М. Планк выдвинул гипотезу, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями).
Квант электромагнитного излучения, относящийся к оптическому диапазону спектра, называют Фотоном. Масса покоя фотона равна нулю. Фотон существует только, распространяясь со скоростью Света. Если его остановить каким-либо способом, то он исчезнет. Но фотон, обладающий достаточной энергией, может при этом порождать частицы, имеющие массу покоя, например пару электрон-позитрон (позитрон - это положительно заряженный электрон).
Проследим цепочку фотона - движется - масса есть - остановился - массы нет, и исчез в неизвестном направлении - не имея массы, родил детей с массой. Читаешь и диву даешься, как такое могло быть возведено в ранг великой науки и просуществовать столетие? "… На характер протекания фотоэффекта оказывает влияние разная энергия фотонов…" Фотоны с разной энергией не могут достигнуть скорости Света, то есть не могут существовать в свете вышесказанного утверждения.
Мы уже знаем, что Свет - это веревки из нейтронов имеющие свои магнитные поля. Свет имеет различную скорость. Нейтрон в заторможенном состоянии носитель тепла. Нейтрон в структуре ежика - составляющая химического элемента. Скорость Света определяет цвет материала, среды и т.д. Теперь вспомним главное - это то, что Свет разгоняется нейтронной (ядерной) силой пятерок направленных в одну сторону. Это возможно только при формировании веревок с магнитными полями. Для формирования веревок нужно иметь поток нейтронов из зоны высокой плотности в зону с низкой плотностью - это обычно окружающая среда.
Излучение твердых тел при помощи нагрева - это формирование веревок Света из нейтронов, полученных в результате частичного разрушения ежей кристаллической решетки тела, при направленном потоке последних из зоны высокой плотности носителей в низкую с включением нейтронного (ядерного) разгонного механизма. Мощность разгонного механизма определяется закруткой нейтронов. Чем выше температура - тем больше закрутка нейтронов - тем больше скорость Света и сдвиг цвета от красного в сторону фиолетового для данного тела. Спирали и другие тела, излучающие Свет в результате нагрева платят за это разрушением своей кристаллической решетки. Никакое электромагнитное излучение на основе нейтрино не может перейти в видимый Свет, который формируется на основе нейтронов.
Все теории о квантово оптических явлениях оказались не более чем версиями. .
В своих расчетах Планк выбрал наиболее простую модель излучающей системы (стенок полости) в виде гармонических осцилляторов (электрических диполей) со всевозможными собственными частотами. Здесь Планк следовал Рэлею. Но Планку пришла мысль связать с энергией осциллятора не его температуру, а его энтропию. Оказалось, что полученное выражение хорошо описывает экспериментальные данные (октябрь 1900 г.). Однако обосновать свою формулу Планк смог только в декабре 1900 года, после того, как более глубоко понял вероятностный смысл энтропии, на которую указал Больцман. .
Термодинамическая вероятность - число возможных микроскопических комбинаций, совместимое с данным состоянием в целом.
В данном случае это число возможных способов распределения энергии между осцилляторами. Однако, такой процесс подсчета возможен, если энергия будет принимать не любые непрерывные значения, а лишь дискретные значения, кратные некоторой единичной энергии. Эта энергия колебательного движения должна быть пропорциональна частоте.
Итак, энергия осциллятора должна быть целым кратным некоторой единицы энергии, пропорциональной его частоте.
где n = 1, 2, 3…
Принципиальное отличие вывода Планка от выводов Рэлея и других в том, что «не может быть и речи о равномерном распределении энергии между осцилляторами».
Окончательный вид формулы Планка:
rv,t=(2Пv2/c2)*(hv/ehv/kt-1 (2)
Таким образом, формула Планка полностью объясняла законы излучения абсолютно черного тела. Следовательно, гипотеза о квантах энергии была подтверждена экспериментально, хотя сам Планк не слишком благосклонно относился к гипотезе о квантовании энергии. Тогда было совершенно не ясно, почему волны должны излучаться порциями.
Излучения черного тела во всем интервале частот и температур. Теоретически вывод этой формулы М. Планк представил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.
Из формулы Планка, зная универсальные постоянные h, k и c, можно вычислить постоянную Стефана-Больцмана у и Вина b. С другой стороны, зная экспериментальные значения уиb, можно вычислить h и k (именно так было впервые найдено числовое значение постоянной Планка).
Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка. . кеплер континуум планк
В физике не все явления и объекты наблюдаются непосредственно. Например, электрическое поле. То, что мы наблюдаем, - это взаимодействие тел, а уже по взаимодействию тел мы судим об электрическом заряде, об электрическом поле, которое вокруг него создается. Если мы не можем что-то наблюдать непосредственно, мы можем судить об этом по его проявлениям.
Луч света мы тоже не видим, пока в него что-то не попадет: мошка, дым, стена (см. рис. 1).
Рис. 1. Мошка на пути луча света
Сравните, как вы видите солнечный свет в комнате с чистым воздухом - только в виде солнечных зайчиков на полу и мебели (см. рис. 2) (то, что на пути луча попадаются молекулы воздуха, трудно заметить невооруженным глазом), и в пыльной комнате - в виде явных лучей (см. рис. 3).
Рис. 2. Свет в чистой комнате
Рис. 3. Свет в пыльной комнате
При исследовании света по его взаимодействию с веществом было обнаружено его очень интересное свойство: световая энергия излучается и поглощается порциями, которые называются квантами. Непривычно слышать? Но в природе это свойство встречается не так уж и редко, мы этого даже не замечаем. Об этом мы сегодня и поговорим.
Есть вещи, которые мы можем пересчитать в штуках, как пальцы на руке, ручки на столе, автомобили… Есть один автомобиль, а есть два, среднего быть не может, пол-автомобиля - это уже груда запчастей. Так вот, карандаши, автомобили, все предметы, которые являются отдельными и которые мы можем посчитать, дискретны. В отличие от них попробуйте сосчитать воду: одна, две… Вода непрерывна, ее можно лить струёй, которую всегда можно прервать (см. рис. 4).
Рис. 4. Вода непрерывна
А непрерывен ли сахар? На первый взгляд, да. Его, как и воду, можно взять ложкой сколько угодно. А если присмотреться поближе? Сахар состоит из кристалликов-песчинок, которые мы можем пересчитать (см. рис. 5).
Рис. 5. Кристаллики сахара
Получается, если в сахарнице много сахара и мы его берем оттуда ложкой, нас не интересуют отдельные кристаллики и мы считаем его непрерывным. А для муравья, который несет один или два кристаллика, и для нас, наблюдающих за этим через лупу, сахар дискретен. Выбор модели зависит от решаемой задачи. Вы хорошо понимаете, что такое дискретность и непрерывность, когда покупаете одни продукты поштучно, а другие - на развес.
Если присмотреться еще ближе, то можно дискретной считать и воду: уже давно никого не удивишь тем, что вещества состоят из отдельных атомов и молекул. И также нельзя взять полмолекулы воды (см. рис. 6).
Рис. 6. Близкое рассмотрение воды
То же самое мы знаем об электрическом заряде: заряд тела может принимать значения только кратные заряду электрона или протона, потому что это элементарные носители заряда (см. рис. 7).
Рис. 7. Элементарные носители заряда
Всё непрерывное на каком-то уровне изучения становится дискретным, вопрос только - на каком.
Примеры дискретности в природе
Посмотрите на видовое разнообразие живого мира: есть бегемот с короткой шеей и есть жираф с длинной. Но нет множества промежуточных форм, среди которых можно было бы найти животное с любой длиной шеи. Понятно, что есть другие животные с любыми шеями, но длина шеи - только один признак. Если взять набор признаков, то каждый вид имеет свой набор, и снова нет множества промежуточных форм со всеми промежуточными признаками (см. рис. 8).
Рис. 8. Набор признаков животных
Животные, как и растения, бывают отдельных определенных видов. Ключевое слово - отдельных, то есть живая природа в своем видовом разнообразии дискретна.
Наследственность также дискретна: признаки передаются генами, и не может быть полгена: он или есть, или его нет. Конечно, генов много, поэтому признаки, которые они кодируют, кажутся непрерывными, как сахар в большом мешке. Мы же не видим людей в виде конструкторов, собранных из набора шаблонов: один из трех стандартных цветов волос, один из пяти цветов глаз (см. рис. 9).
Рис. 9. Человек не собирается подобно конструктору из набора признаков
К тому же на организм, помимо наследственности, влияют условия окружающей среды.
Дискретность видна и в резонансных частотах: слегка ударьте стоящий на столе стакан. Вы услышите звон: звук определенной - резонансной для этого стакана - частоты. Если удар будет достаточно сильным и стакан зашатается, то шататься он будет тоже с определенной частотой (см. рис. 10).
Рис. 10. Сильный удар по стакану
Если он будет с водой, по ней пойдут круги, поверхность воды будет колебаться с резонансной для этой воды в стакане частотой (см. рис. 11).
Рис. 11. Полный стакан воды
В данной системе, в нашем примере это был стакан с водой, колебания протекают не на любой частоте, а лишь на определенных - снова дискретность.
Даже воду, пока она течет из крана струйкой, мы считаем непрерывной, а когда она начинает капать - дискретной. Да, мы не думаем, что капли неделимы, как молекулы, но ведь мы считаем их поштучно, мы не говорим о скорости вытекания воды, например 2 мл за секунду, если падает одна капля, например, в 5 секунд. То есть мы применяем модель воды, состоящей из капель.
До этого дискретность, или квантованность, замечали у вещества. Макс Планк впервые указал на то, что этим свойством обладает и энергия. Планк предположил, что энергия света дискретна, а одна порция энергии пропорциональна частоте света. Он это сделал при решении задачи о тепловом излучении. Нам не хватает знаний, чтобы разобраться в этой задаче, но ее Планк решил, и главное, что его предположение подтвердилось экспериментально.
Гипотеза Планка заключается в следующем: энергия колеблющихся молекул и атомов принимает не любые, а только некоторые определенные значения. Значит, при излучении энергия излучающих молекул и атомов изменяется скачками. Соответственно, свет излучается не непрерывно, а некоторыми порциями, которые Планк назвал квантами (см. рис. 12).
Рис. 12. Кванты света
Гипотеза Планка была доказана открытием и объяснением фотоэффекта: это явление испускания электронов веществом под действием света или другого электромагнитного излучения. Это происходит так: энергия одного кванта передается одному электрону (см. рис. 13).
Рис. 13. Энергия кванта передается одному электрону
Она идет на то, чтобы вырвать электрон из вещества, а оставшаяся энергия идет на разгон электрона, переходит в его кинетическую энергию. И вот что заметили: чем больше частота света, тем сильнее разгоняются электроны. Значит, энергия одного кванта излучения пропорциональна частоте излучения. Планк так и принял:
где E - энергия кванта излучения в джоулях, ν - частота излучения в герцах. Полученный при согласовании экспериментальных данных с теорией коэффициент пропорциональности равный , был назван постоянной Планка.
Удивительно, что мы говорим: «свет проявляет свойства потока частиц», а энергию этих частиц связываем с частотой - характеристикой волны, не частицы. То есть мы не говорим, что свет является потоком частиц, мы просто применяем модель, лишь бы она помогла нам описать явление.
Фотоэффект. Уравнение Эйнштейна для фотоэффекта
Явление фотоэффекта стало подтверждением квантовой гипотезы, здесь квантовая модель хорошо работает.
Как волна может выбить электрон из вещества - непонятно. И уж тем более непонятно, почему излучение с одной частотой выбивает электрон, а с другой частотой - нет. И как энергия излучения распределяется по электронам: излучение сообщит большую энергию одному электрону или меньшую - двум?
Используя квантовую модель, мы легко во всем разберемся: один поглощенный квант световой энергии (фотон) - может вырвать из вещества только один фотоэлектрон (см. рис. 14).
Рис. 14. Один фотон выбивает один фотоэлектрон
Если кванта световой энергии для этого недостаточно, электрон не выбивается, а остается в веществе (см. рис. 15).
Рис. 15. Электрон остается в веществе
Лишняя энергия передаётся электрону в виде кинетической энергии его движения после выхода из вещества. А сколько будет таких квантов, столько и электронов подвергнутся их воздействию.
У нас будет отдельный урок, посвященный фотоэффекту, и тогда мы поговорим о нем более подробно, но уже сейчас нам будет понятно уравнение Эйнштейна для фотоэффекта (см. рис. 16).
Рис. 16. Явление фотоэффекта
Оно отражает то, что мы проговорили, и выглядит так:
- это работа выхода - минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. Это характеристика металла и состояния его поверхности.
Квант энергии света расходуется на совершение работы выхода и на сообщение электрону кинетической энергии.
Фотоэффект и уравнение, которое его описывает, было использовано для получения и проверки значения , полученного Планком. Об этом подробнее смотрите в следующем ответвлении.
Экспериментальное определение постоянной Планка
Пользуясь уравнением Эйнштейна, можно определить постоянную Планка, для этого нужно экспериментально определить частоту света , работу выхода A, и кинетическую энергию фотоэлектронов. Это было проделано, получено значение , совпадающее с тем, которое было найдено Планком теоретически при изучении совершенно другого явления - теплового излучения.
В физике нам часто встречались константы (например, число Авогадро, температура кипения воды, универсальная газовая постоянная и пр.). Такие константы неравноправны, среди них есть так называемые фундаментальные, на которых строится здание физики. Постоянная Планка - одна из таких констант, помимо неё, к фундаментальным константам относятся скорость света и гравитационная постоянная.
Одну порцию излучения можно считать частицей света - фотоном. Энергия фотона равна одному кванту. В формулировках задач мы будем равноправно использовать термины «энергия фотона» и «квант энергии света». Также эти свойства света называют корпускулярными (корпускула - значит частица).
В соответствии с гипотезой Планка энергия излучения складывается из минимальных долей , т. е. полная излученная энергия принимает дискретные значения:
где - натуральное число.
Так как размер минимальной порции энергии - , то, например, порция (или квант) излучения в красном диапазоне имеет меньшую энергию, чем порция (или квант) излучения в ультрафиолетовом диапазоне.
Решим следующую задачу.
Мощность излучения лазерной указки с длиной волны равна . Определите число фотонов, излучаемых указкой за 2 с.
3. Развитие гипотезы Планка. Квант действия
При построении своей теории равновесного теплового излучения Планк исходил из предположения, что вещество представляет собой совокупность электронных осцилляторов, при посредстве которых и происходит обмен энергией между материей и излучением. Такой осциллятор представляет собой материальную точку, удерживаемую около своего положения равновесия силой. Величина этой силы возрастает пропорционально отклонению от положения равновесия, и осциллятор является механической системой, характеризуемой одним своеобразным свойством. Это свойство заключается в том, что частота колебаний осциллятора не зависит от величины его амплитуды.
Следуя Планку, определим квант энергии осциллятора как величину, равную произведению частоты этого осциллятора на постоянную h , и предположим, что при взаимодействии осциллятора с излучением он может терять или приобретать энергию только скачком, причем величина этого скачка равна соответствующему кванту энергии. Но в таком виде гипотеза квантования энергии оказывается применимой только в случае гармонических осцилляторов. Действительно, в общем случае системы, частота колебаний которой не постоянна, а зависит от амплитуды колебаний, введенное определение кванта энергии становится неоднозначным. Планк понимал необходимость дать более общую формулировку принципа квантования, применимую к любым механическим системам и совпадающую в частном случае гармонического осциллятора с приведенной выше. Он рассуждал следующим образом. Поскольку постоянная имеет размерность действия, т е. размерность произведения энергии на время или количества движения на путь, то ее можно рассматривать как элементарное количество действия, своего рода единицу действия в атомном мире. Рассмотрим теперь механическую систему, совершающую периодическое движение и характеризуемую только одной переменной, скажем, систему, состоящую из одной частицы, совершающей периодическое движение вдоль некоторой, прямой. Для такой системы можно вычислить интеграл действия по Мопертюи, который совпадает с интегралом действия, фигурирующим в принципе наименьшего действия, взятым по полному периоду движения.
Эта величина является определенной характеристикой периодического движения. Требуя, чтобы она равнялась произведению целого числа на постоянную Планка, получаем новую формулировку принципа квантования, применимую к любому одномерному периодическому движению. Легко убедиться, что в частном случае гармонического осциллятора этот новый принцип полностью эквивалентен прежнему принципу квантования энергии. Чтобы придать принципу квантования более общую форму, Планку пришлось отказаться от первоначальной гипотезы квантования энергии и заменить ее гипотезой о квантовании действия.
То, что в общей формулировке принципа квантования фигурирует именно действие, было одновременно и естественным, и несколько странным. Естественным потому, что эта величина играет существенную роль во всей аналитической механике согласно принципу Гамильтона и принципу наименьшего действия. Это в свою очередь привело к тому, что весь аппарат аналитической механики как бы уже был готов воспринять новый принцип квантования. Странным квантование именно действия казалось потому, что с чисто физической точки зрения трудно было понять, как такая величина, как действие, носящая довольно абстрактный характер и не удовлетворяющая непосредственно никаким законам сохранения, может представлять собой характеристику дискретности процессов атомного мира.
Действие всегда выражается в виде произведения некоторых величин, имеющих геометрическую природу, на соответствующие величины, имеющие динамическую природу. Пары этих величин образуют в аналитической механике канонически сопряженные переменные. Так, интеграл, фигурирующий в принципе наименьшего действия Мопертюи, есть криволинейный интеграл от количества движения вдоль траектории. И своего рода дискретность действия, выражаемая введением постоянной Планка, указывает на наличие определенной взаимосвязи между пространством и временем, с одной стороны, и динамическими явлениями, которые мы пытаемся локализовать в этом пространстве и времени, с другой. Эта взаимосвязь носит совершенно новый характер, абсолютно чуждый концепциям классической физики. И в этом заключается глубокое и революционное значение идей, положенных Планком в основу теории равновесного излучения черного тела.
Планк исходил из предположения, что вещество может испускать излучение не непрерывно, а только отдельными конечными порциями. Это, однако, не влечет за собой однозначного предположения о дискретности структуры излучения. Можно построить две различные теории, покоящиеся на двух противоположных предположениях относительно характера поглощения излучения веществом. В основе первой, пожалуй, более последовательной и завоевавшей впоследствии всеобщее признание, лежит предположение о том, что элементы вещества, например электронные осцилляторы, могут находиться только в таких состояниях движения, которые соответствуют квантованным значениям энергии. Отсюда непосредственно следует, что как испускание, так и поглощение излучения может происходить только дискретно отдельными порциями, или квантами. Это в свою очередь необходимо влечет за собой утверждение о дискретности структуры излучения.
Смущенный этим непонятным следствием своих собственных идей, Планк долгое время пытался развивать другую, менее радикальную форму квантовой теории, в которой только испускание излучения носило дискретный характер, а поглощение оставалось непрерывным. Считалось, что вещество может непрерывно поглощать падающее на него излучение, но испускать его оно может лишь дискретно, отдельными квантами. Легко понять цель, которую Планк преследовал. Он старался защитить и сохранить прежнее представление о непрерывной природе излучения, поскольку казалось, что только в этом случае квантовая теория не будет противоречить волновой теории, нашедшей неоднократные подтверждения в многочисленных и весьма точных экспериментах.
Однако, несмотря на всю изобретательность, вложенную Планком в развитие этой формы квантовой теории, она была опровергнута дальнейшим ходом физики и, в частности, эйнштейновым объяснением фотоэффекта и успехом теории атома Бора.
Из книги Революция в физике автора де Бройль Луи5. Принцип наименьшего действия Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех
Из книги Молния и гром автора Стекольников И С2. Теория излучения черного тела. Квант действия Планка Начало развитию квантовой теории положили относящиеся к 1900 г. работы Макса Планка по теории излучения черного тела. Попытка построить теорию излучения черного тела на основе законов классической физики привела к
Из книги Занимательно о космогонии автора Томилин Анатолий Николаевич Из книги Движение. Теплота автора Китайгородский Александр ИсааковичIII. Действия, производимые молнией 1. Как часто возникает молния? Не везде на земле грозы бывают одинаково часто.В некоторых жарких, тропических местах грозы происходят круглый год - почти каждый день. В других же местах, расположенных в северных районах, грозы бывают
Из книги История лазера автора Бертолотти МариоПадение небулярной гипотезы Начало штурма Помните, рассуждения П. Лапласа начинались с перечисления особенностей солнечной системы. Затем он построил гипотезу, наилучшим образом, как ему казалось, объясняющую все указанные особенности. Но именно с них начались у
Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий ЕфимовичПоследний толчок и крах небулярной гипотезы К 1900 году противоречий в небулярной гипотезе Лапласа накопилось уже столько, что стало очевидно: наступает время ее замены! Однако для окончательного ее падения нужен был толчок. Нужен был такой факт, который, будучи всем
Из книги Атомная проблема автора Рэн ФилиппГипотезы, гипотезы, гипотезы… Гипотеза К. Вейцзеккера. 1943 год начался для гитлеровцев рейха весьма несчастливо: «Русские все еще обороняются», - говорили в штабах. Но господа генералы знали, что советские войска не только оборонялись. «Разгромленные», по убеждению
Из книги 6. Электродинамика автора Фейнман Ричард ФиллипсКоэффициент полезного действия При помощи различных машин можно заставить источники энергии производить различную работу – поднимать грузы, двигать станки, перевозить грузы и людей.Можно подсчитать количество энергии, вложенной в машину, и значение полученной от нее
Из книги Квант. Эйнштейн, Бор и великий спор о природе реальности автора Кумар МанжитЗакон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти
Из книги автораПризнание гипотезы Бора Мы можем спросить, как же появилась теория Бора. Резерфорд, которому Бор послал свою рукопись для публикации, представил ее в престижный английский журнал Philosophical Magazine. Это предполагало, что он поддерживает ее, даже несмотря на то, что когда Бор
Из книги автора Из книги автораАльфа, бета, Гамов и «Новый кризис теории квант» Джаз-банд, по существу, распался в 1928 году, когда между двумя мушкетерами пробежала черная кошка, а третий - Георгий Гамов - отправился в Европу. В университет он поступил раньше своих друзей, раньше закончил и поехал на
Из книги автораГлава II Принцип действия ядерных бомб Напомнив некоторые общие сведения из области ядерной физики, мы можем перейти к изложению принципа действия ядерных бомб.Все ядерные бомбы делятся на две большие группы: бомбы, основанные на реакции деления, называемые иногда
Из книги автораII. Защита от поражающего действия ядерных бомб 1. Защита от светового излучения.Самая надежная защита от светового излучения заключается в том, чтобы не быть застигнутым вспышкой врасплох. Мы уже говорили, что световое излучение распространяется прямолинейно и
Из книги автораГлава 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ Добавление, сделанное после лекцииКогда я учился в школе, наш учитель физики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послушай-ка об одной интересной
Из книги автораЧАСТЬ I. Квант Коротко говоря, то, что я сделал, можно описать только как акт отчаяния.Макс ПланкБыло ощущение, что земля уходит из-под ног, нигде не было видно того, на что можно опереться, на чем можно что-то построить.Альберт ЭйнштейнТот, кто не испытал потрясения,
Окружающий нас мир сегодня кардинально отличается по технологиям от всего, что было привычно в обществе еще сотню лет назад. Все это стало вероятным только благодаря тому, что на заре двадцатого столетия исследователи смогли преодолеть барьер и осознать, наконец: любой элемент в самом маленьком масштабе действует не непрерывно. А открыл эту уникальную эру своей гипотезой талантливый ученый – Макс Планк.
Рисунок 1. Квантовая гипотеза Планка. Автор24 - интернет-биржа студенческих работ
Именем указанного физика названы:
- одна из физических теорий,
- научное сообщество в Германии,
- квантовое уравнение,
- астероид,
- кратер на Луне,
- современный космический телескоп.
Изображение Планка было напечатано на купюрах и выбито на монетах. Такая выдающаяся личность своими предположениями смогла покорить общество и стать узнаваемым ученым еще при жизни.
Макс Планк родился в середине девятнадцатого столетия в обычной небогатой немецкой семье. Его предки были служителями церкви и хорошими юристами. Высшее образование физик получил достаточно хорошее, но коллеги-исследователи в шутку называли его «самоучкой». Ключевые знания он получил посредством получения информации из книг.
Формирование теории Планка
Гипотеза Планка родилась из концепций, которые он изначально вывел теоретически. В своих научных работах он пытался описать принцип «наука важнее всего», а во время первой мировой войны ученый не потерял важные связи с зарубежными коллегами из небольших стран Германии. Неожиданные приход нацистов застал Планка его на должности руководителя большой научной группы – и исследователь стремился защитить своих коллег, помогал своим сотрудникам выехать за границу и сбежать от режима.
Так что квантовая теория Планка была не единственной, за что его уважали. Стоит отметить, что ученый никогда не высказывал свое мнение в отношении действий Гитлера, очевидно осознавая, что может нанести не только себе вред, но и тем, кто нуждался в его помощи. К сожалению, многие представители научного мира не приняли такой позиции Планка и полностью прекратили переписку с ним. У него было пятеро детей, и только самый младший смог пережить отца. При этом современники подчеркивают, что только дома физик был самим собой – искренним и справедливым человеком.
Еще с юношеских лет ученый был вовлечен в изучение принципов термодинамики, которые гласят, что любой физический процесс идет исключительно с увеличением хаоса и уменьшением массы или массы.
Замечание 1
Планк является первым, кто грамотно сформулировал определение термодинамической системы (в терминах энтропии, которая может наблюдаться только в этой концепции).
Позже именно эта научная работа привела к тому, что была создана известная гипотеза Планка. Также он смог разделить физику и математику, разработав комплексный математический раздел. До талантливого физика все естественные науки имели смешанные корни, а эксперименты проводились на элементарном уровне одиночками в лабораториях.
Гипотеза о квантах
Исследуя энтропию электрических и магнитных волн в пределах терминов осцилляторов и опираясь на научные данные, Планк представил общественности и другим ученым универсальную формулу, которая впоследствии будет названа в честь своего создателя.
Новое уравнение связывало между собой:
- длину волны;
- энергию и насыщенность действия электромагнитного поля;
- температуру светового излучения, которое предназначалось в значительной мере для абсолютно черного вещества.
После официального представления данной формулы коллеги Планка под руководством Рубенса в течение нескольких дней ставили эксперименты, чтобы с научной точки зрения подтвердить эту теорию. В результате, она оказалась абсолютно верной, но, чтобы обосновать теоретически вытекающую из этого уравнения гипотезу и при этом не допустить математических сложностей, ученому пришлось признать, что электромагнитная энергия излучается отдельными порциями, а не непрерывным потоком, как считалось ранее. Такой метод окончательно разрушил все существующие представления о твердом физическом теле. Квантовая теория Планка совершила настоящую революцию в физике.
Современники считают, что изначально исследователь не осознавал значимость сделанного им открытия. Некоторое время представленная им гипотеза использовалась только как удобное решение для сокращения количества математических формул для вычисления. При этом Планк, как и его коллеги, применяли в своей работе непрерывные уравнения Максвелла.
Смущала исследователей только постоянная $h$, которая никак не могла получить физический смысл. Только позже Пауль Эренфест и Альберт Эйнштейн, тщательно исследуя новые явления радиоактивности и изучая математические обоснования оптическим спектрам, смогли понять всю важность теории Планка. Известно, что научный доклад, на котором впервые была озвучена формула квантования энергии, открыл век новой физики.
Использования теории Планка
Замечание 2
Благодаря закону Планка общественность получила весомый аргумент в пользу так называемой гипотезы Большого Взрыва, которая объясняет расширение и возникновение Вселенной в результате мощного взрыве с крайне высокой температурой.
Считается, что на ранних этапах своего становления наша Вселенная была полностью заполнена неким излучением, спектральное свойство которого должно совпадать с лучеиспусканием черного тела.
С тех пор мир только расширялся, а затем остыл до нынешней температуры. То есть, излучение, которое на сегодняшний день распространяется во Вселенной, по своему составу должно быть аналогичным альфа-излучению черного вещества с определенной температурой. В 1965 году Вильсон обнаружили данное излучение на длине магнитной волны 7.35 см, которое постоянно падает на нашу планету с одинаковой энергией абсолютно во всех направлениях. Вскоре стало понятно, что это явление может испускать только черное тело, которое возникло после Большого Взрыва. Итоговые показатели измерений свидетельствуют о том, что температура указанного вещества на сегодняшний день составляет 2,7 К.
Применением теории теплового и электромагнитного излучения можно объяснить процессы, которые сопутствовали бы ядерному взрыву (так называемую «атомную зиму»). Мощный взрыв поднимет в верхние слои воздух колоссальные массы сажи и пыли. Как наиболее близкое к черному телу, сажа полностью поглощает практически все солнечное излучение, нагревается до максимального предела, а следом испускает лучеиспускание в обе стороны.
В итоге на Землю попадает всего лишь половина излучения, которое приходит от Солнца, так как вторая половина будет направляться в противоположную от планеты сторону. Согласно расчетам ученым, средняя температура Земли снизится на 50 K (это температура ниже самой точки замерзания воды).
Окружающий нас мир сегодня кардинально отличается по технологиям от всего, что было привычно в обществе еще сотню лет назад. Все это стало вероятным только благодаря тому, что на заре двадцатого столетия исследователи смогли преодолеть барьер и осознать, наконец: любой элемент в самом маленьком масштабе действует не непрерывно. А открыл эту уникальную эру своей гипотезой талантливый ученый – Макс Планк.
Рисунок 1. Квантовая гипотеза Планка. Автор24 - интернет-биржа студенческих работ
Именем указанного физика названы:
- одна из физических теорий,
- научное сообщество в Германии,
- квантовое уравнение,
- астероид,
- кратер на Луне,
- современный космический телескоп.
Изображение Планка было напечатано на купюрах и выбито на монетах. Такая выдающаяся личность своими предположениями смогла покорить общество и стать узнаваемым ученым еще при жизни.
Макс Планк родился в середине девятнадцатого столетия в обычной небогатой немецкой семье. Его предки были служителями церкви и хорошими юристами. Высшее образование физик получил достаточно хорошее, но коллеги-исследователи в шутку называли его «самоучкой». Ключевые знания он получил посредством получения информации из книг.
Формирование теории Планка
Гипотеза Планка родилась из концепций, которые он изначально вывел теоретически. В своих научных работах он пытался описать принцип «наука важнее всего», а во время первой мировой войны ученый не потерял важные связи с зарубежными коллегами из небольших стран Германии. Неожиданные приход нацистов застал Планка его на должности руководителя большой научной группы – и исследователь стремился защитить своих коллег, помогал своим сотрудникам выехать за границу и сбежать от режима.
Так что квантовая теория Планка была не единственной, за что его уважали. Стоит отметить, что ученый никогда не высказывал свое мнение в отношении действий Гитлера, очевидно осознавая, что может нанести не только себе вред, но и тем, кто нуждался в его помощи. К сожалению, многие представители научного мира не приняли такой позиции Планка и полностью прекратили переписку с ним. У него было пятеро детей, и только самый младший смог пережить отца. При этом современники подчеркивают, что только дома физик был самим собой – искренним и справедливым человеком.
Еще с юношеских лет ученый был вовлечен в изучение принципов термодинамики, которые гласят, что любой физический процесс идет исключительно с увеличением хаоса и уменьшением массы или массы.
Замечание 1
Планк является первым, кто грамотно сформулировал определение термодинамической системы (в терминах энтропии, которая может наблюдаться только в этой концепции).
Позже именно эта научная работа привела к тому, что была создана известная гипотеза Планка. Также он смог разделить физику и математику, разработав комплексный математический раздел. До талантливого физика все естественные науки имели смешанные корни, а эксперименты проводились на элементарном уровне одиночками в лабораториях.
Гипотеза о квантах
Исследуя энтропию электрических и магнитных волн в пределах терминов осцилляторов и опираясь на научные данные, Планк представил общественности и другим ученым универсальную формулу, которая впоследствии будет названа в честь своего создателя.
Новое уравнение связывало между собой:
- длину волны;
- энергию и насыщенность действия электромагнитного поля;
- температуру светового излучения, которое предназначалось в значительной мере для абсолютно черного вещества.
После официального представления данной формулы коллеги Планка под руководством Рубенса в течение нескольких дней ставили эксперименты, чтобы с научной точки зрения подтвердить эту теорию. В результате, она оказалась абсолютно верной, но, чтобы обосновать теоретически вытекающую из этого уравнения гипотезу и при этом не допустить математических сложностей, ученому пришлось признать, что электромагнитная энергия излучается отдельными порциями, а не непрерывным потоком, как считалось ранее. Такой метод окончательно разрушил все существующие представления о твердом физическом теле. Квантовая теория Планка совершила настоящую революцию в физике.
Современники считают, что изначально исследователь не осознавал значимость сделанного им открытия. Некоторое время представленная им гипотеза использовалась только как удобное решение для сокращения количества математических формул для вычисления. При этом Планк, как и его коллеги, применяли в своей работе непрерывные уравнения Максвелла.
Смущала исследователей только постоянная $h$, которая никак не могла получить физический смысл. Только позже Пауль Эренфест и Альберт Эйнштейн, тщательно исследуя новые явления радиоактивности и изучая математические обоснования оптическим спектрам, смогли понять всю важность теории Планка. Известно, что научный доклад, на котором впервые была озвучена формула квантования энергии, открыл век новой физики.
Использования теории Планка
Замечание 2
Благодаря закону Планка общественность получила весомый аргумент в пользу так называемой гипотезы Большого Взрыва, которая объясняет расширение и возникновение Вселенной в результате мощного взрыве с крайне высокой температурой.
Считается, что на ранних этапах своего становления наша Вселенная была полностью заполнена неким излучением, спектральное свойство которого должно совпадать с лучеиспусканием черного тела.
С тех пор мир только расширялся, а затем остыл до нынешней температуры. То есть, излучение, которое на сегодняшний день распространяется во Вселенной, по своему составу должно быть аналогичным альфа-излучению черного вещества с определенной температурой. В 1965 году Вильсон обнаружили данное излучение на длине магнитной волны 7.35 см, которое постоянно падает на нашу планету с одинаковой энергией абсолютно во всех направлениях. Вскоре стало понятно, что это явление может испускать только черное тело, которое возникло после Большого Взрыва. Итоговые показатели измерений свидетельствуют о том, что температура указанного вещества на сегодняшний день составляет 2,7 К.
Применением теории теплового и электромагнитного излучения можно объяснить процессы, которые сопутствовали бы ядерному взрыву (так называемую «атомную зиму»). Мощный взрыв поднимет в верхние слои воздух колоссальные массы сажи и пыли. Как наиболее близкое к черному телу, сажа полностью поглощает практически все солнечное излучение, нагревается до максимального предела, а следом испускает лучеиспускание в обе стороны.
В итоге на Землю попадает всего лишь половина излучения, которое приходит от Солнца, так как вторая половина будет направляться в противоположную от планеты сторону. Согласно расчетам ученым, средняя температура Земли снизится на 50 K (это температура ниже самой точки замерзания воды).