейтральных (влияющих на приспособленность) мутаций и перестроек должны быть вредными! Полиплоидные прокариоты и без того обладают повышенной склонностью к накоплению мутационного груза, а если мы допустим еще и сверхвысокие темпы мутагенеза, становится и вовсе непонятно, как такая тварь, как ахроматиум, может существовать.
И тут авторы выдвигают поистине новаторскую гипотезу. Они предполагают, что естественный отбор у ахроматиума действует не столько на уровне целых клеток, сколько на уровне отдельных компартментов - слабо сообщающихся просветов между гранулами кальцита, в каждом из которых, наверное, размножаются свои варианты генома.
На первый взгляд предположение может показаться диким. Но если подумать, почему бы и нет? Для этого достаточно допустить, что каждая хромосома (или каждое локальное скопление похожих хромосом) имеет ограниченный «радиус действия», то есть белки, закодированные в этой хромосоме, синтезируются и работают в основном в ее ближайших окрестностях, а не размешиваются равномерно по всей клетке. Скорее всего, так оно и есть. В таком случае те компартменты, где находятся более удачные хромосомы (содержащие минимум вредных и максимум полезных мутаций), будут быстрее реплицировать свои хромосомы, их будет становиться больше, они начнут распространяться внутри клетки, постепенно вытесняя менее удачные копии генома из соседних компартментов. Вообразить такое в принципе можно.
6. Внутриклеточное генетическое разнообразие нуждается в дополнительных объяснениях
Идея об интенсивном внутриклеточном отборе геномов, отвечая на один вопрос (почему ахроматиум не вымирает при таком высоком темпе мутагенеза), тут же создает другую проблему. Дело в том, что благодаря такому отбору более удачные (быстрее реплицирующиеся) копии генома должны вытеснять внутри клетки менее удачные копии, неизбежно снижая при этом внутриклеточное генетическое разнообразие. То самое, которое мы с самого начала хотели объяснить.
Более того, очевидно, что внутриклеточное генетическое разнообразие должно резко снижаться при каждом клеточном делении. Разные хромосомы сидят в разных компартментах, поэтому при делении каждая дочерняя клетка получит не все, а только некоторые варианты генома, имеющиеся у материнской клетки. Это видно даже на рис. 2.
Внутриклеточный отбор плюс компартментализация геномов - два мощных механизма, которые должны сокращать внутреннее разнообразие настолько быстро, что никакой мыслимый (совместимый с жизнью) темп мутагенеза не сможет этому противостоять. Таким образом, внутриклеточное генетическое разнообразие остается необъясненным.
Обсуждая полученные результаты, авторы неоднократно ссылаются на нашу работу, о которой рассказано в новости Полиплоидность предков эукариот - ключ к пониманию происхождения митоза и мейоза . В частности, они упоминают, что полиплоидным прокариотам очень полезно обмениваться генетическим материалом с другими клетками. Однако они полагают, что в жизни ахроматиума межклеточный генетический обмен не играет большой роли. Это обосновывается тем, что в метагеноме ахроматиума хотя и обнаружены гены для поглощения ДНК из внешней среды (трансформации, см. Transformation), но нет генов для конъюгации (см. Bacterial conjugation).
На мой взгляд, генетическая архитектура ахроматиума указывает не на конъюгацию, а на более радикальные способы смешивания генетического материала разных особей, такие как обмен целыми хромосомами и слияние клеток. Судя по полученным данным, с генетической точки зрения клетка A. oxaliferum представляет собой нечто вроде прокариотического плазмодия или синцития, вроде тех, что образуются в результате слияния множества генетически разнородных клеток у слизевиков . Напомним, что ахроматиум - бактерия некультивируемая, поэтому не исключено, что какие-то элементы ее жизненного цикла (такие как периодическое слияние клеток) могли ускользнуть от внимания микробиологов.
В пользу того, что внутриклеточное генетическое разнообразие ахроматиума формируется не внутриклеточно, свидетельствует один из главных фактов, обнаруженных авторами, а именно то, что находящиеся в одной клетке аллели многих генов образуют далекие друг от друга ветви на филогенетическом дереве. Если бы всё внутриклеточное разнообразие аллелей формировалось внутри клонально размножающихся клеток, не меняющихся друг с другом генами, то следовало бы ожидать, что аллели в пределах клетки будут более родственны друг другу, чем аллели из разных клеток. Но авторы убедительно показали, что это не так. В общем, я бы поставил на то, что в жизненном цикле ахроматиума присутствует слияние клеток. Это представляется самым экономным и правдоподобным объяснением колоссального внутриклеточного генетического разнообразия.
В заключительной части статьи авторы намекают, что генетическая архитектура ахроматиума может пролить свет на происхождение эукариот. Они формулируют это так: «Между прочим, Марков и Казначеев предположили, что, подобно ахроматиуму из озера Штехлин, клетки прото-эукариот могли быть быстро мутирующими, разнообразящими свои хромосомы, полиплоидными бактериями/археями ». Совершенно верно, но мы также показали, что такое существо не могло бы выжить без интесивного межорганизменного генетического обмена. Будем надеяться, что дальнейшие исследования прольют свет на оставшиеся неразгаданными загадки ахроматиума.