» » Подцарство Многоклеточные — определение, признаки и характеристики. Общая характеристика многоклеточных животных Характеристика одноклеточных и многоклеточных организмов

Подцарство Многоклеточные — определение, признаки и характеристики. Общая характеристика многоклеточных животных Характеристика одноклеточных и многоклеточных организмов

Многоклеточные организмы (Metazoa ) - это организмы, состоящие из совокупности клеток, группы которых специализируются на выполнении определенных функций, создавая качественно новые структуры: ткани, органы, системы органов. В большинстве случаев благодаря такой специализации отдельные клетки не могут существовать вне организма. Подцарство Многоклеточные насчитывает около ЗО типов. Организация строения и жизнедеятельности многоклеточных животных отличается многими признаками от организации одноклеточных.

■ В связи с появлением органов, формируется полость тела - пространство между органами, который обеспечивает их взаимосвязь. Полость может быть первичной вторичной и смешанной.

■ В связи с осложнением образа жизни формируется радиальная (лучевая ) или двусторонняя (билатеральная ) симметрия, что дает основания разделять многоклеточных животных радиальносиметричних и двобичносиметричних.

■ С ростом потребностей в пище возникают эффективные средства перемещения, которые позволяют проводить активный поиск пищи, приводит к появлению опорно-двигательной системы.

■ многоклеточных животных требуется гораздо больше пищи, чем одноклеточным, и поэтому большинство животных переходит к питанию твердой органической пищей, что приводит к возникновению пищеварительной системы.

■ В большинстве организмов внешние покровы непроницаемы, поэтому обмен веществ между организмом и средой происходит через ограниченные участки его поверхности, что приводит к возникновению дыхательной системы.

■ С увеличением размеров появляется кровеносная система, которая разносит кровь благодаря работе сердца или пульсирующих сосудов.

■ Формируются выделительные системы для вывода продуктов обмена

■ Возникают регуляторные системы - нервная и эндокринная, которые координируют работу всего организма.

■ В связи с появлением нервной системы появляются новые формы раздражительности - рефлексы.

■ Развитие многоклеточных организмов из одной клетки - это длительный и сложный процесс, в связи с чем усложняются жизненные циклы, которые непременно будут включать ряд стадий: зигота - зародыш - личинка (малыш ) - молодое животное - взрослое животное - половозрелая животное - стареющая животное - умерло животное.

Общие признаки строения и жизнедеятельности представителей типа Губки

Губки - многоклеточные двухслойные радиально или асимметричные животные, тело которых пронизано порами. К типу принадлежит около 5000 видов пресноводных и морских губок. Подавляющее большинство этих видов населяет тропические и субтропические моря, где встречаются на глубинах до 500 м. Однако, среди губок встречаются и глубоководные формы, которые находили на глубине 10 000 - 11 000 м (например, морские ершики ). В Черном море обитает 29 видов, в пресных водоемах Украины - 10 видов. Губки принадлежат к самым примитивным многоклеточным организмам, так как в них ткани и органы четко не выражены, хотя клетки выполняют различные функции. Главной причиной, препятствующей массовому распространению губок, является отсутствие соответствующего субстрата. Большинство губок не могут жить на илистом дне, поскольку частицы ила закупоривают поры, что приводит к гибели животного. Большое влияние на распространение имеют соленость и подвижность воды, температура. Самыми общими признаками губок являются: 1 ) наличие пор в стенках тела 2 ) отсутствие тканей и органов; 3 ) наличие скелета в виде игл или волокон; 4 ) хорошо развита регенерация и др.

С пресноводных форм распространенная губка-бодяга (Spongilla lacustris), которая живет на каменистых почвах водоемов. Зеленый цвет обусловлен наличием в протоплазме их клеток водорослей.

особенности строения

Тело многоклеточное, имеет стебельчатых, кустистые, цилиндрическую, воронкообразную форму, но чаще всего в виде мешка или бокала. Губки ведут прикрепленный образ жизни, поэтому в их теле снизу есть основа для прикрепления к субстрату, а сверху - отверстие (устья ), который ведет к а Триольный (парагастральнои ) полости. Стенки тела пронизаны множеством пор, через которые вода поступает в эту полость тела. Стенки тела образованы из двух слоев клеток: наружного - пинакодермы и внутреннего - хоанодермы. Между этими слоями есть бесструктурная студенистое вещество - мезоглея , в которой содержатся клетки. Размеры тела губок - от нескольких миллиметров до 1,5 м (губка кубок Нептуна ).

Строение губки: 1 - устья; 2 - пинакодерма; 3 - хоанодерма; 4 - пора; 5 - мезоглея; 6 - археоцит; 7 - основание; 8 - трехосный ветвь; 9 - атриального полость; 10 - спикулы; 11 - амебоциты; 12 - коленцит; 13 - пороцит; 14 - пинакоцит

Разнообразие клеток губок и их функции

клетки

Расположение

функции

Пинакоциты

Пинакодерма

Плоские клетки, которые образуют покровный эпителий

Пороциты

Пинакодерма

Клетки с внутриклеточным каналом-временем, способные сокращаться и открывать или закрывать его

хоаноциты

Хоанодерма

Цилиндрические клетки с длинным жгутиком, которые создают поток воды и способны поглощать питательные частицы и передавать их в мезоглею

Коленциты

мезоглея

Неподвижные звездчатые клетки, которые являются соединительнотканными опорными элементами

Склероциты

мезоглея

Клетки, из которых развиваются скелетные образования губок - спикулы

мезоглея

Клетки, соединяются между собой с помощью отростков и обеспечивают некоторое сокращение тела губок

амебоциты

мезоглея

Подвижные клетки, которые осуществляют переваривания пищи и разнесения питательных веществ по телу губки

Археоциты

мезоглея

Резервные клетки, которые способны превращаться во все другие клетки и давать начало половым клеткам

Особенности организации губок сводятся к трем основным типам:

АСКОН - тело с парагастральною полостью, которая выстилается хоаноцитами (в известняковых губок)

сикон - тело с утолщенными стенками, в которые выпячиваются участки парагаст- ральной полости, образуя жгутиковые кармашки (в стеклянных губок)

лейкон - тело с толстыми стенками, в которых различают небольшие жгутиковые камеры (в обычных губок).

Покровы. Тело покрыто плоским эпителием, образованным пинакоцитамы.

Полость тела называется парагастральною и выстилается хоаноцитами.

Особенности процессов жизнедеятельности

Опора обеспечивается скелетом, может быть известняковым (спикул с СаСО3), кремниевым (спикул с SiO2) или роговым (из коллагеновых волокон и вещества спонгина, которая содержит значительное количество йода).

Движение. Взрослые губки не способны к активному движению и ведут прикрепленный образ жизни. Какие-то незначительные сокращения тела осуществляются благодаря миоцитов, которые таким образом могут реагировать на раздражение. К перемещений внутри тела благодаря псевдоподию способны амебоциты. Личинки губок, в отличие от взрослых особей, способные энергично перемещаться в воде благодаря согласованной работе жгутиков, которые в большинстве случаев почти полностью покрывают поверхность тела.

Питание в губок пассивное и осуществляется с помощью непрерывного потока воды через тело. Благодаря ритмичной работе жгутиков хооноцитив вода поступает в поры, попадает в парагастральну полость и через устья выводится наружу. Взвешенные в воде отмершие остатки животных и растений, а также микроорганизмы увлекаются хоаноцитами, передаются амебоцитам, где перевариваются и разносятся ими по всему телу.

Пищеварения у губок внутриклеточное. Интересы амебоцитами питательных частиц происходит путем фагоцитоза. Непереваренные остатки выбрасываются в полость тела и выводятся наружу.

Транспортировка веществ внутри тела осуществляется амебоцитами.

Дыхание происходит всей поверхностью тела. Для дыхания используется растворенный в воде кислород, который поглощается всеми клетками. Углекислый газ также выводится в растворенном состоянии.

Выделение непереваренных остатков и продуктов обмена происходит вместе с водой через устья.

Регуляция процессов осуществляется с участием клеток, которые способны сокращаться или совершать движения - пороцитив, миоцитов, хоаноциты. Интеграция же процессов на уровне организма почти не развита.

Раздражительность. Губки очень слабо реагируют даже на самые сильные раздражения, а передачи их от одного участка к другому почти незаметна. Это свидетельствует об отсутствии у губок нервной системы.

Размножение бесполое и половое. Бесполое размножение осуществляется внешним и внутренним почкованием, фрагментацией, продольным разделением и др. В случае внешнего почкования дочерняя особь образуется на материнской и содержит, как правило, все виды клеток. В редких форм почка отделяется (например, в морской апельсина ), а в колониальных - сохраняет связь с материнским организмом. В губки-бодяги и в других пресноводных губок, кроме внешнего, наблюдается и внутреннее почкования. У нее во второй половине лета при снижении температуры воды с археоцитив образуются внутренние почки - геммулы. На зиму тело бодяги отмирает, а геммулы опускается на дно и, защищена оболочкой, зимует. Весной из нее развивается новая губка. В результате фрагментации тело губки распадается на части, каждая из которых при благоприятных условиях дает начало новому организму. Половое размножение происходит с участием гамет, которые образуются из археоцитив в мезоглеи. Большинство губок - гермафродиты (иногда раздельнополые). В случае полового размножения зрелый сперматозоид одной губки выходит из мезоглеи через устья и с потоком воды попадает в полость другой, где с помощью амебоцитов доставляется к зрелой яйцеклетки.

Развитие косвенный (с преобразованием). Дробление зиготы и формирования личинки происходит в основном внутри материнского организма. Личинка, которая имеет жгутики, выходит через устья в окружающую среду, прикрепляется к субстрату и превращается во взрослую губку.

Регенерация хорошо развита. Губки имеют очень высокий уровень регенерации, что обеспечивает воспроизведение целого самостоятельного организма даже с самого кусочка тела губки. Для губок присущ и соматический эмбриогенез - формирование, развитие новой особи из клеток тела, не приспособленных для размножения. Если пропустить губку через сито, то можно получить фильтрат, содержащий живые отдельные клетки. Эти клетки сохраняют жизнедеятельность несколько дней и с помощью псевдоподий активно перемещаются и собираются в группы. Эти группы через 6-7 дней превращаются в маленькие губки.

Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.

Кишечнополостные: Кишечнополостных насчитывается свыше 9 тыс. видов. Это низшие, преимущественно морские, многоклеточные животные, прикрепленные к субстрату либо плавающие в толще воды. Тело мешковидное, образованное двумя слоями клеток: наружным - эктодермой, и внутренним -энтодермой, между которыми находится бесструктурное вещество -мезоглея.

Размножение происходит как бесполым, так и половым способом. Незавершенное до конца бесполое размножение - почкование - приводит у ряда видов к образованию колоний.

Губки- многоклеточные животные:

Губок характеризует модульное строение, зачастую сопряжённое с образованием колоний, а также отсутствие настоящих тканей и зародышевых листков. В отличие от настоящих многоклеточных животных губки лишены мышечной, нервной и пищеварительной систем. Тело составлено покровным слоем клеток, подразделяющимся на пинакодерму и хоанодерму, и желеобразным мезохилом, пронизанным каналами водоносной системы и содержащего скелетные структуры и клеточные элементы. Скелет в разных группах губок представлен различными белковыми и минеральными (известковыми или кремнекислыми) структурами. Размножение осуществляется как половым, так бесполым путём.

Многоклеточные:

Одной из важнейших черт организации многоклеточных является морфологическое и функциональное различие клеток их тела. В ходе эволюции сходные клетки в теле многоклеточных животных специализировались на выполнении определенных функций, что привело к формированию тканей.

Разные ткани объединились в органы, а органы - а системы органов. Для осуществления взаимосвязи между ними и координации их работы образовались регуляторные системы - нервная и эндокринная. Благодаря нервной и гуморальной регуляции деятельности всех систем, многоклеточный организм функционирует как целостная биологическая система.

Процветание группы многоклеточных животных связано с усложнением анатомического строения и физиологических функций. Так, увеличение размеров тела привело к развитию пищеварительного канала, что позволило им питаться крупным пищевым материалом, поставляющим большое количество энергии для осуществления всех процессов жизнедеятельности. Развившиеся мышечная и скелетная системы обеспечили передвижение организмов, поддержание определенной формы тела, защиту и опору для органов. Способность к активному передвижению позволила животным осуществлять поиск пищи, находить укрытия и расселяться.


С увеличением размеров тела животных возникла необходимость в появлении внутритранспортных циркуляторных систем, доставляющих удаленным от поверхности тела тканям" и органам средства жизнеобеспечения - питательные вещества, кислород, а также удаляющих конечные продукты обмена веществ.

Такой циркуляторной транспортной системой стала жидкая ткань - кровь.

Интенсификация дыхательной активности шла параллельно с прогрессивным развитием нервной системы и органов чувств. Произошло перемещение центральных отделов нервной системы в передний конец тела животного, в результате чего обособился головной отдел. Такое строение передней части тела животного позволило ему получать информацию об изменениях в окружающей среде и адекватно реагировать на них.

По наличию или отсутствию внутреннего скелета животные подразделяются на две группы -беспозвоночные (все типы, кроме Хордовых) и позвоночные (тип Хордовые).

В зависимости от происхождения ротового отверстия у взрослого организма выделяют две группы животных: первично- и вто-ричноротые. Первичноротые объединяют животных, у которых первичный рот зародыша на стадии гаструлы - бластопор - остается ртом взрослого организма. К ним относятся животные всех типов, кроме Иглокожих и Хордовых. У последних первичный рот зародыша превращается в анальное отверстие, а истинный рот закладывается вторично в виде эктодермального кармана. По этой причине их называют вторичноротыми животными.

По типу симметрии тела выделяют группу лучистых, или радиально-симметричных, животных (типы Губки, Кишечнополостные и Иглокожие) и группу двусторонне-симметричных (все остальные типы животных). Лучевая симметрия формируется под влиянием сидячего образа жизни животных, при котором весь организм поставлен по отношению к факторам среды в совершенно одинаковые условия. Эти условия и формируют расположение одинаковых органов вокруг главной оси, проходящей через рот до противоположного ему прикрепленного полюса.

Двусторонне-симметричные животные подвижны, обладают одной плоскостью симметрии, по обе стороны которой располагаются различные парные органы. У них различают левую и правую, спинную и брюшную стороны, передний и задний концы тела.

Многоклеточные животные чрезвычайно разнообразны по строению, особенностям жизнедеятельности, различны по размерам, массе тела и т. д. На основе наиболее существенных общих черт строения они подразделяются на 14 типов, часть из которых рассматривается в данном пособии.

У многоклеточных организмов онтогенез обычно начинается с момента образования зиготы и заканчивается смертью. При этом организм не только растёт, увеличиваясь в размерах, но и проходит ряд различных жизненных фаз, на каждой из которых имеет особое строение, по-разному функционирует, а в некоторых случаях кардинально отличается образом жизни. Процесс эмбрионального развития многоклеточных животных включает три основных этапа: дробление, гаструляцию и первичный органогенез. Начинается эмбриогенез с момента образования зиготы.

Рассмотрим стадии эмбрионального развития многоклеточного животного на примере лягушки озёрной. Уже через несколько часов (у других видов позвоночных даже через несколько минут) после внедрения сперматозоида в яйцеклетку начинается первый этап эмбриогенеза - дробление, представляющий собой ряд последовательных митотических делений зиготы. При этом с каждым делением образуются всё более мелкие клетки, которые называют бластомерами (от греч. бластос - росток, мерос - часть). Измельчение клеток происходит за счёт уменьшения объёма цитоплазмы. Причём процесс клеточных делений продолжается до тех пор, пока размеры образующихся клеток не сравняются с размерами других соматических клеток организмов этого вида. В результате масса зародыша на завершающем периоде и его объём остаются постоянными и примерно равными зиготе.

Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.

Одной из важнейших черт организации многоклеточных является морфологическое и функциональное различие клеток их тела. В ходе эволюции сходные клетки в теле многоклеточных животных специализировались на выполнении определенных функций, что привело к формированию тканей.

Разные ткани объединились в органы, а органы - а системы органов. Для осуществления взаимосвязи между ними и координации их работы образовались регуляторные системы - нервная и эндокринная. Благодаря нервной и гуморальной регуляции деятельности всех систем, многоклеточный организм функционирует как целостная биологическая система.

Развившиеся мышечная и скелетная системы обеспечили передвижение организмов, поддержание определенной формы тела, защиту и опору для органов. Способность к активному передвижению позволила животным осуществлять поиск пищи, находить укрытия и расселяться.

С увеличением размеров тела животных возникла необходимость в появлении внутритранспортных циркуляторных систем, доставляющих удаленным от поверхности тела тканям" и органам средства жизнеобеспечения - питательные вещества, кислород, а также удаляющих конечные продукты обмена веществ.

Такой циркуляторной транспортной системой стала жидкая ткань - кровь. Жизненный цикл многоклеточных организмов - сложное индивидуальное развитие, в процессе которого из оплодотворенного яйца формируется взрослый организм. Оплодотворенное яйцо дробится, и образовавшиеся клетки дифференцируются на зародышевые листки и зачатки органов.

Выделяют две группы многоклеточных: лучистые (радиально-симметричные), или двухслойные, и двустороннесимметричные, или трехслойные.

Лучистым свойственны несколько плоскостей симметрии и радиальное расположение органов вокруг главной оси тела. В процессе индивидуального развития у них образуются только два зародышевых листка - эктодерма и энтодерма. К лучистым относится тип Кишечнополостные.

Большинство животных принадлежит к двусторонне - симметричным. Они имеют одну плоскость симметрии, которая делит их тело на две зеркально одинаковые половины - левую и правую. Зародышевых листка – три – эндодерма, мезодерма и эктодерма.



По наличию или отсутствию внутреннего скелета животные подразделяются на две группы - беспозвоночные (все типы, кроме Хордовых) и позвоночные (тип Хордовые).

В зависимости от происхождения ротового отверстия у взрослого организма выделяют две группы животных: первично- и вто-ричноротые. Первичноротые объединяют животных, у которых первичный рот зародыша на стадии гаструлы - бластопор - остается ртом взрослого организма. К ним относятся животные всех типов, кроме Иглокожих и Хордовых. У последних первичный рот зародыша превращается в анальное отверстие, а истинный рот закладывается вторично в виде эктодермального кармана. По этой причине их называют вторичноротыми животными.

Билет № 22

1. Популяция – структурная единица вида.(Учебник биологии, 9 класс 1 раздел, глава 5, § 10;)

Ареалов, сплошь заселенных тем или иным видом, в природе не существует. В пределах ареала особи данного вида осваивают лишь подходящие для их жизни местообитания. Степень заполнения занимаемого пространства у разных видов различна. Но всегда в нем выделяются «пустоты» и скопления. Иными словами, ареал состоит из более или менее многочисленных участков, на которых и встречается определенный вид. Например, колонии крота европейского, хорошо заметные по холмикам земли, располагаются на лесных опушках и лугах, ель обыкновенная произрастает преимущественно на низинах со значительно увлажненной почвой.

Скопления особей одного вида по численности могут быть большими или маленькими, существовать длительно (столетия и более) или на протяжении жизни всего двух-трех поколений, после чего они, как правило, погибают от любых случайностей, например, заболеваний, резкого ухудшения погодных условий и др. Для судьбы вида гораздо более важную роль играют те группы особей, которые устойчиво сохраняются на протяжении жизни многих поколений. Численность особей в таких группах может значительно увеличиваться при благоприятных условиях и снижаться при неблагоприятных, однако они имеют шансы к длительному существованию на данной территории. Такие группировки (совокупности) особей одного вида, длительно населяющих определенную часть ареала, свободно скрещивающихся друг с другом и дающих плодовитое потомство, относительно обособленные от других совокупностей этого же вида, называются популяцией (от лат. populus - народ, население). Благодаря пространственной разобщенности популяций вид приспособлен к существованию в разнообразных условиях среды. Таким образом, популяция является внутривидовой группировкой и, следовательно, конкретной формой существования вида, а сам вид - сложной биологической системой.



Характеристика популяций. Каждая популяция любого вида как биологическая система обладает определенной структурой.

Под структурой популяции понимается определенное количественное соотношение особей, отличающихся по морфологическим и физиологическим признакам, возрасту, полу, характеру распределения в пространстве и другим свойствам.

Основными параметрами популяции являются, прежде всего, ее численность и плотность.

Численность - общее количество особей в популяции. Она не бывает постоянной, так как изменчивы условия среды обитания популяции. Численность популяции зависит от соотношения интенсивности размножения (плодовитости) и смертности. В процессе размножения происходит рост популяции, смертность же приводит к сокращению ее численности. Для каждой популяции есть верхний и нижний пределы численности, которые можно измерить, изучая ее сезонные и межгодовые изменения.

Плотность популяции - это количество особей или их биомасса на единицу площади или объема (например, 150 растений сосны на 1 га; 0,5 циклопа на 1 м 3 воды). Плотность популяции также изменчива и зависит от численности. При возрастании численности плотность не увеличивается лишь в том случае, если возможно расселение популяции, расширение ее ареала.

Пространственное распределение представляет собой особенности размещения особей популяции на занимаемой территории. Оно определяется степенью однородности среды обитания, наличием пригодных для жизни участков, а также биологическими особенностями вида, поведением его особей. Знание типа распределения организмов позволяет правильно оценить плотность методом выборки.

Природным популяциям свойственны три типа распределения особей: случайное, равномерное (регулярное) и групповое (агрегированное) (рис. 1.3).

Случайное распределение особей наблюдается в однородной среде обитания, при невысокой численности популяции и отсутствии у особей стремления образовывать группы (например, у планарий, гидр). В природе этот тип распределения встречается редко.

Равномерное распределение характерно для видов, отличающихся жесткой конкуренцией между особями за одинаковые ресурсы и сильным территориальным инстинктом (хищные рыбы, млекопитающие, птицы, пауки).

Агрегированное (групповое) распределение встречается в природе наиболее часто. Оно выражается в образовании группировок особей, между которыми остаются значительные незаселенные территории. Причинами агрегированности особей могут быть неоднородность среды и ограниченность пригодных для жизни местообитаний, особенности размножениястремление к жизни в группе.

Возрастная структура отражает соотношение различных возрастных групп в популяции (рис. 1.4), а также сезонную и межгодовую динамику этого соотношения. В популяции обычно выделяют три экологических возраста: предрепродуктивный (до размножения), репродуктивный (в период размножения) и пострепродуктивный (после размножения). При благоприятных условиях в популяции присутствуют все возрастные группы и поддерживается более или менее стабильный уровень численности. В сокращающихся популяциях преобладают старые особи, уже не способные интенсивно размножаться. Такая возрастная структура свидетель^ ствует о неблагоприятных условиях существования. Изучение распределения организмов по возрастам имеет большое значение в прогнозировании численности популяций на протяжении жизни ряда ближайших поколений. Такие исследования позволяют планировать, например, промысел рыб или пушных зверей на ряд лет вперед.

Половую структуру формирует соотношение полов в популяциях с раздельнополыми особями (см. рис. 1.4). К ним относятся большинство животных и все двудомные растения. Изменение половой структуры популяции отражается на ее роли в экосистеме, так как самцы и самки многих видов имеют отличия в характере питания, ритме жизни, поведении. Так, самки некоторых видов комаров, клещей и мошек являются кровососущими, в то время как самцы питаются соком растений или нектаром. Рождаемость характеризует частоту появления новых особей в популяции за счет размножения.

Смертность (абсолютная и удельная) - величина, противоположная рождаемости.

Соотношение между величинами рождаемости и смертности определяет динамику численности популяции. Так, если величина рождаемости выше показателя смертности, то численность популяции будет возрастать, и наоборот, снизится, если смертность превысит рождаемость. В случае равенства величин рождаемости и смертности численность популяции будет поддерживаться на постоянном уровне.

Формой существования вида является популяция - самоподдерживающаяся совокупность особей одного вида, имеющая собственный генофонд. Способность популяции к длительному существованию на конкретном участке ареала вида обеспечивается характерными для нее структурой и групповыми свойствами: численностью, плотностью, половозрастной структурой, рождаемостью и смертностью. Величины этих показателей непостоянны, что дает возможность популяции адаптироваться к меняющимся условиям среды обитания.

2. Понятие о систематике. Значение работ К. Линнея. Бинарная номенклатура. (Учебник биологии, 9 класс 1 раздел, глава 5,§ 10;)

Систематика -та часть зоологии и ботаники, которая занимается описанием и изучением органических форм, ныне живущих на земной поверхности. Систематика как наука преследует задачи двоякого рода: практические и теоретические. Практическая задача С. состоит в том, чтобы отличить все существующие на земле породы (виды) животных и растений, дать каждой из них особое название и по возможности точное и ясное описание (диагноз), которое не позволяло бы смешивать различные виды один с другим. Но этой практической стороной не исчерпывается задача С.

Ее теоретическая задача состоит в том, чтобы 1) наблюдая органические формы с точки зрения их постоянства или изменчивости, в зависимости от внешних условий, географического распространения и т. п. определить условия изменения организмов, т. е. перехода одних форм в другие; 2) чтобы, изучая организмы с точки зрения их сходства или различия, подметить между ними родственные черты, указывающие на общее происхождение, и восстановить таким образом их генеалогию. Конечная цель С. есть разъяснение процесса происхождения всего разнообразия органических форм. Теория С. есть, в конце концов, теория эволюции. Поэтому несправедливо С. называют часто описательной наукой. Она заслуживает это название настолько же, как и каждая другая наука, основанная на положительных фактах. Метод С. Для достижения указанных целей натуралисты располагают формы животных и растений в систему, т. е. распределяют их по степени сходства в группы, а эти последние так или иначе располагают в классы или группы высшего порядка.

В практическом отношении от системы требуется, чтобы всякий организм занимал в ней вполне определенное положение, сообразно со своими признаками, чтобы, встретив какой-либо неизвестный нам организм, можно было бы легко определить его место в системе, узнать, таким образом, его название, если он уже описан, или убедиться, что данная форма еще не была никем описана и не имеет еще названия. В теоретическом отношении система должна ясно выражать степени родства организмов и намечать, насколько возможно, их генеалогию. Как в зоологии, так и в ботанике было предложено разными учеными много систем. Судя по тому, насколько эти последние удовлетворяют больше практическим или теоретическим требованиям, они называются искусственными или естественными. Искусственная система не сообразуется с естественным родством организмов; она распределяет их просто на основании чисто произвольных, но по возможности ясных и постоянных признаков. Искусственные системы играли прежде большую роль в ботанике, в особенности половая система Линнея, установленная им в 1735 г. и господствовавшая в науке почти 100 лет. В зоологии чисто искусственных систем, собственно говоря, никогда не было, ибо здесь естественное сходство организмов и групп выражено сравнительно гораздо резче. Что же касается до естественной системы, то она имеет главною целью своею выражение общего сходства, т. е. родства.

Линней Карл (1707-1778), шведский естествоиспытатель, создатель системы растительного и животного мира, первый президент Шведской АН (с 1739), иностранный почетный член Петербургской АН (1754). Впервые последовательно применил бинарную номенклатуру и построил наиболее удачную искусственную классификацию растений и животных, описал ок. 1500 видов растений. Выступал в защиту постоянства видов и креационизма. Автор «Системы природы» (1735), «Философии ботаники» (1751) и др.

бина́рная, или биномиа́льная номенклатура - принятый в биологической систематике способ обозначения видов при помощи двухсловного названия (биномена), состоящего из сочетания двух названий (имён): имени рода и имени вида (согласно терминологии, принятой в зоологической номенклатуре) или имени рода и видового эпитета (согласно ботанической терминологии).

Имя рода всегда пишется с большой буквы, имя вида (видовой эпитет) - всегда с маленькой (даже если происходит от имени собственного). В тексте биномен, как правило, пишется курсивом. Имя вида (видовой эпитет) не следует приводить отдельно от имени рода, поскольку без имени рода оно лишено смысла. В некоторых случаях допускается сокращение имени рода до одной буквы или стандартного сокращения.

По установившейся в России традиции, в зоологической литературе получило распространение словосочетание биномиальная номенклатура (от англ. binomial), а в ботанической - бинарная, или биноминальная номенклатура (от лат. binominalis).

Rosacanina L. –роза собачья (шиповник) (Линней)

Билет № 23

1.Движущие силы эволюции (Учебник биологии, 9 класс 1 раздел, глава 3,§5)

В эволюционной теории Дарвина предпосылкой эволюции является наследственная изменчивость, а движущими силами эволюции - борьба за существование и естественный отбор. При создании эволюционной теории Ч. Дарвин многократно обращается к результатам селекционной практики. Он показал, что в основе многообразия сортов и пород лежит изменчивость. Изменчивость - процесс возникновения отличий у потомков по сравнению с предками, которые обусловливают многообразие особей в пределах сорта, породы. Дарвин считает, что причинами изменчивости являются воздействие на организмы факторов внешней среды (прямое и косвенное), а также природа самих организмов (так как каждый из них специфически реагирует на воздействие внешней среды). Дарвин, анализируя формы изменчивости, выделил среди них три: определенную, неопределенную и коррелятивную.

Определенная, или групповая, изменчивость - это изменчивость, которая возникает под влиянием какого-либо фактора среды, действующего одинаково на все особи сорта или породы и изменяющегося в определенном направлении. Примерами такой изменчивости могут служить увеличение массы тела у особей животных при хорошем кормлении, изменение волосяного покрова под влиянием климата и т. д. Определенная изменчивость является массовой, охватывает все поколение и выражается у каждой особи сходным образом. Она ненаследственна, т. е. у потомков измененной группы при других условиях приобретенные родителями признаки не наследуются.

Неопределенная, или индивидуальная, изменчивость проявляется специфично у каждой особи, т. е. единична, индивидуальна по своему характеру. С ней связаны отличия у особей одного и того же сорта или породы, находящихся в сходных условиях. Данная форма изменчивости неопределенна, т. е. признак в одних и тех же условиях может изменяться в разных направлениях. Например, у одного сорта растений появляются экземпляры с разной окраской цветков, разной интенсивностью окраски лепестков и т. п. Причина такого явления Дарвину была неизвестна. Неопределенная изменчивость имеет наследственный характер, т. е. устойчиво передается потомству. В этом заключается ее важное значение для эволюции.Дарвин приходит к выводу, что для эволюционного процесса важны лишь наследуемые изменения, так как только они могут накапливаться из поколения в поколение. Согласно Дарвину, основные факторы эволюции культурных форм - это наследственная изменчивость и отбор, производимый человеком (такой отбор Дарвин назвал искусственным). Изменчивость - необходимая предпосылка искусственного отбора, но она не определяет образования новых пород и сортов.

Объяснение исторической изменяемости видов Дарвин считал возможным только через раскрытие причин приспособляемости к определенным условиям. Он пришел к выводу, что приспособленность естественных видов, как и культурных форм, - результат отбора, который производился не человеком, а условиями среды.

Каким же образом осуществляется естественный отбор? Одним из главнейших его условий в естественной среде Дарвин считает перенаселение видов, возникающее как следствие геометрической прогрессии размножения. Дарвин обратил внимание на то, что особи видов, дающих даже относительно небольшое реальное потомство, в конечном итоге размножаются довольно интенсивно. Например, аскарида продуцирует в сутки до 200 тыс. яиц, самка окуня выметывает 200-ЗООтыс, а трески- до 10 млн. икринок.

Перенаселение является основной (хотя и не единственной) причиной возникновения между организмами борьбы за существование. В понятие «борьба за существование» он вкладывает широкий и метафорический смысл.

Борьба организмов происходит как между собой, так и с физико-химическими условиями среды. Она носит характер непосредственных столкновений между организмами или, что наблюдается чаще, косвенных конфликтов. Конкурирующие организмы могут даже не соприкасаться друг с другом и тем не менее находиться в состоянии ожесточенной борьбы (например, ель и растущая под ней кислица).

Естественным результатом противоречий между организмами и внешней средой является истребление части особей видов (элиминация). Борьба за существование, таким образом, и есть элиминирующий фактор.

Схема действия естественного отбора в системе вида по Дарвину сводится к следующему:

Изменчивость свойственна любой группе животных и растений, и организмы отличаются друг от друга во многих отношениях.

Число организмов каждого вида, рождающихся на свет, превышает число тех, которые могут найти пропитание и выжить. Тем не менее, поскольку численность каждого вида в естественных условиях постоянна, следует предполагать, что большая часть потомства гибнет. Если бы все потомки какого-либо вида выживали и размножались, то весьма скоро они вытеснили бы все другие виды на земном шаре.

Поскольку рождается больше особей, чем может выжить, происходит борьба за существование, конкуренция за пищу и место обитания. Это может быть активная борьба не на жизнь, а на смерть, или менее явная, но не менее действенная конкуренция, как, например, для растений в период засухи или холода.

Среди множества изменений, наблюдающихся у живых существ, одни облегчают выживание в борьбе за существование, другие же приводят к тому, что их обладатели гибнут. Концепция «выживания наиболее приспособленных» представляет собой ядро теории естественного отбора.

Выживающие особи дают начало следующему поколению, и таким образом «удачные» изменения передаются последующим поколениям. В результате каждое следующее поколение оказывается более приспособленным к среде обитания; по мере изменения среды возникают дальнейшие приспособления. Если естественный отбор действует на протяжении многих лет, то последние отпрыски могут оказаться настолько несхожими со своими предками, что их целесообразно будет выделить в самостоятельный вид.

Может также случиться, что некоторые члены данной группы особей приобретут одни изменения и окажутся приспособленными к окружающей среде одним способом, тогда как другие ее члены, обладающие другим комплексом изменений, окажутся приспособленными иначе; таким путем от одного предкового вида при условии изоляции подобных групп может возникнуть два и более видов.

Возникновение многоклеточности было важнейшим этапом в эволюции всего царства животных. Размеры тела животных, ранее ограниченные одной клеткой, у многоклеточных значительно возрастают за счет увеличения числа клеток. Тело многоклеточных состоит из нескольких слоев клеток, не менее чем из двух. Среди клеток, образующих тело многоклеточных животных, происходит разделение функций. Клетки дифференцируются на покровные, мускульные, нервные, железистые, половые и т. п. У большинства многоклеточных комплексы клеток, выполняющих одни и те же функции, образуют соответствующие ткани: эпителиальную, соединительную, мышечную, нервную, кровь. Ткани, в свою очередь, образуют сложные органы и системы органов, обеспечивающие жизненные отправления животного.

Многоклеточность чрезвычайно расширила возможности эволюционного развития животных и способствовала завоеванию ими всех возможных сред обитания.

Все многоклеточные животные размножаются половым путем . Половые клетки - гаметы - образуются у них весьма сходно, путем клеточного деления - мейоза,- которое приводит к сокращению, или редукции, числа хромосом.

Для всех многоклеточных характерен определенный жизненный цикл: оплодотворенная диплоидная яйцеклетка - зигота - начинает дробиться и дает начало многоклеточному организму. При созревании последнего в нем образуются половые гаплоидные клетки - гаметы: женские - крупные яйцеклетки или мужские - очень маленькие сперматозоиды. Слияние яйцеклетки со сперматозоидом - оплодотворение, в результате которого вновь образуется диплоидная зигота, или оплодотворенное яйцо.

Видоизменения этого основного цикла у некоторых групп многоклеточных могут возникать вторично в виде чередования поколений (полового и бесполого), или замены полового процесса партеногенезом, т. е. размножением половым путем, но без оплодотворения.
Бесполое размножение, столь характерное для подавляющего большинства одноклеточных, свойственно также низшим группам многоклеточных (губки, кишечнополостные, плоские и кольчатые черви и отчасти иглокожие). Весьма близка к бесполому размножению способность к восстановлению утраченных частей, называемая регенерацией. Она присуща в той или иной степени многим группам как низших, так и высших многоклеточных животных, не способных к бесполому размножению.

Половое размножение многоклеточных животных

Все клетки тела многоклеточных животных разделяются на соматические и половые. Соматические клетки (все клетки тела, кроме половых) диплоидны, т. е. все хромосомы представлены в них парами сходных гомологичных хромосом. Половые клетки обладают лишь одинарным, или гаплоидным, набором хромосом.

Половое размножение многоклеточных происходит при помощи половых клеток: женской яйцеклетки, или яйца, и мужской половой клетки - сперматозоида. Процесс слияния яйцеклетки и сперматозоида называется оплодотворением, в результате которого возникает диплоидная зигота. Оплодотворенное яйцо получает от каждого родителя по одинарному набору хромосом, которые вновь образуют гомологичные пары.

Из оплодотворенного яйца путем его многократного деления, развивается новый организм. Все клетки этого организма, кроме половых, содержат исходное диплоидное число хромосом, таких же, какими обладали его родители. Сохранение характерных для каждого вида числа и индивидуальности хромосом (кариотипа) обеспечивается процессом клеточного деления - митоза.

Половые клетки образуются в результате особого видоизмененного клеточного деления, называемого мейозом. Мейоз приводит к редукции, или уменьшению, числа хромосом вдвое путем двух последовательных делений клетки. Мейоз, так же как и митоз, протекает у всех многоклеточных очень однотипно, в отличие от одноклеточных, у которых эти процессы весьма варьируют.

В мейозе, как и в митозе, различают основные этапы деления: профазу, метафазу, анафазу и телофазу. Профаза первого деления мейоза (профаза I) очень сложная и наиболее длительная. Она подразделяется на пять стадий. При этом парные гомологичные хромосомы, полученные одна от материнского, а другая - от отцовского организма, тесно соединяются, или конъюгируют друг с другом. Конъюгирующие хромосомы утолщаются, и при этом становится заметно, что каждая из них состоит из двух сестринских хроматид, соединенных центромерой, а все вместе они образуют четверку хроматид, или тетраду. При конъюгации могут происходить разрывы хроматид и обмен одинаковыми участками гомологичных, но не сестринских хроматид из одной и той же тетрады (из пары гомологичных хромосом). Этот процесс называется перекрестом хромосом или кроссинговером. Он приводит к возникновению составных (смешанных) хроматид, содержащих сегменты, полученные от обоих гомологов, а следовательно, от обоих родителей. В конце профазы I гомологичные хромосомы выстраиваются в плоскости экватора клетки, а к их центромерам прикрепляются нити ахроматинового веретена (метафаза I). Центромеры обеих гомологичных хромосом отталкиваются друг от друга и отходят к разным полюсам клетки (анафаза I, телофаза I), что приводит к редукции числа хромосом. Таким образом, в каждую клетку попадает только одна хромосома из каждой пары гомологов. Образовавшиеся клетки содержат половинное, или гаплоидное, число хромосом.

После первого деления мейоза обычно почти сразу следует второе. Фаза между этими двумя делениями называется интеркинезом. Второе деление мейоза (II) весьма похоже на митоз, с сильно укороченной профазой. Каждая хромосома состоит из двух хроматид, скрепленных центромерой. В метафазе II хромосомы выстраиваются в экваториальной плоскости. В анафазе II происходит деление центромер, после чего нити веретена растаскивают их к полюсам деления, а каждая хроматида становится хромосомой. Так из одной диплоидной клетки в процессе мейоза образуются четыре гаплоидные. В мужском организме из всех клеток формируются сперматозоиды; в женском в яйцо превращается лишь одна из четырех клеток, а три (маленькие полярные тельца) дегенерируют. Сложные процессы гаметогенеза (спермато- и оогенеза) у всех многоклеточных проходят весьма однотипно.

Половые клетки

У всех многоклеточных животных половые клетки дифференцированы на крупные, обычно неподвижные женские клетки - яйца -и очень мелкие, чаще подвижные мужские клетки - сперматозоиды.

Женская половая клетка - яйцо-чаще всего шаровидной, а иногда более или менее вытянутой формы. Для яйцевой клетки характерно наличие значительного количества цитоплазмы, в которой помещается крупное пузыревидное ядро. Снаружи яйцо одето большим или меньшим количеством оболочек. Яйцевые клетки у большинства животных - самые крупные клетки в организме. Однако размеры их неодинаковы у разных животных, что зависит от количества питательного желтка. Различают четыре основных типа строения яиц: алецитальные, гомолецитальные, телолецитальные и центролецитальные яйца.

Алецитальные яйца почти лишены желтка или содержат его очень мало. Алецитальные яйцеклетки очень малы, они свойственны некоторым плоским червям и млекопитающим.

Гомолецитальные, или изолецитальные, яйца содержат сравнительно мало желтка, который распределен более или менее равномерно в цитоплазме яйца. Ядро занимает в них почти центральное положение. Таковы яйца многих моллюсков, иглокожих и др. Однако у некоторых гомолецитальных яиц имеется большое количество желтка (яйца гидры и др.).

Телолецитальные яйца содержат всегда большое количество желтка, который распределен в цитоплазме яйца весьма неравномерно. Большая часть желтка сосредоточена на одном полюсе яйца, называемом вегетативным полюсом, а ядро смещено в большей или меньшей степени к противоположному полюсу, называемому анимальным полюсом. Такие яйца свойственны разнообразным группам животных. Телолецитальные яйца достигают наиболее крупных размеров, и в зависимости от степени нагруженности желтком их полярность выражена в различной степени. Типичными примерами телолецитальных яиц могут служить яйца лягушек, рыб, пресмыкающихся и птиц, а из беспозвоночных животных - яйца головоногих моллюсков.

Однако не только телолецитальным яйцам, но и всем остальным типам яиц присуща полярность, т. е. у них также существуют различия в структуре анимального и вегетативного полюсов. Кроме указанного увеличения количества желтка на вегетативном полюсе, полярность может проявляться в неравномерном распределении цитоплазматических включений, пигментации яиц и т. п. Имеются данные, свидетельствующие о дифференциации цитоплазмы на анимальном и вегетативном полюсах яйца.

Центролецитальные яйца также очень богаты желтком, но он распределен в яйце равномерно. Ядро помещается в центре яйца, оно окружено очень тонким слоем цитоплазмы, такой же слой цитоплазмы покрывает все яйцо у его поверхности. Этот периферический слой цитоплазмы сообщается с околоядерной плазмой с помощью тонких цитоплазматических нитей. Центролецитальные яйца свойственны многим членистоногим, в частности всем насекомым.

Все яйца покрыты тончайшей плазматической мембраной, или плазмалеммой. Кроме того, почти все яйца окружены еще одной, так называемой желточной оболочкой. Она образуется в яичнике, и ее называют первичной оболочкой. Яйца могут быть одеты также вторичными и третичными оболочками.

Вторичная оболочка, или хорион, яиц образуется за счет окружающих яйцо фолликулярных клеток яичника. Лучшим примером может служить наружная оболочка - хорион - яиц насекомых, состоящая из твердого хитина и снабженная на анимальном полюсе отверстием - микропиле, через которое проникают сперматозоиды.

Третичные оболочки, имеющие обычно защитное значение, развиваются из выделений яйцеводов или придаточных (скорлупковых) желез. Таковы, например, оболочки яиц плоских червей, головоногих моллюсков, студенистые оболочки брюхоногих моллюсков, лягушек и т. п.

Мужские половые клетки - сперматозоиды,- в отличие от яйцевых клеток, очень мелкие, размеры их колеблются в пределах от 3 до 10 мкм. Сперматозоиды имеют очень небольшое количество цитоплазмы, их главную массу составляет ядро. За счет цитоплазмы у сперматозоидов развиваются приспособления к передвижению. Форма и строение сперматозоидов различных животных крайне разнообразны, но наиболее распространенной является форма с длинным жгутикоподобным хвостиком. Такой сперматозоид состоит из четырех отделов: головки, шейки, соединительной части и хвостика.

Головка почти целиком образована ядром сперматозоида, она несет крупное тельце - центросому, помогающую проникновению сперматозоида в яйцеклетку. На границе ее с шейкой расположены центриоли. Из шейки берет начало осевая нить сперматозоида, проходящая через его хвостик. По данным электронной микроскопии ее строение оказалось очень близким к таковому жгутиков: два волоконца в центре и девять по периферии осевой нити. В центральной части осевая нить окружена митохондриями, которые представляют основной энергетический центр сперматозоида.

Оплодотворение

У многих беспозвоночных животных оплодотварение внешнее и происходит в воде, у других имеет место внутреннее оплодотварение.

Процесс оплодотварения заключается в проникновении сперматозойдов в яйцо и в образовании из двух клеток одного опладотваренного яйца.

Этот процесс происходит неодинаково у различных животных, в зависимости от наличия микропиле, характера оболочек и т. п.

У одних животных, как правило, в яйцо проникает один сперматозоид, и при этом за счет желточной оболочки яйца образуется оболочка оплодотворения, препятствующая проникновению других сперматозоидов.

У многих животных в яйцо проникает большее количество сперматозоидов (многие рыбы, пресмыкающиеся и др.), хотя в оплодотворении (в слиянии с яйцевой клеткой) принимает участие лишь один.

При оплодотворении сочетаются наследственные особенности двух особей, что обеспечивает большую жизнеспособность и большую изменчивость потомства, а следовательно, и возможность появления у него полезных приспособлений к различным условиям жизни.

Эмбриональное развитие многоклеточных животных

Весь процесс, от начала развития оплодотворенного яйца до начала самостоятельного существования нового организма вне тела матери (при живорождении) или по выходе его из оболочек яйца (при яйцеродности), называют эмбриональным развитием.

Галлерея

Тип урока:

Тема урока:

Цели урока:

Задачи:

1)образовательные:

2)воспитательные:

3)развивающие:

Методы и методические приемы:

План урока:

В:

О:

В:

О:

В:

О:

О:

Демонстрация слайда:

Демонстрация слайда:

Демонстрация слайда:

Запись в тетради:

Запись в тетради:

Демонстрация слайда:

Запись в тетради:

В:

О:

Демонстрация слайда:

Демонстрация слайда:

Демонстрация слайда:

Демонстрация слайда:

Комбинированный

«Общая характеристика и классификация подцарства многоклеточных. Многообразие и классификация кишечнополостных.»

Раскрыть основные особенности строения и жизнедеятельности многоклеточных организмов.

    Ознакомиться с особенностями строения многоклеточных организмов;

    Продолжить формирование понятия о среде обитания многоклеточных организмов;

    Изучить систематику многоклеточных организмов и особенности их жизнедеятельности;

    Дать представление об общей характеристике и классификации кишечнополостных.

    Воспитывать познавательный интерес к животному миру;

    Формирование научно-материалистического мировоззрения на основе взаимосвязи между сходством одноклеточных и многоклеточных организмов.

    Развитие умения работать с материалом учебника;

    Развитие логического мышления через умение анализировать, обобщать материалы, сравнивать, делать выводы.

    Расширить круг знаний об особенностях подцарства многоклеточные.

Словесные: рассказ, объяснение, беседа.

Наглядные: демонстрация изобразительных пособий.

Этапы урока:

    Организационный момент(1 мин)

    Проверка знаний по теме «Подцарство одноклеточные, общая характеристика и систематика.»(15 мин)

    Изучение нового материала(20 мин)

    Общая характеристика многоклеточных организмов.

    Особенности строения и их жизнедеятельность.

    Классификация многоклеточных организмов.

    Закрепление и обобщение материала(5-10 мин)

    Домашнее задание(1 мин)

Ход урока:

    Организационный момент.

Здравствуйте, ребята! Садитесь.

    Проверка знаний по теме « Общая характеристика и классификация подцарства многоклеточных. Многообразие и классификация кишечнополостных»

Ребята, на прошлом занятии, вы изучили тему « Подцарство одноклеточные, общая характеристика и систематика.». Сейчас мы проверим как вы усвоили пройденный материал. Закрываем все учебники и тетради. Достаем листочки и подписываем их. На выполнение задания вам дается 10 минут. Приступаем.

    Изучение нового материала

Ребята, вы уже знаете кто такие одноклеточные организмы, а помните ли вы кто такие многоклеточные организмы?

Многоклеточные организмы – это организмы, тела которых состоят из множества клеток.

На какие два типа делится подцарство многоклеточные?

Многоклеточные делятся на позвоночные и бесповзвоночные.

Почему животных называют позвоночными? А почему беспозвоночными?

Беспозвоночные – нет внутреннего скелета и позвоночника.

Позвоночные - имеется хорда в зародышевом развитии, и в дальнейшем превращается в позвоночник.

Многоклеточные животные образуют самую многочисленную группу живых организмов планеты, насчитывающую более 1,5 млн. видов. Ведя свое происхождение от простейших, они претерпели в процессе эволюции существенные преобразования, связанные с усложнением организации.

Многоклеточные животные чрезвычайно разнообразны по строению, особенностям жизнедеятельности, различны по размерам, массе тела и т. д. На основе наиболее существенных общих черт строения они подразделяются на 14 типов.

Подцарство Многоклеточные разделяется на 2 надраздела: Parazoa (примитивные многоклеточные) и Eumetazoa (настоящие многоклеточные).

Примитивные многоклеточные - это водные животные. Они ведут прикрепленный образ жизни, являются фильтраторами, получают пищу вместе с током воды. Как и простейшим, этим организмам свойственно внутриклеточное и пристеночное пищеварение.

Надраздел примитивных многоклеточных состоит из двух типов: Губковые (Spongiata) и Археоциаты (Archaeocyathi).

К типу Губковых относят морские и пресноводные прикреплённые многоклеточные, скелет которых состоит из простых или по разному соединенных между собой иголочек - спикул.

Губковые являются фильтраторами. Их тело пронизано многочисленными каналами, открывающимися изнутри и снаружи порами.

Тип губковых разделяют на 3 класса: Губки (Spongia) - наиболее распространённый и многочисленный, Склероспонкии (Sclerospongia) и Сфинктозоа (Sphinctozoa). Иногда в этот тип включают класс Рецептакулиты (Receptaculita), положение которого имеет неясное систематическое положение.

Губки - это морские и пресноводные, одиночные и колониальные организмы, неимеющие обособленных тканей и органов.

Губки имеют шарообразную, грибовидную, цилиндрическую или кубковидную форму. Иногда они образуют комковидные или подушкообразные наросты на твёрдом субстрате. Размеры губок колеблются от нескольких миллиметров до 1,5 метров.

Губки ведут прикреплённый образ жизни, но могут свободно лежать или зарываться (сверлильщики). Питание и дыхание губок посуществляется по мере прохождения через их тело воды. Основной признак губок - наличие в их теле пронизывающей системы каналов.

Скелет губок представлен тонкими иголочками - спикулами - имеющих разные размеры, форму и состав. Состав скелета минеральный, органический или смешанный. Минеральный скелет может быть известковым или кремнистым. Форма минеральных спикул одно-, трёх-, четырёх- и многоосная.

А теперь перейдем к общей характеристики кишечноплостных их классификации.

Название кишечнополостных происходит от двухслойных организмов с единственной полостью тела – кишечной. Кишечнополостные - самые низкоорганизованные многоклеточные одиночные или колониальные животные. У многих скелет известковый; у некоторых органический.

Размножаются кишечнополостные половым и бесполым путем, причем половое поколение (медузы) – свободно плавающие организмы, бесполое (полипы) ведет прикрепленный образ жизни.

К кишечнополостным относятся гидроидные и коралловые полипы, актинии, гидры, медузы.

Большинство кишечнополостных живет в морях и океанах. Они объединяют около 9 тыс. видов, которые подразделяются на 3 класса: гидрообразные (гидроидные), сцифоидные(чашеобразные) и коралловые полипы.

Тело кишечнополостных часто имеет лучевую симметрию.

Ребята, а что значит лучевая симметрия?

Лучевая (радиальная) симметрия - форма симметрии, при которой тело (или фигура) совпадает само с собой при вращении объекта вокруг определённой точки или прямой

Теперь рассмотрим непосредственно классификацию кишечнополостных, и их ярких представителей.

В классе гидроидных (Hydrozoa) доминируют полипы, обычно образующие путём почкования ветвистую колонию из огромного числа особей – гидрантов. От полипов отпочковываются медузы, живущие, как правило, недолго; некоторые виды не образуют медуз.

6–7 отрядов гидроидных разделяются на 4000 видов, встречающихся, в основном, в морях. Большинство обитают на литорали, лишь немногие гидромедузы – глубоководные формы. Некоторые гидроидные (гонионема, португальский кораблик) вызывают сильные ожоги, опасные для человека.

Гидра – характерный представитель пресноводных полипов – обитает в озёрах, прудах и реках. Цилиндрическое тело подошвой прикреплено к субстрату; на противоположном конце имеется рот, окружённый щупальцами. Оплодотворение внутреннее. Находящиеся в эктодерме интерстициальные клетки способствуют регенерации повреждённых тканей. Гидру можно резать на куски, даже вывернуть наизнанку – всё равно она будет жить и расти. Гидра окрашена в зелёный или бурый цвет; длина тела составляет от 5 мм до 1 см. Срок её жизни составляет лишь один год.

Сцифоидные (Scyphozoa), наоборот, выделяются свободноплавающими медузами, размеры которых колеблются от нескольких миллиметров до 2–3 м (цианея); щупальца цианеи вытягиваются в длину до 20 м. Полип развит слабо, иногда его нет совсем. Кишечная полость разделена неполными перегородками на камеры. Сцифомедузы живут несколько месяцев.

Около 200 видов в умеренных и тропических водах Мирового океана. Некоторые виды (корнероты, аурелия) употребляются в солёном виде в пищу. Многие медузы при прикосновении вызывают сильные покраснения и ожоги. Австралийская сцифомедуза хиродрофус может вызвать смертельные ожоги у людей.

Коралловые полипы (Anthozoa) – колониальные (реже одиночные) морские организмы. Тело длиной от нескольких миллиметров до одного метра обладает шестилучевой или восьмилучевой симметрией. Из-за того, что оплодотворение у кораллов внутреннее, личинка планула развивается в кишечной полости полипа, образующего яйцеклетки. Стадия медузы отсутствует. Ротовое отверстие соединяется с кишечной полостью глоткой. У полипов одной колонии кишечная полость общая, и пища, добытая одним из полипов, становится достоянием всей колонии. Около 6000 видов коралловых полипов обитают во всех морях с достаточно высокой солёностью; в северных и дальневосточных морях России около 150 видов.

Некоторые колониальные полипы (например, мадрепоровые кораллы) окружают себя массивным известковым скелетом. Когда полип умирает, его скелет остаётся. Колонии полипов, разрастаясь в течение тысячелетий, образуют коралловые рифы и целые острова. Самый крупный из них – Большой Барьерный риф – тянется вдоль восточных берегов Австралии на 2300 км; его ширина составляет от 2 до 150 км. Рифы в местах своего распространения (в тёплых и солёных водах с температурой 20–23 °С) являются серьёзным препятствием для судоходства. Веточки кораллов используют как украшения.

Коралловые рифы представляют собой уникальные экосистемы, в которых находит приют огромное количество других животных: моллюсков, червей, иглокожих, рыб. В ледниковый период коралловые рифы окаймляли многие острова. Затем уровень моря начал подниматься, и полипы со средней скоростью сантиметр в год надстраивали свои рифы. Постепенно сам остров скрывался под водой, а на его месте образовалась мелководная лагуна, окружённая рифами. Ветер приносил на них семена растений. Затем появились животные, и остров превратился в коралловый атолл.