Лекция: Понятие о производной функции, геометрический смысл производной
Понятие о производной функции
Рассмотрим некоторую функцию f(x), которая будет непрерывной на всем промежутке рассмотрения. На рассматриваемом промежутке выберем точку х 0 , а также величину функции в данной точке.
Итак, давайте рассмотрим график, на котором отметим нашу точку х 0 , а также точку (х 0 + ∆х). Напомним, что ∆х – это расстояние (разница) между двумя выбранными точками.
Так же стоит понимать, что каждому х соответствует собственное значение функции у.
Разница значений функции в точке х 0 и (х 0 + ∆х) называется приращением данной функции: ∆у = f(х 0 + ∆х) - f(х 0).
Давайте обратим внимание на дополнительную информацию, которая имеется на графике – это секущая, которая названа КL, а также треугольник, который она образует с интервалами KN и LN.
Угол, под которым находится секущая, называется её углом наклона и обозначается α. Легко можно определить, что градусная мера угла LKN так же равна α.
А теперь давайте вспомним соотношения в прямоугольном треугольнике tgα = LN / KN = ∆у / ∆х.
То есть тангенс угла наклона секущей равен отношению приращения функции к приращению аргумента.
В свое время, производная – это предел отношения приращения функции к приращению аргумента на бесконечно малых интервалах.
Производная определяет скорость, с которой происходит изменение функции на некотором участке.
Геометрический смысл производной
Если найти производную любой функции в некоторой точке, то можно определить угол, под которым будет находится касательная к графику в данной токе, относительно оси ОХ. Обратите внимание на график – угол наклона касательно обозначается буквой φ и определяется коэффициентом k в уравнении прямой: y = kx + b.
То есть можно сделать вывод, что геометрическим смыслом производной является тангенс угла наклона касательной в некоторой точке функции.
При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом
Тот
процесс, с помощью которого из данной
функции f(x)
получают новую функцию f
" (x)
,
называют дифференцированием
и состоит он из следующих трех шагов:
1)
даем аргументу x
приращение
x
и определяем соответствующее приращение
функции
y
= f(x+
x)
-f(x)
;
2)
составляем отношение
3)
считая x
постоянным, а
x
0,
находим
,
который обозначаем черезf
" (x)
,
как бы подчеркивая тем самым, что
полученная функция зависит лишь от того
значения x
,
при котором мы переходим к
пределу.
Определение
:
Производной
y " =f " (x)
данной
функции y=f(x)
при
данном x
называется предел отношения приращения
функции к приращению аргумента при
условии, что приращение аргумента
стремится к нулю, если, конечно, этот
предел существует, т.е. конечен.
Таким
образом,
,
или
Заметим,
что если при некотором значении x
,
например при x=a
,
отношение
при
x
0
не стремится к конечному пределу, то в
этом случае говорят, что функция f(x)
при x=a
(или в точке x=a
)
не имеет производной или не дифференцируема
в точке x=a
.
2. Геометрический смысл производной.
Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x 0
f(x)
Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .
Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.
Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.
Если
перейти к пределу при ∆х → 0 в равенстве
tgβ
=∆y/∆x,
то получим
илиtg
=f
"(x 0),
так как
-угол
наклона касательной к положительному
направлению оси Ох
,
по определению производной. Но tg
= k - угловой коэффициент касательной,
значит, k = tg
= f
"(x 0).
Итак, геометрический смысл производной заключается в следующем:
Производная функции в точке x 0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x 0 .
3. Физический смысл производной.
Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.
Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.
lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.
а lim = ∆x/∆t = x"(t 0) (по определению производной).
Итак, (t) =x"(t).
Физический смысл производной заключается в следующем: производная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0
Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.
(t) = x"(t) - скорость,
a(f) = "(t) - ускорение, или
Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении:
φ = φ(t) - изменение угла от времени,
ω = φ"(t) - угловая скорость,
ε = φ"(t) - угловое ускорение, или ε = φ"(t).
Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:
m = m(х) - масса,
x , l - длина стержня,
р = m"(х) - линейная плотность.
С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука
F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,
где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).
Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция
у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где
А - амплитуда колебаний, ω - циклическая частота,
φ 0 - начальная фаза.
Для выяснения геометрического значения производной рассмотрим график функции y = f(x). Возьмем произвольную точку М с координатами (x, y) и близкую к ней точку N (x + $\Delta $x, y + $\Delta $y). Проведем ординаты $\overline{M_{1} M}$ и $\overline{N_{1} N}$, а из точки М -- параллельную оси ОХ прямую.
Отношение $\frac{\Delta y}{\Delta x} $ является тангенсом угла $\alpha $1, образованного секущей MN с положительным направлением оси ОХ. При стремлении $\Delta $х к нулю точка N будет приближаться к M, а предельным положением секущей MN станет касательная MT к кривой в точке M. Таким образом, производная f`(x) равна тангенсу угла $\alpha $, образованного касательной к кривой в точке M (х, y) с положительным направлением к оси ОХ -- угловому коэффициенту касательной (рис.1).
Рисунок 1. График функции
Вычисляя значения по формулам (1), важно не ошибиться в знаках, т.к. приращение может быть и отрицательным.
Точка N, лежащая на кривой, может стремиться к M с любой стороны. Так, если на рисунке 1, касательной придать противоположное направление, угол $\alpha $ изменится на величину $\pi $, что существенно повлияет на тангенс угла и соответственно угловой коэффициент.
Вывод
Следует вывод, что существование производной связано с существованием касательной к кривой y = f(x), а угловой коэффициент -- tg $\alpha $ = f`(x) конечный. Поэтому касательная не должна быть параллельной оси OY, иначе $\alpha $ = $\pi $/2, а тангенс угла будет бесконечным.
В некоторых точках непрерывная кривая может не иметь касательной или иметь касательную параллельную оси OY (рис.2). Тогда в этих значениях функция не может иметь производную. Подобных точек может быть сколько угодно много на кривой функции.
Рисунок 2. Исключительные точки кривой
Рассмотрим рисунок 2. Пусть $\Delta $x стремится к нулю со стороны отрицательных или положительных значений:
\[\Delta x\to -0\begin{array}{cc} {} & {\Delta x\to +0} \end{array}\]
Если в данном случае отношения (1) имеют конечный придел, он обозначается как:
В первом случае -- производная слева, во втором -- производная справа.
Существование предела говорит о равносильности и равенстве левой и правой производной:
Если же левая и правая производные неравны, то в данной точке существуют касательные не параллельные OY (точка М1, рис.2). В точках М2, М3 отношения (1) стремятся к бесконечности.
Для точек N лежащих слева от M2, $\Delta $x $
Справа от $M_2$, $\Delta $x $>$ 0, но выражение также f(x + $\Delta $x) -- f(x) $
Для точки $M_3$ слева $\Delta $x $$ 0 и f(x + $\Delta $x) -- f(x) $>$ 0, т.е. выражения (1) и слева, и справа положительны и стремятся к +$\infty $ как при приближении $\Delta $x к -0, так и к +0.
Случай отсутствия производной в конкретных точках прямой (x = c) представлен на рисунке 3.
Рисунок 3. Отсутствие производных
Пример 1
На рисунке 4 изображен график функции и касательной к графику в точке с абсциссой $x_0$. Найти значение производной функции в абсциссе.
Решение. Производная в точке равна отношению~приращения функции к приращению аргумента. Выберем на касательной две точки с целочисленными координатами. Пусть, например, это будут точки F (-3,2) и C (-2.4).
Конспект открытого урока преподавателя ГБПОУ «Педагогического колледжа № 4 Санкт-Петербурга»
Мартусевич Татьяны Олеговны
Дата: 29.12.2014.
Тема: Геометрический смысл производной.
Тип урока: изучение нового материала.
Методы обучения: наглядный, частично поисковый.
Цель урока.
Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.
Образовательные задачи:
Добиться понимания геометрического смысла производной; вывода уравнения касательной; научиться решать базовые задачи;
обеспечить повторение материала по теме «Определение производной»;
создать условия контроля (самоконтроля) знаний и умений.
Развивающие задачи:
способствовать формированию умений применять приемы сравнения, обобщения, выделения главного;
продолжить развитие математического кругозора, мышления и речи, внимания и памяти.
Воспитательные задачи:
содействовать воспитанию интереса к математике;
воспитание активности, мобильности, умения общаться.
Тип урока – комбинированный урок с использованием ИКТ.
Оборудование – мультимедийная установка, презентация Microsoft Power Point .
Этап урока
Время
Деятельность преподавателя
Деятельность учащегося
1. Организационный момент.
Сообщение темы и цели урока.
Тема: Геометрический смысл производной.
Цель урока.
Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его.
Подготовка студентов к работе на занятии.
Подготовка к работе на занятии.
Осознание темы и цели урока.
Конспектирование.
2. Подготовка к изучению нового материала через повторение и актуализацию опорных знаний.
Организация повторения и актуализации опорных знаний: определения производной и формулирование её физического смысла.
Формулирование определения производной и формулирование её физического смысла. Повторение, актуализация и закрепление опорных знаний.
Организация повторения и формирование навыка нахождения производной степенной функции и элемениарных функций.
Нахождение производной данных функций по формулам.
Повторение свойств линейной функции.
Повторение, восприятие чертежей и высказываний преподавателя
3. Работа с новым материалом: объяснение.
Объяснение смысла отношения приращения функции к приращению аргумента
Объяснение геометрического смысла производной.
Введение нового материала посредством словесных объяснений с привлечением образов и наглядных средств: мультимедийной презентации с анимацией.
Восприятие объяснения, понимание, ответы на вопросы учителя.
Формулирование вопроса преподавателю в случае затруднения.
Восприятие новой информации, её первичное понимание и осмысление.
Формулирование вопросов преподавателю в случае затруднения.
Создание конспекта.
Формулирование геометрического смысла производной.
Рассмотрение трех случаев.
Конспектирование, выполнение рисунков.
4. Работа с новым материалом.
Первичное осмысление и применение изученного материала, его закрепление.
В каких точках производная положительна?
Отрицательна?
Равна нулю?
Обучение поиску алгоритма ответов на поставленные вопросы по графику.
Понимание и осмысление и применение новой информации для решения задачи.
5. Первичное осмысление и применение изученного материала, его закрепление.
Сообщение условия задачи.
Запись условия задачи.
Формулирование вопроса преподавателю в случае затруднения
6. Применение знаний: самостоятельная работа обучающего характера.
Решите задачу самостоятельно:
Применение полученных знаний.
Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения.
7. Работа с новым материалом: объяснение.
Вывод уравнения касательной к графику функции в точке.
Подробное объяснение вывода уравнения касательной к графику функции в точке с привлечением в качестве наглядности в виде мультимедийной презентации, ответы на вопросы учащихся.
Вывод уравнения касательной совместно с преподавателем. Ответы на вопросы преподавателя.
Конспектирование, создание рисунка.
8. Работа с новым материалом: объяснение.
В диалоге со студентами вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.
В диалоге с преподавателем вывод алгоритма нахождения уравнения касательной к графику данной функции в данной точке.
Конспектирование.
Сообщение условия задачи.
Обучение применению полученных знаний.
Организация поиска путей решения задачи и их реализация. подробный разбор решения с объяснением.
Запись условия задачи.
Выдвижение предположений о возможных путях решения задачи при реализации каждого пункта плана действий. Решение задачи совместно с преподавателем.
Запись решения задачи и ответа.
9. Применение знаний: самостоятельная работа обучающего характера.
Индивидуальный контроль. Консультирование и помощь студентам по мере необходимости.
Проверка и объяснение решения с использованием презентации.
Применение полученных знаний.
Самостоятельная работа по решению задачи на нахождение производной по рисунку. Обсуждение и сверка ответов в паре, формулирование вопроса преподавателю в случае затруднения
10. Домашнее задание.
§48, задачи 1 и 3, разобраться в решении и записать его в тетрадь, с рисунками.
№ 860 (2,4,6,8),
Сообщение домашнего задания с комментариями.
Запись домашнего задания.
11. Подведение итогов.
Повторили определение производной; физический смысл производной; свойства линейной функции.
Узнали, в чём заключается геометрический смысл производной.
Научились выводить уравнение касательной к графику данной функции в данной точке.
Корректировка и уточнение итогов урока.
Перечисление итогов урока.
12. Рефлексия.
1. Вам было на уроке: а) легко; б) обычно; в) трудно.
а) усвоил(а) полностью, могу применить;
б) усвоил(а), но затрудняюсь в применении;
в) не усвоил(а).
3. Мультимедийная презентация на уроке:
а) помогала усвоению материала; б) не помогала усвоению материала;
в) мешала усвоению материала.
Проведение рефлексии.
Перед прочтением информации на текущей странице советуем посмотреть видео о производной и её геометрическом смысле
Также смотрите пример вычисления производной в точке
Касательной к линии l в точке М0 называется прямая М0Т — предельное положение секущей М0М, когда точка М стремится к М0 вдоль данной линии (т. е. угол устремится к нулю) произвольным образом.
Производной функции у = f{x) в точке x0 называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремится к нулю. Производную функции у = f{x) в точке х0 и учебниках обозначают символом f"(x0). Следовательно, по определению
Термин «производная» (а также «вторая производная») ввел Ж. Лагранж (1797), к тому же он дал обозначения y’, f’(x), f”(x) (1770,1779). Обозначение dy/dx впервые встречается у Лейбница (1675).
Производная функции y = f(х) при х = xо равна угловому коэффициенту касательной к графику данной функции в точке Мо(хо, f(xо)), т. е.
где а - угол наклона касательной к оси Ох прямоугольной декартовой системы координат.
Уравнение касательной к линии у = f(x) в точке Мо(хо, уо) принимает вид
Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f(x0) не равно 0, то уравнение нормали к линии у = f(x) в точке Мо(хо, уо) запишется так:
Физический смысл производной
Если x = f(t) — закон прямолинейного движения точки, то x’ = f’(t) - скорость этого движения в момент времени t. Быстрота протекания физических, химических и других процессов выражается с помощью производной .
Если отношение dy/dх при х->х0 имеет предел справа (или слева), то он называется производной справа (соответственно производной слева). Такие пределы называются односторонними производными .
Очевидно, функция f{x) определенная в некоторой окрестности точки х0, имеет производную f’{x) тогда и только тогда, когда односторонние производные существуют и равны между собой.
Геометрическое истолкование производной как углового коэффициента касательной к графику распространяется и на этот случай: касательная в данном случае параллельна оси Оу.
Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке данного промежутка, называется дифференцируемой в этом промежутке. Если промежуток является замкнутым, то на концах его имеются односторонние производные.
Операция нахождения производной называется .