Математическое ожидание - это, определение
Мат ожидание - это одно из важнейших понятий в математической статистике и теории вероятностей, характеризующее распределение значений или вероятностей случайной величины. Обычно выражается как средневзвешенное значение всех возможных параметров случайной величины. Широко применяется при проведении технического анализа, исследовании числовых рядов, изучении непрерывных и продолжительных процессов. Имеет важное значение при оценке рисков, прогнозировании ценовых показателей при торговле на финансовых рынках, используется при разработке стратегий и методов игровой тактики в теории азартных игр .
Мат ожидание - это среднее значение случайной величины, распределение вероятностей случайной величины рассматривается в теории вероятностей.
Мат ожидание - это мера среднего значения случайной величины в теории вероятности. Мат ожидание случайной величины x обозначается M(x) .
Математическое ожидание (Population mean) - это
Мат ожидание - это
Мат ожидание - это в теории вероятности средневзвешенная величина всех возможных значений, которые может принимать эта случайная величина.
Мат ожидание - это сумма произведений всех возможных значений случайной величины на вероятности этих значений.
Математическое ожидание (Population mean) - это
Мат ожидание - это средняя выгода от того или иного решения при условии, что подобное решение может быть рассмотрено в рамках теории больших чисел и длительной дистанции.
Мат ожидание - это в теории азартных игр сумма выигрыша, которую может заработать или проиграть спекулянт, в среднем, по каждой ставке. На языке азартных спекулянтов это иногда называется «преимуществом спекулянта » (если оно положительно для спекулянта) или «преимуществом казино» (если оно отрицательно для спекулянта).
Математическое ожидание (Population mean) - это
Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.
Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.
Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:
М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)
Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.
Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.
Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.
Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.
Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда
Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:
Х | … | п | … | ||
р | 0,5 | (0,5) 2 | … | (0,5) п | … |
+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).
Свойства математического ожидания.
1) Математическое ожидание постоянной равно самой постоянной:
М (С ) = С. (7.2)
Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .
2) Постоянный множитель можно выносит за знак математического ожидания:
М (СХ ) = С М (Х ). (7.3)
Доказательство. Если случайная величина Х задана рядом распределения
Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).
Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .
Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.
3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:
M (XY ) = M (X )M (Y ). (7.4)
Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:
Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).
Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.
Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.
Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).
4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:
M (X + Y ) = M (X ) + M (Y ). (7.5)
Доказательство.
Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =
= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).
Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,
M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).
Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.
Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.
Найдем математическое ожидание числа очков, выпавших при броске одной кости:
М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=
Дисперсия .
Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида
Х | |||
р | 0,1 | 0,8 | 0,1 |
Y | ||
p | 0,5 | 0,5 |
Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.
Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
D (X ) = M (X - M (X ))². (7.6)
Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:
(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,
Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.
Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.
Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:
Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)
Доказательство.
Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:
D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =
= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.
Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.
М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.
Свойства дисперсии.
1) Дисперсия постоянной величины С равна нулю:
D (C ) = 0. (7.8)
Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.
2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:
D (CX ) = C ²D (X ). (7.9)
Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =
= C ²D (X ).
3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:
D (X + Y ) = D (X ) + D (Y ). (7.10)
Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +
+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).
Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.
Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.
4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:
D (X - Y ) = D (X ) + D (Y ). (7.11)
Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).
Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.
Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:
Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно
Математи́ческое ожида́ние - среднее значение случайной величины (распределение вероятностей стационарной случайной величины) при стремлении количества выборок или количества измерений (иногда говорят - количества испытаний) её к бесконечности.
Среднее арифметическое одномерной случайной величины конечного числа испытаний обычно называют оценкой математического ожидания . При стремлении числа испытаний стационарного случайного процесса к бесконечности оценка математического ожидания стремится к математическому ожиданию.
Математическое ожидание - одно из основных понятий в теории вероятностей) .
Энциклопедичный YouTube
1 / 5
✪ Математическое ожидание и дисперсия - bezbotvy
✪ Теория вероятностей 15: Математическое ожидание
✪ Математическое ожидание
✪ Математическое ожидание и дисперсия. Теория
✪ Математическое ожидание в трейдинге
Субтитры
Определение
Пусть задано вероятностное пространство (Ω , A , P) {\displaystyle (\Omega ,{\mathfrak {A}},\mathbb {P})} и определённая на нём случайная величина X {\displaystyle X} . То есть, по определению, X: Ω → R {\displaystyle X\colon \Omega \to \mathbb {R} } - измеримая функция . Если существует интеграл Лебега от X {\displaystyle X} по пространству Ω {\displaystyle \Omega } , то он называется математическим ожиданием, или средним (ожидаемым) значением и обозначается M [ X ] {\displaystyle M[X]} или E [ X ] {\displaystyle \mathbb {E} [X]} .
M [ X ] = ∫ Ω X (ω) P (d ω) . {\displaystyle M[X]=\int \limits _{\Omega }\!X(\omega)\,\mathbb {P} (d\omega).}Основные формулы для математического ожидания
M [ X ] = ∫ − ∞ ∞ x d F X (x) ; x ∈ R {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!x\,dF_{X}(x);x\in \mathbb {R} } .
Математическое ожидание дискретного распределения
P (X = x i) = p i , ∑ i = 1 ∞ p i = 1 {\displaystyle \mathbb {P} (X=x_{i})=p_{i},\;\sum \limits _{i=1}^{\infty }p_{i}=1} ,то прямо из определения интеграла Лебега следует, что
M [ X ] = ∑ i = 1 ∞ x i p i {\displaystyle M[X]=\sum \limits _{i=1}^{\infty }x_{i}\,p_{i}} .Математическое ожидание целочисленной величины
P (X = j) = p j , j = 0 , 1 , . . . ; ∑ j = 0 ∞ p j = 1 {\displaystyle \mathbb {P} (X=j)=p_{j},\;j=0,1,...;\quad \sum \limits _{j=0}^{\infty }p_{j}=1}то её математическое ожидание может быть выражено через производящую функцию последовательности { p i } {\displaystyle \{p_{i}\}}
P (s) = ∑ k = 0 ∞ p k s k {\displaystyle P(s)=\sum _{k=0}^{\infty }\;p_{k}s^{k}}как значение первой производной в единице: M [ X ] = P ′ (1) {\displaystyle M[X]=P"(1)} . Если математическое ожидание X {\displaystyle X} бесконечно, то lim s → 1 P ′ (s) = ∞ {\displaystyle \lim _{s\to 1}P"(s)=\infty } и мы будем писать P ′ (1) = M [ X ] = ∞ {\displaystyle P"(1)=M[X]=\infty }
Теперь возьмём производящую функцию Q (s) {\displaystyle Q(s)} последовательности «хвостов» распределения { q k } {\displaystyle \{q_{k}\}}
q k = P (X > k) = ∑ j = k + 1 ∞ p j ; Q (s) = ∑ k = 0 ∞ q k s k . {\displaystyle q_{k}=\mathbb {P} (X>k)=\sum _{j=k+1}^{\infty }{p_{j}};\quad Q(s)=\sum _{k=0}^{\infty }\;q_{k}s^{k}.}Эта производящая функция связана с определённой ранее функцией P (s) {\displaystyle P(s)} свойством: Q (s) = 1 − P (s) 1 − s {\displaystyle Q(s)={\frac {1-P(s)}{1-s}}} при | s | < 1 {\displaystyle |s|<1} . Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:
M [ X ] = P ′ (1) = Q (1) {\displaystyle M[X]=P"(1)=Q(1)}Математическое ожидание абсолютно непрерывного распределения
M [ X ] = ∫ − ∞ ∞ x f X (x) d x {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!xf_{X}(x)\,dx} .Математическое ожидание случайного вектора
Пусть X = (X 1 , … , X n) ⊤ : Ω → R n {\displaystyle X=(X_{1},\dots ,X_{n})^{\top }\colon \Omega \to \mathbb {R} ^{n}} - случайный вектор. Тогда по определению
M [ X ] = (M [ X 1 ] , … , M [ X n ]) ⊤ {\displaystyle M[X]=(M,\dots ,M)^{\top }} ,то есть математическое ожидание вектора определяется покомпонентно.
Математическое ожидание преобразования случайной величины
Пусть g: R → R {\displaystyle g\colon \mathbb {R} \to \mathbb {R} } - борелевская функция , такая что случайная величина Y = g (X) {\displaystyle Y=g(X)} имеет конечное математическое ожидание. Тогда для него справедлива формула
M [ g (X) ] = ∑ i = 1 ∞ g (x i) p i , {\displaystyle M\left=\sum \limits _{i=1}^{\infty }g(x_{i})p_{i},}если X {\displaystyle X} имеет дискретное распределение;
M [ g (X) ] = ∫ − ∞ ∞ g (x) f X (x) d x , {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)f_{X}(x)\,dx,}если X {\displaystyle X} имеет абсолютно непрерывное распределение.
Если распределение P X {\displaystyle \mathbb {P} ^{X}} случайной величины X {\displaystyle X} общего вида, то
M [ g (X) ] = ∫ − ∞ ∞ g (x) P X (d x) . {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)\,\mathbb {P} ^{X}(dx).}В специальном случае, когда g (X) = X k {\displaystyle g(X)=X^{k}} , математическое ожидание M [ g (X) ] = M [ X k ] {\displaystyle M=M} называется k {\displaystyle k} -м моментом случайной величины.
Простейшие свойства математического ожидания
- Математическое ожидание числа есть само число.
- Математическое ожидание линейно, то есть
– количество мальчиков среди 10 новорождённых.
Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:
Либо мальчиков – один и только один из перечисленных вариантов.
И, дабы соблюсти форму, немного физкультуры:
– дальность прыжка в длину (в некоторых единицах) .
Её не в состоянии предугадать даже мастер спорта:)
Тем не менее, ваши гипотезы?
2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.
Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ
Сначала разберём дискретную случайную величину, затем – непрерывную .
Закон распределения дискретной случайной величины
– этосоответствие
между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:
Довольно часто встречается термин ряд
распределения
, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».
А теперь очень важный момент
: поскольку случайная величина обязательно
примет одно из значений
, то соответствующие события образуют полную группу
и сумма вероятностей их наступления равна единице:
или, если записать свёрнуто:
Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:
Без комментариев.
Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:
Пример 1
Некоторая игра имеет следующий закон распределения выигрыша:
…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .
Решение
: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу
, а значит, сумма их вероятностей равна единице:
Разоблачаем «партизана»:
– таким образом, вероятность выигрыша условных единиц составляет 0,4.
Контроль: , в чём и требовалось убедиться.
Ответ :
Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :
Пример 2
В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.
Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.
Всего таковых билетов 50 – 12 = 38, и по классическому определению
:
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.
С остальными случаями всё просто. Вероятность выигрыша рублей составляет:
Проверка: – и это особенно приятный момент таких заданий!
Ответ
: искомый закон распределения выигрыша:
Следующее задание для самостоятельного решения:
Пример 3
Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.
…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.
Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .
Математическое ожидание дискретной случайной величины
Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:
или в свёрнутом виде:
Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:
Теперь вспомним нашу гипотетическую игру:
Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:
Таким образом, математическое ожидание данной игры проигрышно .
Не верь впечатлениям – верь цифрам!
Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .
Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.
Творческое задание для самостоятельного исследования:
Пример 4
Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?
Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино
Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь
Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.
Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.
Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.
Математическое ожидание дискретной случайной величины
Подойдём к понятию математического ожидания. Пусть масса некоторого вещества распределена между точками оси абсцисс x 1 , x 2 , ..., x n . При этом каждая материальная точка имеет соответствующую ей массу с вероятностью из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.
Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:
Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?
Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:
С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.
Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.
Найти ожидаемую прибыль издателя.
Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:
Число | Прибыль x i | Вероятность p i | x i p i |
500 | -125000 | 0,20 | -25000 |
1000 | -50000 | 0,40 | -20000 |
2000 | 100000 | 0,25 | 25000 |
3000 | 250000 | 0,10 | 25000 |
4000 | 400000 | 0,05 | 20000 |
Всего: | 1,00 | 25000 |
Таким образом, получаем математическое ожидание прибыли издателя:
.
Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.
Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:
.
Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .
Подсказка: вероятность значений случайной величины найти по формуле Бернулли .
Свойства математического ожидания
Рассмотрим свойства математического ожидания.
Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:
Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:
Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:
Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:
Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:
Когда нельзя ограничиваться только математическим ожиданием
В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.
Пусть случайные величины X и Y заданы следующими законами распределения:
Значение X | Вероятность |
-0,1 | 0,1 |
-0,01 | 0,2 |
0 | 0,4 |
0,01 | 0,2 |
0,1 | 0,1 |
Значение Y | Вероятность |
-20 | 0,3 |
-10 | 0,1 |
0 | 0,2 |
10 | 0,1 |
20 | 0,3 |
Математические ожидания этих величин одинаковы - равны нулю:
Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.
Дисперсия дискретной случайной величины
Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:
Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:
.
Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.
Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:
Тогда средние квадратические отклонения случайных величин X и Y составляют
.
Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.
Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.
Проект 1 | Проект 2 | Проект 3 | Проект 4 |
500, P =1 | 1000, P =0,5 | 500, P =0,5 | 500, P =0,5 |
0, P =0,5 | 1000, P =0,25 | 10500, P =0,25 | |
0, P =0,25 | 9500, P =0,25 |
Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.
Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:
В таблице обобщены найденные величины для всех альтернатив.
У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.
Свойства дисперсии
Приведём свойства дисперсии.
Свойство 1. Дисперсия постоянной величины равна нулю:
Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:
.
Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:
,
где .
Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:
Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.
Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:
E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,
откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .
Закон распределения случайной величины:
X | −3 | 7 |
p | 0,3 | 0,7 |
Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:
D (X ) = 2,7 + 34,3 − 16 = 21 .
Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение
Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.
Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:
X | 0 | 1 | 2 | 3 |
p | 1/30 | 3/10 | 1/2 | 1/6 |
Отсюда математическое ожидание данной случайной величины:
M (X ) = 3/10 + 1 + 1/2 = 1,8 .
Дисперсия данной случайной величины:
D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .
Математическое ожидание и дисперсия непрерывной случайной величины
Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.
Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.
Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .