» » Потенциальная энергия гравитационного взаимодействия двух тел. Потенциальная энергия гравитационного взаимодействия и упругой деформации Потенциальная энергия гравитационной силы

Потенциальная энергия гравитационного взаимодействия двух тел. Потенциальная энергия гравитационного взаимодействия и упругой деформации Потенциальная энергия гравитационной силы

> Гравитационная потенциальная энергия

Что такое гравитационная энергия: потенциальная энергия гравитационного взаимодействия, формула для гравитационной энергии и закон всемирного тяготения Ньютона.

Гравитационная энергия – потенциальная энергия, связанная с гравитационной силой.

Задача обучения

  • Вычислить гравитационную потенциальную энергию для двух масс.

Основные пункты

Термины

  • Потенциальная энергия – энергия объекта в его позиции или химическом состоянии.
  • Затон тяготения Ньютона – каждая точечная вселенская масса притягивает другую при помощи силы, выступающей прямо пропорциональной их массам и обратно пропорциональной квадрату их дистанции.
  • Сила тяжести – результирующая сила наземной поверхности, притягивающая объекты к центру. Создается вращением.

Пример

Какой будет гравитационная потенциальная энергия 1-килограммовой книги на высоте в 1 м? Так как положение установлено близко к земной поверхности, то гравитационное ускорение будет постоянным (g = 9.8 м/с 2), а энергия гравитационного потенциала (mgh) достигает 1 кг ⋅ 1 м ⋅ 9.8 м/с 2 . Это можно проследить и в формуле:

Если добавить массу и земной радиус.

Гравитационная энергия отображает собою потенциальную, связанную с силой гравитации, потому что необходимо преодолеть земное притяжение, чтобы выполнить работу над поднятием предметов. Если объект падает от одной точки к другой внутри гравитационного поля, то сила тяжести выполнит положительную работу, а гравитационная потенциальная энергия уменьшится на ту же величину.

Допустим у нас есть книга, оставленная на столе. Когда мы переносим ее с пола на вершину стола, определенное внешнее вмешательство работает против гравитационной силы. Если же она упадет, то это работа гравитации. Поэтому процесс падения отображает потенциальную энергию, ускоряющую массу книгу и трансформирующуюся в кинетическую. Как только книга коснется пола, кинетическая энергия станет теплом и звуком.

На гравитационную потенциальную энергию влияют высота относительно конкретной точки, масса и сила гравитационного поля. Так что книга на столе уступает по гравитационной потенциальной энергии более тяжелой книга, расположенной ниже. Запомните, что высота не может применяться в вычислении гравитационной потенциальной энергии, если гравитация не выступает постоянной.

Локальное приближение

На силу гравитационного поля влияет расположение. Если изменение дистанции незначительное, то им можно пренебречь, а силу тяжести сделать постоянной (g = 9.8 м/с 2). Тогда для вычисления используем простую формулу: W = Fd. Восходящая сила приравнивается к весу, поэтому работа соотносится с mgh, выливающихся в формуле: U = mgh (U – потенциальная энергия, m – масса объекта, g – ускорение силы тяжести, h – высота объекта). Значение выражается в джоулях. Изменение потенциальной энергии передается как

Общая формула

Однако, если мы сталкиваемся с серьезными переменами в дистанции, то g не может оставаться постоянной и приходится применять исчисление и математическое определение работы. Чтобы рассчитать потенциальную энергию, можно интегрировать гравитационную силу относительно дистанции между телами. Тогда получим формулу гравитационной энергии:

U = -G + K, где К – постоянная интегрирования и приравнивается к нулю. Здесь потенциальная энергия превращается в ноль, когда r – бесконечна.

Введение в равномерное круговое движение и гравитацию
Неравномерное круговое движение
Скорость, ускорение и сила
Типы сил в природе
Закон универсальной гравитации Ньютона

В связи с рядом особенностей, а также ввиду особой важности вопрос о потенциальной энергии сил всемирного тяготения необходимо рассмотреть отдельно и более детально.

С первой особенностью мы сталкиваемся при выборе начала отсчета потенциальных энергий. На практике приходится рассчитывать движения данного (пробного) тела под действием сил всемирного тяготения, создаваемых другими телами разных масс и размеров.

Допустим, что мы условились считать равной нулю потенциальную энергию при таком положении, при котором тела соприкасаются. Пусть пробное тело А при взаимодействии по отдельности с шарами одинаковой массы, но разных радиусов, вначале удалено от центров шаров на одно и то же расстояние (рис. 5.28). Нетрудно видеть, что при движении тела А до соприкосновения с поверхностями тел силы тяготения совершат разную работу. Это значит, что мы должны при одинаковых относительных начальных расположениях тел считать потенциальные энергии систем различными.

Сопоставлять эти энергии между собой будет особо затруднительно в случаях, когда рассматриваются взаимодействия и движения трех или большего количества тел. Поэтому для сил всемирного тяготения ищется такой начальный уровень отсчета потенциальных энергий, который бы мог быть одинаковым, общим, для всех тел во Вселенной. Таким общим нулевым уровнем потенциальной энергии сил всемирного тяготения условились считать уровень, соответствующий расположению тел на бесконечно больших расстояниях друг от друга. Как видно из закона всемирного тяготения, на бесконечности обращаются в нуль и сами силы всемирного тяготения.

При таком выборе начала отсчета энергий создается непривычное положение с определением значений потенциальных энергий и проведением всех расчетов.

В случаях сил тяжести (рис. 5.29, а) и упругости (рис. 5.29, б) внутренние силы системы стремятся привести тела на нулевой уровень. При приближении тел к нулевому уровню потенциальная энергия системы уменьшается. Нулевому уровню действительно соответствует наименьшая потенциальная энергия системы.

Это означает, что при всех других положениях тел потенциальная энергия системы положительна.

В случае сил всемирного тяготения и при выборе нуля энергии на бесконечности все происходит наоборот. Внутренние силы системы стремятся увести тела от нулевого уровня (рис. 5.30). Они совершают положительную работу при удалении тел от нулевого уровня, т. е. при сближении тел. При любых конечных расстояниях между телами потенциальная энергия системы меньше, чем при Другими словами, нулевому уровню (при соответствует наибольшая потенциальная энергия. Это означает, что при всех других положениях тел потенциальная энергия системы отрицательна.

В § 96 было найдено, что работа сил всемирного тяготения при переносе тела из бесконечности на расстояние равна

Поэтому потенциальную энергию сил всемирного тяготения нужно считать равной

Эта формула выражает еще одну особенность потенциальной энергии сил всемирного тяготения - сравнительно сложный характер зависимости этой энергии от расстояния между телами.

На рис. 5.31 представлен график зависимости от для случая притяжения тел Землей. Этот график имеет вид равнобочной гиперболы. Вблизи поверхности Земли энергия меняется сравнительно сильно, но уже на расстоянии нескольких десятков земных радиусов энергия становится близкой к нулю и начинает меняться очень медленно.

Любое тело вблизи поверхности Земли находится в своеобразной «потенциальной яме». Всякий раз, когда оказывается необходимым освободить тело от действия сил земного притяжения, нужно прилагать специальные усилия для того, чтобы «вытащить» тело из этой потенциальной ямы.

Точно так же и все другие небесные тела создают вокруг себя такие потенциальные ямы - ловушки, которые захватывают и удерживают все не очень быстро движущиеся тела.

Знание характера зависимости от позволяет значительно упростить решение ряда важных практических задач. Например, необходимо послать космический корабль на Марс, Венеру или на любую другую планету Солнечной системы. Нужно определить, какая скорость должна быть сообщена кораблю при его запуске с поверхности Земли.

Для того чтобы корабль послать к другим планетам, его нужно вывести из сферы действия сил земного притяжения. Другими словами, нужно поднять его потенциальную энергию до нуля. Это становится возможным, если кораблю сообщить такую кинетическую энергию, чтобы он смог совершить работу против сил земного притяжения, равную где масса корабля,

масса и радиус земного шара.

Из второго закона Ньютона следует, что (§ 92)

Но так как скорость корабля до запуска равна нулю, то можно записать просто:

где скорость, сообщаемая кораблю при запуске. Подставляя значение для А, получим

Воспользуемся для исключения как это уже делали в § 96, двумя выражениями для силы земного притяжения на поверхности Земли:

Отсюда - Подставляя это значение в уравнение второго закона Ньютона, получим

Скорость, необходимая для вывода тела из сферы действия сил земного притяжения, называется второй космической скоростью.

Точно так же можно поставить и решить задачу о посылке корабля к далеким звездам. Для решения такой задачи нужно уже определить условия, при которых корабль будет выведен из сферы действия сил притяжения Солнца. Повторяя все рассуждения, которые были проведены в предыдущей задаче, можно получить такое же выражение для скорости, сообщаемой кораблю при запуске:

Здесь а - нормальное ускорение, которое сообщает Солнце Земле и которое может быть рассчитано по характеру движения Земли по орбите вокруг Солнца; радиус земной орбиты. Конечно, в этом случае означает скорость движения корабля относительно Солнца. Скорость, необходимая для вывода корабля за пределы Солнечной системы, называется третьей космической скоростью.

Рассмотренный нами способ выбора начала отсчета потенциальной энергии используется и при расчетах электрических взаимодействий тел. Представление о потенциальных ямах также широко используется в современной электронике, теории твердого тела, теории атома и в физике атомного ядра.

Билет 1

1. . Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

2. Момент импульса материальной точки относительно точки O определяется векторным произведением

Где - радиус-вектор, проведенный из точки O, - импульс материальной точки. Дж*с

3.

Билет 2

1. Гармонический осциллятор:

Кинетическая энергия записывается в виде

И потенциальная энергия есть

Тогда полная энергия имеет постоянное значение Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

2. Моментом силы относительно полюса называется физическая величина, определяемая векторным произведением радиус вектора, проведенного из данного полюса к точке приложения силы на вектор силы F. ньютон-метр

Билет 3

1. ,

2. Фаза колебаний полная - аргумент периодической функции, описывающей колебательный или волновой процесс. Гц

3.

Билет №4

Выражается в м/(c^2)


Билет №5

, F = –grad U, где .

Потенциальная энергия упругой деформации (пружины)

Найдём работу, совершаемую при деформации упругой пружины.
Сила упругости Fупр = –kx, где k – коэффициент упругости. Сила непостоянна, поэтому элементарная работа dA = Fdx = –kxdx.
(Знак минус говорит о том, что работа совершена над пружиной). Тогда , т.е. A = U1 – U2. Примем: U2 = 0, U = U1, тогда .

На рис. 5.5 показана диаграмма потенциальной энергии пружины.

Рис. 5.5
Здесь E = K + U – полная механическая энергия системы, К – кинетическая энергия в точке x1.

Потенциальная энергия при гравитационном взаимодействии

Работа тела при падении A = mgh, или A = U – U0.
Условились считать, что на поверхности Земли h = 0, U0 = 0. Тогда A = U, т.е. A = mgh.

Для случая гравитационного взаимодействия между массами M и m, находящимися на расстоянии r друг от друга, потенциальную энергию можно найти по формуле .

На рис. 5.4 изображена диаграмма потенциальной энергии гравитационного притяжения масс M и m.

Рис. 5.4
Здесь полная энергия E = K + E. Отсюда легко найти кинетическую энергию: K = E – U.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории. (м/с 2 )

Билет №6


Билет 7

1)Момент инерции Стержня -

Обруча - L = m*R^2

Диска -

2) Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где m - полная масса тела.

Билет 8

1) Уравнение описывает изменение движения тела конечных размеров под действием силы при отсутствии деформации и если оно движется поступательно. Для точки это уравнение справедливо всегда, поэтому его можно рассматривать как основной закон движения материальной точки.

Билет 9

1) Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

2) - криваявфазовомпространстве, составленнаяизточек, представляющихсостояниединамическойсистемы впоследоват. моментывременивтечениевсеговремениэволюции.

Билет 10

1. Моментимпульса - векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения импульса, на вектор этого импульса

2. Угловая скорость вращения твёрдого тела относительно неподвижной оси - предел (при Δt → 0) отношения малого углового перемещения Δφ к малому промежутку времени Δt

Измеряется в рад/с.

Билет 11

1. Центр масс механической системы (МС) – точка, масса которой равна массе всей системы, авектор ускорения центра масс (в инерциальной системе отсчета) определяется только внешними силами, действующими на систему. Поэтому при нахождении закона движения системы точек можно считать, что вектор равнодействующей внешних сил приложен к центрумасс системы.
Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом

Уравнение изменения импульса МС:


Закон сохранения импульса МС
: в замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

2. Угловое ускорение вращения твердого тела относительно неподвижной оси - псевдовекторная физическая величина, равная первой производной от псевдовектора угловой скорости по времени.

Измеряется в рад/c 2 .

Билет 12

1. Потенциальная энергия притяжения двух материальных точек


Потенциальная энергия упругих деформаций -
растяжение или сжатие пружины приводит к запасанию ее потенциальной энергии упругой деформации. Возвращение пружины к положению равновесия приводит к высвобождениюзапасенной энергии упругой деформации.

2. Импульс механической системы - векторная физическая величина, являющаяся мерой механического движения тела.

Измеряется в

Билет 13

1. Консервативные силы. Работа силы тяжести. Работа упругой силы.
В физике консервативные силы (потенциальные силы) - это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения, и определяется только начальным и конечным положением этой точки.
Работа силы тяжести .
Работа упругой силы

2. Дайте определение времени релаксации затухающих колебаний. Укажите единица измерения этой величины в СИ.
Временем релаксации называют промежуток времени, за который амплитуда затухающих колебаний уменьшается в е раз (е - основание натурального логарифма). Измеряется в секундах.

3. Диск диаметром равным 60 см и массой равной 1 кг вращается вокруг оси, проходящей через центр перпендикулярно его плоскости с частотой равно 20 об/c. Какую работу надо совершить, чтобы остановить диск?

Билет 14

1. Гармонические колебания. Векторная диаграмма. Сложение гармонических колебаний одного направления равных частот.

Гармонические колебания - колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.

Существует геометрический способ представления гармонических колебаний, заключающийся в изображении колебаний в виде векторов на плоскости. Полученная таким образом схема называется векторной диаграммой (рис. 7.4).

Выберем ось . Из точки О, взятой на этой оси, отложим вектор длины , образующий с осью угол . Если привести этот вектор во вращение с угловой скоростью , то проекция конца вектора на ось будет меняться со временем по закону . Следовательно, проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора; с круговой частотой, равной угловой скорости вращения, и с начальной фазой, равной углу, образованному вектором с осью X в начальный момент времени.

Векторная диаграмма дает возможность свести сложение колебаний к геометрическому суммированию векторов.

Рассмотрим сложение двух гармонических колебаний одинакового направления и одинаковой частоты, которые имеют следующий вид:

Представим оба колебания с помощью векторов и (рис. 7.5). Построим по правилу сложения векторов результирующий вектор . Легко увидеть, что проекция этого вектора на ось равна сумме проекций слагаемых векторов . Следовательно, вектор представляет собой результирующее колебание. Этот вектор вращается с той же угловой скоростью , что и векторы , , так что результирующее движение будет гармоническим колебанием с частотой , амплитудой и начальной фазой . По теореме косинусов квадрат амплитуды результирующего колебания будет равен

2. Дайте определение момента силы относительно оси. Укажите единицы измерения этой величины в СИ.

Момент силы - векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.Моментом силы относительно оси называется скалярная величина, равная проекции на эту ось векторного момента силы относительно любой точки на оси.СИ: измеряется в кг*м 2 /c 2 = Н*м.

3. Из орудия массой 5 т при выстреле вылетает снаряд массой 100 кг. Кинетическая энергия снаряда при вылете 8 МДж. Какую кинетическую энергию получает орудие вследствие отдачи?

Билет 15

1. Закон сохранения механической энергии механической системы.

Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

В консервативной системе все силы, действующие на тело, потенциальны и, следовательно, могут быть представлены в виде

где - потенциальная энергия материальной точки. Тогда II закон Ньютона:

где - масса частицы, - вектор её скорости. Скалярно домножив обе части данного уравнения на скорость частицы и приняв во внимание, что ,получаем

Путём элементарных операций получаем

Отсюда следует, что выражение, стоящее под знаком дифференцирования по времени, сохраняется. Это выражение и называется механической энергией материальной точки.

2. Дайте определение кинетической энергии твердого тела при его вращении вокруг неподвижной оси. Укажите единицы измерения этой величины в СИ.

3. Шарик массой m=20 г внедряется с начальной скоростью V=20 м/с в очень массивную мишень с песком, которая движется навстречу шарику со скоростью U=10 м/с. Оценить какое количество теплоты выделится при полном торможении шарика.

Билет 16

1. Момент силы относительно оси - векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы.Момент силы относительно оси равен алгебраическому моменту проекции этой силы на плоскость, перпендикулярную этой оси относительно точки пересечения оси с плоскостью, то есть

Момент импульса МС относительно неподвижной оси - скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса не зависит от положения точки 0 на оси z.

Основное уравнение динамики вращательного движения

2. Вектор ускорения - векторная величина, определяющая быстроту изменения скорости тела, то есть первая производная от скорости по времени и показывающая на сколько изменяется вектор скорости тела при его движении за единицу времени.

Измеряется в м/с 2


Билет 17

1) Момент силы - векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси, характеризует количество вращательного движения.

2) Вектор перемещения – это направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной. Модуль вектора перемещения – это длина отрезка, который соединяет начальную и конечную точки движения. (м).

3)

Билет 18

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения вдоль данной данной прямой линии. Скорость равномерного движения определяется по формуле:

Радиус кривизны RRтраектории в точке AA - радиус окружности, по дуге которой точка движется в данный момент времени. При этом центр этой окружности называется центром кривизны.

Физическая величина, характеризующая изменение скорости по направлению, – нормальное ускорение.

.

Физическая величина, характеризующая изменение скорости по модулю, – тангенциальное ускорение.

Билет 21

3)

Билет №22

Коэффициент трения скольжения - отношение силы трения к нормальной составляющей внешних сил, действующих на поверхности тела.

Коэффициент трения скольжения выводится из формулы силы трения скольжения

Так как сила реакции опоры, это масса умножить на ускорение свободного падения, то формула коэффициента получается:

Безразмерная величина

Билет №23

Пространство, в котором действуют консервативные силы, называется потенциальным полем. Каждой точке потенциального поля соответствует некоторое значение силы F, действующей на тело, и некоторое значение потенциальной энергии U. Значит, между силой F и U должна быть связь, с другой стороны, dA = –dU, следовательно Fdr=-dU, отсюда:

Проекции вектора силы на оси координат:

Вектор силы можно записать через проекции: , F = –grad U, где .

Градиент – это вектор, показывающий направление наибыстрейшего изменения функции. Следовательно, вектор направлен в сторону наибыстрейшего уменьшения U.

Если на систему действуют одни только консервативные силы, то можно для нее ввести понятие потенциальной энергии . Какое – либо произвольное положение системы, характеризующееся заданием координат ее материальных точек, условно примем за нулевое . Работа, совершаемая консервативными силами при переходе системы из рассматриваемого положения в нулевое, называется потенциальной энергией системы в первом положении

Работа консервативных сил не зависит от пути перехода, а потому потенциальная энергия системы при фиксированном нулевом положении зависит только от координат материальных точек системы в рассматриваемом положении. Иными словами, потенциальная энергия системы U является функцией только ее координат.

Потенциальная энергия системы определена не однозначно, а с точностью до произвольной постоянной. Этот произвол не может отразится на физических выводах, так как ход физических явлений может зависеть не от абсолютных значений самой потенциальной энергии, а лишь от ее разности в различных состояниях. Эти же разности от выбора произвольной постоянной не зависят.

Пусть система перешла из положения 1 в положение 2 по какому – либо пути 12 (рис. 3.3). Работу А 12 , совершенную консервативными силами при таком переходе, можно выразить через потенциальные энергии U 1 и U 2 в состояниях 1 и 2 . С этой целью вообразим, что переход осуществлен через положение О, т. е. по пути 1О2. Так как силы консервативны, то А 12 = А 1О2 = А 1О + А О2 = А 1О – А 2О. По определению потенциальной энергии U 1 = A 1 O , U 2 = A 2 O . Таким образом,

A 12 = U 1 – U 2 , (3.10)

т. е. работа консервативных сил равна убыли потенциальной энергии системы.

Та же работа А 12 , как было показано ранее в (3.7), может быть выражена через приращение кинетической энергии по формуле

А 12 = К 2 – К 1 .

Приравнивая их правые части, получим К 2 – К 1 = U 1 – U 2 , откуда

К 1 + U 1 = К 2 + U 2 .

Сумма кинетической и потенциальной энергий системы называется ее полной энергией Е . Таким образом, Е 1 = Е 2 , или

E º K + U = const. (3.11)

В системе с одним только консервативными силами полная энергия остается неизменной. Могут происходить лишь превращения потенциальной энергии в кинетическую и обратно, но полный запас энергии системы измениться не может. Это положение называется законом сохранения энергии в механике.

Вычислим потенциальную энергию в некоторых простейших случаях.

а) Потенциальная энергия тела в однородном поле тяжести. Если материальная точка, находящаяся на высоте h , упадет на нулевой уровень (т. е. уровень, для которого h = 0), то сила тяжести совершит работу A = mgh . Поэтому на высоте h материальная точка обладает потенциальной энергией U = mgh + C , где С – аддитивная постоянная. За нулевой можно принять произвольный уровень, например, уровень пола (если опыт производится в лаборатории), уровень моря и т. д. Постоянная С равна потенциальной энергии на нулевом уровне. Полагая ее равной нулю, получим


U = mgh . (3.12)

б) Потенциальная энергия растянутой пружины. Упругие силы, возникающие при растяжении или сжатии пружины, являются центральными силами. Поэтому они консервативны, и имеет смысл говорить о потенциальной энергии деформированной пружины. Ее называют упругой энергией . Обозначим через х растяжение пружины ,т. е. разность x = l l 0 длин пружины в деформированном и недеформированном состояниях. Упругая сила F зависит только от растяжения. Если растяжение x не очень велико, то она пропорциональна ему: F = – kx (закон Гука). При возвращении пружины из деформированного в недеформированное состояние сила F совершает работу

Если упругую энергию пружины в недеформированном состоянии условиться считать равной нулю, то

в) Потенциальная энергия гравитационного притяжения двух материальных точек. По закону всемирного тяготения Ньютона гравитационная сила притяжения двух точечных тел пропорциональна произведению их масс Mm и обратно пропорциональна квадрату расстояния между ними:

где G – гравитационная постоянная .

Сила гравитационного притяжения, как сила центральная, является консервативной. Для ее имеет смысл говорить о потенциальной энергии. При вычислении этой энергии одну из масс, например М , можно считать неподвижной, а другую – перемещающейся в ее гравитационном поле. При перемещении массы m из бесконечности гравитационные силы совершают работу

где r – расстояние между массами М и m в конечном состоянии.

Эта работа равна убыли потенциальной энергии:

Обычно потенциальную энергию в бесконечности U ¥ принимают равной нулю. При таком соглашении

Величина (3.15) отрицательна. Это имеет простое объяснение. Максимальной энергией притягивающиеся массы обладают при бесконечном расстоянии между ними. В этом положении потенциальная энергия считается равной нулю. Во всяком другом положении она меньше, т. е. отрицательна.

Допустим теперь, что в системе наряду с консервативными силами действуют также диссипативные силы. Работа всех сил А 12 при переходе системы из положения 1 в положение 2 по – прежднему равна приращению ее кинетической энергии К 2 – К 1 . Но в рассматриваемом случае эту работу можно представить в виде суммы работы консервативных сил и работы диссипативных сил . Первая работа может быть выражена через убыль потенциальной энергии системы: Поэтому

Приравнивая это выражение к приращению кинетической энергии, получим

где E = K + U – полная энергия системы. Таким образом, в рассматриваемом случае механическая энергия Е системы не остается постоянной, а уменьшается, так как работа диссипативных сил отрицательна.