СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА,
раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вычислять ,
записывать уравнения состояния,
условия фазовых и хим. равновесий. Неравновесная С. т. дает обоснование соотношений термодинамики необратимых процессов
(ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы С. т. используются во всех направлениях совр. теоретич. химии.
Основные понятия.
Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния;
микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.
Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией Eс окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V
и N-
параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N(параметры состояния V, Т, N
).Большой канонич. ансамбль Гиббса используется для описания открытых систем, находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V).Параметры состояния такой системы-V, Ти mЧ химический потенциал
частиц.
Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P(параметры состояния Т, P, N
).
Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты i и сопряженные им импульсы
(i =1,2,..., М) системы с Мстепенями свободы. Для системы, состоящей из Nатомов, i и
соответствуют декартовой координате и компоненте импульса (a = х, у, z
)
нек-рого атома jи М = 3N.
Совокупность координат и импульсов обозначаются qи pсоответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q
),к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q.
В квантовой механике
вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т. к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний.
Функция распределения
классич. системы f(p, q)характеризует плотность вероятности реализации данного микросостояния ( р, q
)
в элементе объема dГ
фазового пространства. Вероятность пребывания Nчастиц в бесконечно малом объеме фазового пространства равна:
где dГ N ->
элемент фазового объема системы в единицах h 3N , h
-постоянная Планка; делитель N!
учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки тf(p, q
)dГ N =>
1, т. к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность w i
, нахождения системы из Nчастиц в квантовом состоянии, задаваемом набором квантовых чисел i, с энергией при условии нормировки
Среднее значение в момент времени т (т. е. по бесконечно малому интервалу времени от т до т + dт
)любой физ. величины А( р, q
),
являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т. ч. и для неравновесных процессов):
Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от Ч, до +,. Состояние термодинамич. равновесия системы следует рассматривать как предел т:,. Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).
В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Еравновероятны и ф-ция распределения для классич. систем имеет вид:
f(p,q
) = A
d,
где d-дельта-ф-ция Дирака, Н( р,q
)-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная Аопределяется из условия нормировки ф-ции f(p, q
).Для квантовых систем при точности задания квантового состояния, равной величине DE, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w()
= -1 , если Е E +
DE,
и w()
= 0, если
и
DE.
Величина g(E, N, V
)-т. наз. статистич. вес, равный числу квантовых состояний в энергетич. слое DE. Важное соотношение С. т.-связь энтропии системы со статистич. весом:
S(E, N, V
) = k
lng(E, N, V
),где k-Больцмана постоянная.
В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех Nчастиц или значениями , имеет вид: f(p, q
) =
exp {/kT
}; w i,N
= exp[(F - E i,N
)/kT
], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:
F = -kT
ln
где
статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций w i,N >
или f(p, q
):
Z N = тexp[-H(р, q)/kT
]dpdq
/()
(сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).
В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q
)
и статистич. сумма X, определяемая из условия нормировки, имеют вид:
где W-термодинамич. потенциал, зависящий от переменных V, Т,
m (суммирование ведется по всем целым положит. N).В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q,
определяемая из условия нормировки, имеют вид:
где G-
энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).
Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий. Статистич. суммы
и Qпозволяют определить энергию Гельмгольца F, энергию Гиббса G,
а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT
2 (9ln
) V , >
энтальпию H = RT
2 (9ln ,
энтропию S = Rln + RT
(9ln /9T) V
= = Rln Q + RT
(9ln , теплоемкость при постоянном объеме С V
= 2RT
(9ln
2 (ln /9T
2) V , >
теплоемкость при постоянном давлении С Р =>
2RT
(9ln
2 (9 2 ln /9T 2) P >
и т. д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия
отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики
как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний gв данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия изолир. системы имеет максимально возможное значение при заданных внеш. условиях ( Е, V,
N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии, согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики).
При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w 0 = 1 и S =
0. Это утверждение представляет собой (см. Тепловая теорема
).Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т. к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.
Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов, если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q
)
для Nчастиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f 1 (p, q):
Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловленных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином.
Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1 / 2 , 3 / 2 ,... в единицах Р= h/2p. Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах, металлах и полупроводниках, атомные ядра с нечетным атомным номером, атомы с нечетной разностью атомного номера и числа электронов, квазичастицы (напр., электроны и дырки в твердых телах) и т. д. Данная статистика была предложена Э. Ферми в 1926; в том же году П. Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т. е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип
).
Среднее число частиц идеального газа фермионов, находящихся в состоянии с энергией ,
определяется ф-цией распределения Ферми-Дирака:
={1+exp[( -m)/kT
]} -1 ,
где i-набор квантовых чисел, характеризующих состояние частицы.
Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, Р,
2Р,
...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа, рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т. д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках. Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т. е. в одном состоянии может находиться любое число частиц. Среднее число частиц идеального газа бозонов, находящихся в состоянии с энергией Е i
описывается ф-цией распределения Бозе-Эйнштейна:
={exp[( -m)/kT
]-1} -1 .
Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей, нельзя выбрать объем меньший, чем h 3 . Среднее число частиц идеального газа, находящихся в состоянии с энергией
описывается ф-цией распределения Больцмана:
=exp[(m)/kT
].
Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r),
статистически равновесная ф-ция распределения f 1 (p,r)
по импульсам pи координатам r частиц идеального газа имеет вид: f 1 (p,r) = Aехр{ - [р 2 /2m + U(r)]/kT
}.
Здесь р 2 /2т-кинетич. энергия молекул массой ш, постоянная Аопределяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию
n(r) = n 0
ехр[-U(r)]/kT
],
где n(r) = т
f 1 (p, r)dp
- плотность числа частиц в точке r(n 0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение молекул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках, а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r)
= 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема компоненты скоростей к-рых лежат в интервалах от до + (i= x, у, z
),определяется ф-цией:
Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов, но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе. Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.
Сумма по состояниям молекулы.
Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q 1:
где Е i - >
энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), i
-статистич. вес i-го уровня. В общем случае отдельные виды движения электронов, атомов и групп атомов в молекуле, а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):
Q 1 = Q пост
Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .
Смотреть что такое "СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА" в других словарях:
- (равновесная статистическая термодинамика) раздел статистической физики, посвящённый обоснованию законов термодинамики равновесных процессов (на основе статистич. механикиДж. У. Гиббса, J. W. Gibbs) и вычислениям термодинамич. характеристик физ … Физическая энциклопедия
Раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ … Большой Энциклопедический словарь
Раздел статистической физики, посвященный теоретическому определению термодинамических характеристик физических систем (уравнений состояния, термодинамических потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти … Энциклопедический словарь
статистическая термодинамика - statistinė termodinamika statusas T sritis chemija apibrėžtis Termodinamika, daugiadalelėms sistemoms naudojanti statistinės mechanikos principus. atitikmenys: angl. statistical thermodynamics rus. статистическая термодинамика … Chemijos terminų aiškinamasis žodynas
статистическая термодинамика - statistinė termodinamika statusas T sritis fizika atitikmenys: angl. statistical thermodynamics vok. statistische Thermodynamik, f rus. статистическая термодинамика, f pranc. thermodynamique statistique, f … Fizikos terminų žodynas
Термодинамическая система, коллектив и его состояния. Метод ансамблей. Энтропия и вероятность. Канонический ансамбль Гиббса. Каноническое распределение. Фактор Гиббса. Вероятности, свободная энергия и статистическая сумма.
Система и подсистемы. Общие свойства статистических сумм. Статистическая сумма пробной частицы и коллектива.
Идеальный газ. Распределение Больцмана. Фактор Больцмана. Квантовые состояния и дискретные уровни простых молекулярных движений. Статистический вес уровня (вырожденность). Суммы по уровням и суммы по состояниям.
Системы локализованные и делокализованные. Трансляционная сумма состояний, неразличимость частиц, стандартный объём. Вращательная сумма по уровням двухатомной молекулы, ориентационная неразличимость и число симметрии. Статистические суммы для одной и нескольких вращательных степеней свободы. Колебательная статистическая сумма в гармоническом приближении. Коррекция статистических сумм простых движений. Нулевой уровень колебаний, шкала молекулярной энергии, и молекулярная сумма состояний.
Свободная энергия A и статистические формулы для термодинамических функций: энтропия S, давление p, внутренняя энергия U, энтальпия H, энергия Гиббса G, химический потенциал m. Химическая реакция и константа равновесия Kp в системе идеальных газов.
1. Введение. Краткое напоминание основных сведений из термодинамики.
…Удобно термодинамические аргументы и определённые с их помощью функции состояния представить в виде единого массива взаимосвязанных переменных. Этот способ был предложен Гиббсом. Так, скажем, энтропия, которая по определению есть функция состояния, перемещается в разряд одной из двух естественных калорических переменных, дополняя в этом своём качестве температуру. И если в любых калорических процессах температура выглядит как интенсивная (силовая) переменная, то энтропия обретает статус экстенсивной переменной – тепловой координаты.
Этот массив всегда можно дополнить новыми функциями состояния или по необходимости уравнениями состояния, связывающими между собою аргументы. Число аргументов, минимально необходимое для исчерпывающего термодинамического описания системы, называется числом степеней свободы. Оно определяется из фундаментальных соображений термодинамики и может быть уменьшено благодаря различным уравнениям связи.
В таком едином массиве можно менять ролями аргументы и функции состояния. Этот приём широко используется в математике при построении обратных и неявных функций. Цель подобных логических и математических приёмов (достаточно тонких) одна – достижение максимальной компактности и стройности теоретической схемы.
2. Характеристические функции. Дифференциальные уравнения Массье.
Массив переменных p, V, T удобно дополнить функцией состояния S. Между ними имеется два уравнения связи. Одно из них выражено в виде постулируемой взаимозависимости переменных f(p,V,T) =0. Говоря об "уравнении состояния", чаще всего именно эту зависимость имеют в виду. Однако любой функции состояния отвечает новое уравнение состояния. Энтропия по определению есть функция состояния, т.е. S=S(p,V,T). Стало быть, между четырьмя переменными существует две связи, и в качестве независимых термодинамических аргументов можно выделить всего два, т.е. для исчерпывающего термодинамического описания системы достаточно лишь двух степеней свободы. Если этот массив переменных дополнить новой функцией состояния, то наряду с новой переменной появляется и ещё одно уравнение связи, и, стало быть, число степеней свободы не увеличится.
Исторически первой из функций состояния была внутренняя энергия. Поэтому с её участием можно сформировать исходный массив переменных:
Массив уравнений связи в таком случае содержит функции вида
f(p,V,T) =0, 2) U=U(p,V,T), 3) S=S(p,V,T).
Эти величины можно менять ролями или формировать из них новые функции состояния, но в любом случае суть дела не изменится, и останутся две независимые переменные. Теоретическая схема не выйдет за пределы двух степеней свободы до тех пор, пока не встанет необходимость учесть новые физические эффекты и связанные с ними новые превращения энергии, и их окажется невозможно охарактеризовать без расширения круга аргументов и числа функций состояния. Тогда может измениться и число степеней свободы.
(2.1)3. Свободная энергия (энергия Гельмгольца) и её роль.
Состояние изотермической системы с неизменным объёмом целесообразно описывать посредством свободной энергии (функции Гельмгольца). В этих условиях она является характеристической функцией и изохорно-изотермическим потенциалом системы.
Посредством частного дифференцирования из неё далее можно извлечь прочие необходимые термодинамические характеристики, а именно:
(3.1)Построить явный вид функции свободной энергии для некоторых относительно простых систем можно методом статистической термодинамики.
4. О равновесии.
В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.
Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.
Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.
5. О статистическом методе.
Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.
Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.
6. Равновесия и флуктуации. Микросостояния.
Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.
Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.
Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.
Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …
Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.
Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.
7. Метод Гиббса. Статистический ансамбль и его элементы.
Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.
Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.
В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. "Неоднородности" в коллективе постоянно мигрируют.
Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...
Молекулярная физика,
Термодинамика,
Статистическая физика,
три положения
1.
вещество состоит из частиц;
2.
3.
статистического метода усредненными
Начала термодинамики
Первое начало термодинамики
δQ = δA + dU , где dU Q и δA
Второе начало термодинамики
1 - Постулат Клаузиуса.
2 - Постулат Кельвина.
Приращение энтропии (
Нулевое начало термодинамики (общее начало термодинамики )
Если система A B C , то система A находится в равновесии с C
Элементы физической кинетики. Явление переноса в термодинамически неравновесных системах. Общее уравнение явлений переноса в газах и его обоснование согласно МКТ. Зависимость коэффициентов переноса от давления и температуры.
Физи́ческая кине́тика (др.-греч. κίνησις - движение) - микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классическойстатистической физики
Изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей.
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса , в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы ) и внутреннее трение (обусловлено переносом импульса).
1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше,чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.
Перенос энергии в форме теплоты подчиняетсязакону Фурье:
где j E -плотность теплового потока - величина, определяемая энергией, переносимой в форме теплоты оси х , l - теплопроводность , - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки j E и – противоположны).
2. Диффузия. Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.
Явление диффузии для химически однородного газа подчиняется закону Фука :
где j m -плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку,перпендикулярную оси х, D - диффузия (коэффициент диффузии), dr/ dx - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки j m и dr/ dx противоположны).
3. Внутреннее трение (вязкость ). Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
Сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона :
где h - динамическая вязкость (вязкость), dv/ dx - градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S - площадь, на которую действует сила F.
Взаимодействие двух слоев согласно второму закону Ньютона можно рассматривать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда данное выражение можно представить в виде
где j p - плотность потока импульса - величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, - градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости.
Коэффициент диффузии растет с повышением температуры:
С повышением температуры, коэффициент теплопроводности тоже увеличивается:
Температурная зависимость коэффициента вязкости аналогична зависимости для коэффициента теплопроводности:
Первый закон (первое начало) термодинамики (закон сохранения энергии в тепловых процессах). Применение первого начала термодинамики к изопроцессам в газах. Адиабатический процесс. Уравнение Пуассона. Политропный процесс.
Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии длятермодинамических систем
.Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Иными словами, внутренняя энергия является функцией состояния . В циклическом процессе внутренняя энергия не изменяется.
δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.
Первое начало термодинамики:
§ при изобарном процессе
§ при изохорном процессе (A = 0)
§ при изотермическом процессе (ΔU = 0)
Здесь - масса газа, - молярная масса газа, - молярная теплоёмкость при постоянном объёме, - давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.
Твердое состояние вещества. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.Д. крупных частиц, взвешенных в газе или жидкости осуществляется благодаря их броуновскому движению. Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах.
Твердое тело. Состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
Жидкость. Состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.
Газ. Состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.
Плазма. Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая частьбарионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.
Явление поверхностного натяжения. Коэффициент поверхностного натяжения. Гидрофильные и гидрофобные поверхности. Условие рвновесия капли жидкости на поверхности твердого тела (принцип наименьшей энергии). Поверхностно-активные вещества (ПАВ) и их применение.
Пове́рхностное натяже́ние - термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.
Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости
Коэффициент поверхностного натяжения - работа, необходимая для изотермического увеличения площади поверхности жидкости на 1 кв.м.
Коэффициент поверхностного натяжения:
- уменьшается с повышением температуры;
- равен нулю в критической точке;
- зависит от наличия примесей в жидкости.
Гидрофобность (от др.-греч. ὕδωρ - вода и φόβος - боязнь, страх) - это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Сама молекула в этом случае называется гидрофобной.
Гидрофильность (от др.-греч. ὕδωρ - вода и φιλία - любовь) - характеристика интенсивности молекулярного взаимодействия поверхности тел с водой. Наряду сгидрофобностью относится не только к телам, у которых оно является свойством поверхности.
Рассмотрим теперь явления, происходящие с каплей жидкости, помещенной на поверхность твердого тела. В этом случае имеются три границы раздела между фазами: газ-жидкость, жидкость-твердое тело и газ-твердое тело. Поведение капли жидкости будет определяться значениями поверхностного натяжения (удельными величинами свободной поверхностной энергии) на указанных границах раздела. Сила поверхностного натяжения на границе раздела жидкости и газа будет стремиться придать капле сферическую форму. Это произойдет в том случае, если поверхностное натяжение на границе раздела жидкости и твердого тела будет больше поверхностного натяжения на границе раздела газа и твердого тела. В этом случае процесс стягивания жидкой капли в сферу приводит к уменьшению площади поверхности границы раздела жидкость-твердое тело при одновременном увеличении площади поверхности границы раздела газ-жидкость. Тогда наблюдается несмачивание поверхности твердого тела жидкостью. Форма капли будет определяться равнодействующей сил поверхностного натяжения и силы тяжести. Если капля большая, то она будет растекаться по поверхности, а если маленькая - стремиться к шарообразной форме.
Пове́рхностно-акти́вные вещества́ (ПАВ ) - химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.
Области применения
Моющие средства. Основное применение ПАВ - в качестве активного компонента моющих и чистящих средств (в том числе, применяемых для дезактивации), мыла, для ухода за помещениями, посудой, одеждой, вещами, автомобилями и пр.
Косметика. Основное использование ПАВ в косметике - шампуни, где содержание ПАВ может достигать десятков процентов от общего объёма.
Текстильная промышленность. ПАВ используются в основном для снятия статического электричества на волокнах синтетической ткани.
Кожевенная промышленность. Защита кожаных изделий от лёгких повреждений и слипания.
Лакокрасочная промышленность. ПАВ используются для снижения поверхностного натяжения, что обеспечивает лёгкое проникновение красочного материала в маленькие углубления на обрабатываемой поверхности и их заполнение с вытеснением при этом оттуда другого вещества (например, воды).
Бумажная промышленность. ПАВ используются для разделения чернил и варёной целлюлозы при переработке использованной бумаги.
Металлургия. Эмульсии ПАВ используются для смазки прокатных станов. Снижают трение. Выдерживают высокие температуры, при которых сгорает масло.
Защита растений. ПАВ широко используются в агрономии и сельском хозяйстве для образования эмульсий. Используются для повышения эффективности транспортировки питательных компонентов к растениям через мембранные стенки.
Пищевая промышленность. ПАВ в виде эмульгаторов (например лецитина) добавляют для улучшения вкусовых качеств.
Нефтедобыча. ПАВ применяются для гидрофобизации призабойной зоны пласта (ПЗП) с целью увеличения нефтеотдачи.
Строительство. ПАВ, называемые пластификаторами, добавляют к цементно-песчаным смесям и бетонам для уменьшения их водопотребности при сохранении подвижности. Это увеличивает конечную прочность (марку) затвердевшего материала, его плотность, морозостойкость, водонепроницаемость.
Медицина. Катионные и анионные ПАВ применяют в хирургии в качестве антисептиков.
Капиллярные явления, физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром.
Смачивание, явление, возникающее при соприкосновении жидкости с поверхностью твёрдого тела или другие жидкости. Оно выражается, в частности, в растекании жидкости по твёрдой поверхности, находящейся в контакте с газом (паром) или другой жидкостью, пропитывании пористых тел и порошков, искривлении поверхности жидкости у поверхности твёрдого тела.
Формула Лапласа
Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давленияплёнки . Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа :
Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому
R 1 = R 2 = R
Для случая поверхности кругового цилиндра радиуса R имеем
Обратите внимание, что Δp должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.
Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.
Предмет молекулярной физики и термодинамики. Статистическая физика и термодинамика. Основные положения МКТгазов. Термодинамический и статистический методы. Три начала термодинамики.
Молекулярная физика, раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их микроскопического (молекулярного) строения.
Термодинамика, наука о наиболее общих свойствах макроскопических систем, находящихся в состоянии термодинамического равновесия, и о процессах перехода между этими состояниями.
Статистическая физика, раздел физики, задача которого - выразить свойства макроскопических тел, т. е. систем, состоящих из очень большого числа одинаковых частиц (молекул, атомов, электронов и т.д.), через свойства этих частиц и взаимодействие между ними.
Молекулярно-кинетической теорией
называется учение, которое объясняет строение и свойства тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела.
В основе МКТ строения вещества лежат три положения
, каждое из которых доказано с помощью наблюдений и опытов (броуновское движение, диффузия и др.):
1.
вещество состоит из частиц;
2.
частицы хаотически движутся;
3.
частицы взаимодействуют друг с другом.
Цель молекулярно-кинетической теории - объяснение свойств макроскопических тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода . Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул.
Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах фундаментальных законах, установленных в результате обобщения опытных данных.
Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.
Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.
Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.
Первое начало термодинамики
Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил
Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа, которым осуществляется этот переход.
δQ = δA + dU , где dU есть полный дифференциал внутренней энергии системы, а δQ и δA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.
Второе начало термодинамики
Второй закон термодинамики исключает возможность создания вечного двигателя второго рода.
1 - Постулат Клаузиуса. Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему
2 - Постулат Кельвина. Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара
Третье начало термодинамики может быть сформулировано так:
Приращение энтропии (как на меру беспорядка в системе) при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система.
Нулевое начало термодинамики (общее начало термодинамики )
Физический принцип, утверждающий, что вне зависимости от начального состояния изолированной системы в конце концов в ней установится термодинамическое равновесие, а также что все части системы при достижении термодинамического равновесия будут иметь одинаковую температуру. Тем самым нулевое начало фактически вводит и определяет понятие температуры. Нулевому началу можно придать чуть более строгую форму:
Если система A находится в термодинамическом равновесии с системой B , а та, в свою очередь, с системой C , то система A находится в равновесии с C . При этом их температуры равны.
Основные понятия
Основные знания.
Статистическая интерпретация понятий: внутренняя энергия, работа подсистемы, количество теплоты; обоснование первого начала термодинамики с помощью канонического распределения Гиббса; статистическое обоснование третьего термодинамики; свойства макросистем при ; физический смысл энтропии; условия устойчивости термодинамической системы.
Основные умения.
Самостоятельно работать с рекомендованной литературой; определять понятия из п.1; уметь логично обосновывать с использованием математического аппарата элементы знаний из п.2; по известной статистической сумме (статистическому интегралу) определять внутреннюю энергию системы, свободную энергию Гельмгольца, свободную энергию Гиббса, энтропию, уравнение состояния и т.п.; определять направление эволюции открытой системы при постоянных и , постоянных и , постоянных и .
Внутренняя энергия макроскопической системы.
Основой статистической термодинамики является следующее утверждение: внутренняя энергия макроскопического тела тождественна её средней энергии , вычисленной по законам статистической физики:
(2.2.1)
Подставляя каноническое распределение Гиббса, получаем:
(2.2.2)
Числитель правой части равенства (2.2.2) представляет собой производную от Z по :
.
Поэтому выражение (2.2.2) можно переписать в более компактном виде:
(2.2.3)
Таким образом, для нахождения внутренней энергии системы достаточно знать её статистическую сумму Z .
Второе начало термодинамики и «стрела времени».
Энтропия изолированной системы в неравновесном состоянии.
Если система находится в равновесном состоянии или участвует в квазистатическом процессе, её энтропия с молекулярной точки зрения определяется числом микросостояний, соответствующих данному макросостоянию системы с энергией, равной среднему значению:
.
Энтропия изолированной системы в неравновесном состоянии определяется числом микросостояний, соответствующих данному макросостоянию системы:
причём .
Третий закон термодинамики.
Третий закон термодинамики характеризует свойства термодинамической системы при очень низких температурах (). Пусть наименьшая возможная энергия системы – , а энергия возбуждённых состояний – . При очень низкой температуре средняя энергия теплового движения . Следовательно, энергии теплового движения недостаточно для перехода системы в возбуждённое состояние . Энтропия , где – число состояний системы с энергией (то есть в основном состоянии). Поэтому равно единице, при наличии вырождения, небольшому числу (кратности вырождения). Следовательно энтропию системы, и в том и другом случае можно считать равной нулю ( – очень маленькое число). Поскольку энтропия определяется с точностью до произвольной постоянной иногда это утверждение формулируют так: при , . Значение этой постоянной не зависит от давления, объёма и других параметров, характеризующих состояние системы.
Вопросы для самопроверки.
1. Сформулировать постулаты феноменологической термодинамики.
2. Сформулировать второй принцип термодинамики.
3. В чём заключается мысленный эксперимент Нарликара?
4. Доказать, что энтропия изолированной системы при неравновесных процессах возрастает.
5. Понятие внутренней энергии.
6. При каких условиях (в каких случаях) состояние системы можно рассматривать как равновесное?
7. Какой процесс называется обратимым и необратимым?
8. Что такое термодинамический потенциал?
9. Записать термодинамические функции.
10. Объяснить получение низких температур при адиабатическом размагничивании.
11. Понятие об отрицательной температуре.
12. Запишите термодинамические параметры через сумму состояний.
13. Записать основное термодинамическое равенство системы с переменным числом частиц.
14. Объяснить физический смысл химического потенциала.
Задачи.
1. Доказать основное термодинамическое равенство.
2. Найти выражение термодинамического потенциала свободной энергии F через интеграл состояния Z системы.
3. Найти выражение энтропии S через интеграл состояний Z системы.
4. Найти зависимость энтропия S идеального одноатомного газа из N частиц от энергии Е и объёма V .
5. Вывести основное термодинамическое равенство для системы с переменным числом частиц.
6. Вывести большое каноническое распределение.
7. Вычислить свободную энергию одноатомного идеального газа.
II. Статистическая термодинамика.
Основные понятия
Квазистатический процесс; нулевой постулат феноменологической термодинамики; первый постулат феноменологической термодинамики; второй постулат феноменологической термодинамики; третий постулат феноменологической термодинамики; понятие внутренней энергии; функция состояния; функция процесса; основное термодинамическое равенство; понятие энтропии для изолированной неравновесной системы; понятие локальной неустойчивости фазовых траекторий (траекторий частиц); системы с перемешиванием; обратимый процесс; необратимый процесс; термодинамический потенциал; свободная энергия Гельмгольца; свободная энергия Гиббса; соотношения Максвелла; обобщённые координаты и обобщённые силы; принципы экстремума в термодинамике; принцип Ле-Шателье-Брауна.
Лекция 2.
Термодинамика, статистическая физика, информационная энтропия
1. Сведения из термодинамики и статистической физики. Функция распределения. Теорема Лиувилля. Микроканоническое распределение. Первое начало термодинамики. Адиабатические процессы. Энтропия. Статистический вес. Формула Больцмана. Второе начало термодинамики. Обратимые и необратимые процессы.
2. Информационная энтропия Шеннона. Биты, наты, триты и проч. Связь энтропии и информации.
Эта часть относится к лекции 1. Ее лучше рассматривать в разделе V (“Концепция “перепутывания” (entanglement) квантовых состояний”).
ЛЭ CNOT изображается в виде:
Сохраняем значение (ку)бита а, в то время как (ку)бит b меняется по закону XOR:
бит b (мишень = target) меняет свое состояние тогда и только тогда, когда состояние контрольного (control) бита a соответствует 1; при этом, состояние контрольного бита не меняется.
Логическая операция XOR (CNOT) иллюстрирует почему классические данные могут быть клонированы, а квантовые - нет. Заметим, что в общем случае под квантовыми данными мы будем понимать суперпозиции вида
, (1)
где и - комплексные числа или амплитуды состояний, причем, .
Согласно таблице истинности, если XOR применить к булевым данным, в которых второй бит находится в состоянии “0” (b), а первый -в состоянии “Х” (a), то первый бит не изменяется, а второй становится его копией:
U XOR (X, 0) = (X, X), где Х = “0” или “1”.
В квантовом случае, в качестве данных, обозначенных символом “Х”, нужно рассматривать суперпозицию (1):
.
Физически, данные можно закодировать, например, в поляризационном базисе |V> = 1, |H> = 0 (H,V)= (0,1):
и
Видно, что действительно имеет место копирование состояния. Теорема о запрете клонирования утверждает, что невозможно копирование произвольного квантового состояния. В рассмотренном примере копирование произошло, поскольку операция производилась в собственном базисе (|0>, |1>), т.е. в частном случае квантового состояния.
Казалось бы, что операцию XOR можно использовать и для копирования суперпозиций двух булевых состояний, таких как |45 0 > ? |V> + |H>:
Но это не так! Унитарность квантовой эволюции требует, чтобы суперпозиция входных состояний преобразовывалась в соответствующую суперпозицию выходных состояний:
(2)
Это т.н. перепутанное состояние (Ф +), в котором каждый из двух выходных кубитов не имеет определенного значения (в данном случае - поляризации). Этот пример показывает, что логические операции, выполняемые над квантовыми объектами происходят по другим правилам, нежели в классических вычислительных процессах.
Возникает следующий вопрос : Вроде бы состояние в выходной моде а опять-таки можно представить в виде суперпозиции , как и состояние в моде b . Как показать, что это не так, т.е., что вообще нет смысла говорить о состояниях моды (бита) a и моды (бита) b ?
Воспользуемся поляризационной аналогией, когда
(3).
Есть два пути. Путь 1 - длинный, но более последовательный. Надо посчитать средние значения параметров Стокса для обеих выходных мод. Средние берутся по волновой функции (2). Если все , кроме окажутся равными нулю - то это состояние неполяризованное, т.е. смешанное и суперпозиция (3) смысла не имеет. Работаем в представлении Гейзенберга, когда преобразуются операторы, а волновая функция - нет.
Итак, находим в моде a .
- общая интенсивность пучка а,
- доля вертикальной поляризации,
- доля +45 0 -ой поляризации,
- доля право-циркулярной поляризации.
Волновая функция, по которой производится усреднение, берется в виде (2):
где операторы рождения и уничтожения в модах a и b действуют по правилам:
{Вычисления сделать в разделе V (см.тетрадь). Там же рассчитать и вероятность регистрации совпадений или коррелятор вида }
Путь II - более наглядный, но менее “честный”!
Найдем зависимость интенсивности света в моде a от угла поворота поляроида, помещенного в эту моду. Это стандартный квантово-оптический способ проверки состояния (2) - интенсивность не должна зависеть от поворота. В то же время, аналогичная зависимость числа совпадений имеет вид
. Впервые такие зависимости были получены Э.Фраем (1976) и А.Аспеком (1985) и часто интерпретируется как доказательство нелокальности квантовой механики.
Итак, экспериментальная ситуация изображена на рисунке:
По определению
где - оператор уничтожения в моде а. Известно, что преобразование операторов двух ортогонально поляризованных мод x и y при прохождении света через поляроид, ориентированный под углом имеет вид:
.
(только первое, четвертое, пятое и восьмое слагаемые отличны от нуля) =
(только первое и восьмое слагаемые отличны от нуля) = - не зависит от угла?!
Физически это происходит потому, что волновая функция (2) не факторизуется и нет смысла говорить о состояниях в модах а и b по отдельности. Таким образом, нельзя утверждать, что мода а находится в суперпозиционном состоянии (3)!
Замечание. Проделанные вычисления (Путь II) вовсе не доказывают, что состояние в моде а неполяризованное. Например, при наличии в этой моде циркулярно-поляризованного света, результат получился бы таким же. Строгое доказательство - например, через параметры Стокса (в разделе V).
Заметим, что действуя таки же образом, можно доказать, что состояние в моде а до элемента CNOT - поляризованное.
Здесь усреднение нужно проводить по волновой функции исходного состояния (3). Результат получается таким:
т.е. максимум отсчетов достигается при = 45 0 .
Информация и энтропия.
Не вводя пока “операционального” термина “информация” будем рассуждать, пользуясь “бытовым” языком. Т.е. информация - это некое знание об объекте.
За то, что понятия информация и энтропия тесно связаны, говорит следующий пример. Рассмотрим идеальный газ, находящийся в термодинамическом равновесии. Газ состоит из огромного количества молекул, которые двигаются в объеме V. Параметрами состояния являются давление, температура. Число состояний такой системы огромно. Энтропия газа при ТД равновесии максимальна и как следует из формулы Больцмана, определяется числом микросостояний системы. При этом мы ничего не знаем о том, какое конкретно состояние имеет система в данный момент времени у нас нет - информация минимальна. Допустим, что каким-то образом нам удалось с помощью очень быстрого прибора “подсмотреть состояние системы в данный момент времени. Значит мы получили о ней какую-то информацию. Можно даже представить, что мы сфотографировали не только координаты молекул, но и их скорости (например, сделав несколько фотографий одну за другой). При этом в каждые моменты времени, когда нам доступна информация о состоянии системы, энтропия стремится к нулю, т.к. система находится лишь в каком-то одном определенном состоянии из всего огромного их многообразия и это состояние сильно неравновесное. Этот пример показывает, что действительно информация и энтропия как-то связаны, причем уже вырисовывается характер связи: чем больше информация, тем меньше энтропия.
Сведения из термодинамики и статистической физики.
Физические величины, характеризующие макроскопические состояния тел (много молекул), называют термодинамическими (в том числе, энергия, объем). Существуют, однако, и величины, появляющиеся как результат действия чисто статистических закономерностей и имеющие смысл в применении только к макроскопическим системам. Такова, например, энтропия и температура.
Классическая статистика
*Теорема Лиувилля . Функция распределения постоянна вдоль фазовых траекторий подсистемы (речь идет о квазизамкнутых подсистемах, поэтому теорема справедлива только для не очень больших промежутков времени, в течение которых подсистема ведет себя как замкнутая).
Здесь - - функция распределения или плотность вероятности. Она вводится через вероятность w обнаружить подсистему в элементе фазового пространства в данный момент времени: dw = ( p 1 ,..., p s , q 1 ,..., q s ) dpdq , причем
Нахождение статистического распределения для любой подсистемы и является основной задачей статистики. Если статистическое распределение известно, то можно вычислить вероятности различных значений любых физических величин, зависящих от состояний этой подсистемы (т.е. от значений координат и импульсов):
.
*Микроканоническое распределение.
Распределение для совокупности двух подсистем (они полагаются замкнутыми, т.е. слабовзаимодействующими) равно. Поэтому - логарифм функции распределения - величина аддитивная . Из теоремы Лиувилля следует, что функция распределения должна выражаться через такие комбинации переменных p и q, которые при движении подсистемы, как замкнутой, должны оставаться постоянными (такие величины называются интегралами движения). Значит сама функция распределения является интегралом движения. Более того, ее логарифм - тоже интеграл движения, причем аддитивный . Всего в механике существует семь интегралов движения - энергия, три компоненты импульса и три компоненты момента импульса -(для подсистемы а: Е а (p , q ), P а (p , q ), М а (p , q )). Единственная аддитивная комбинация этих величин есть
причем коэффициенты (их семь штук)- должны оставаться одинаковыми для всех подсистем данной замкнутой системы, а выбирается из условий нормировки (4).
Чтобы выполнялось условие нормировки (4), необходимо, чтобы функция (p , q ) обращалась в точках Е 0 , Р 0 , М 0 в бесконечность. Более точная формулировка дает выражение
Микроканоническое распределение.
Наличие - функций обеспечивает обращение в нуль для всех точек фазового пространства, в которых хотя бы одна из величин Е, Р, М не равна своему заданному (среднему) значению Е 0 , Р 0 , М 0 .
От шести интегралов P и М можно избавится, заключив систему в твердый ящик, в котором она покоится.
.
Физическая энтропия
Опять используем понятие идеального газа.
Пусть одноатомный идеальный газ с плотностью n и температурой Т занимает объем V . Будем измерять температуру в энергетических единицах - не будет фигурировать постоянная Больцмана. Каждый атом газа имеет среднюю кинетическую энергию теплового движения, равную 3Т/2 . Поэтому полная тепловая энергия газа равна
Известно, что давление газа равно p = nT . Если газ может обмениваться теплом с внешней средой, то закон сохранения энергии газа выглядит так:
. (5)
Таким образом, изменение внутренней энергии газа может происходить как за счет совершаемой им работы, так и вследствие поступления некоторого количества тепла dQ извне. Это уравнение выражает первое начало термодинамики, т.е. закон сохранения энергии. При этом предполагается, что газ находится в равновесии, т.е. p = const по всему объему.
Если же допустить, что газ находится и в состоянии ТД равновесия, Т = const , то соотношение (5) можно рассматривать как элементарный процесс вариации параметров газа при их очень медленном изменении, когда ТД равновесие не нарушается. Именно для таких процессов и вводится понятие энтропии S с помощью соотношения
Таким образом, утверждается, что у равновесного газа кроме внутренней энергии есть еще одна внутренняя характеристика, связанная с тепловым движением атомов. Согласно (5, 6) при постоянном объеме dV = 0, изменение энергии пропорционально изменению температуры, а в общем случае
Так как где N = nV = const есть полное количество атомов газа, то последнее соотношение можно записать в виде
После интегрирования получаем
Выражение в квадратных скобках представляет собой энтропию, приходящуюся на одну частицу.
Таким образом, если и температура и объем изменяются таким образом, что VT 3/2 остается постоянным, то и энтропия S не изменяется. Согласно (6) это означает, что газ не обменивается теплом с внешней средой, т.е. газ отделен от нее теплоизолирующими стенками. Такой процесс называется адиабатическим .
Поскольку
где = 5/3 называется показателем адиабаты. Таким образом при адиабатическом процессе температура и давление изменяются с плотностью по закону
Формула Больцмана
Как следует из теоремы Лиувилля, функция распределения? имеет резкий максимум при Е = Е 0 (среднее значение) и отлична от нуля только в окрестности этой точки. Если ввести ширину Е кривой (Е), определив ее как ширину прямоугольника, высота которого равна значению функции (Е) в точке максимума, а площадь равна единице (при надлежащей нормировке). Можно перейти от интервала значений энергии к числу состояний Г с энергиями, принадлежащими Е (это, фактически, средняя флуктуация энергии системы). Тогда величина Г характеризует степень размазанности макроскопического состояния системы по ее микроскопическим состояниям. Другими словами, для классических систем Г - это размер той области фазового пространства, в которой данная подсистема проводит почти все время В квазиклассической теории устанавливается соответствие между объемом области фазового пространства и приходящимся на него числом квантовых состояний.. А именно, на каждое квантовое состояние в фазовом пространстве приходится клетка с объемом , где s - число степеней свободы
Величину Г называют статистическим весом макроскопического состояния, его можно записать в виде:
Логарифм статистического веса называется энтропией:
где - статистический вес = число микросостояний, охватываемых рассматриваемым макросостоянием системы.
.
В квантовой статистике показывается, что = 1. Тогда
Где под понимается статистическая матрица (плотности). Ввиду линейности логарифма функции распределения по энергии (*) , где усреднение проводится по функции распределения .
Поскольку число состояний во всяком случае не меньше единицы, то энтропия не может быть отрицательной. S определяет густоту уровней энергетического спектра макроскопической системы. Ввиду аддитивности энтропии можно сказать, что средние расстояния между уровнями макроскопического тела экспоненциально убывают с увеличением его размеров (т.е. числа частиц в нем). Наибольшее значение энтропии соответствует полному статистическому равновесию.
Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, можно сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распределению энергии. Это возрастание вероятности велико в силу его экспоненциального характера e S - в экспоненте стоит аддитивная величина - энтропия. Т.о. процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей энтропией в состояния с большей энтропией. В итоге энтропия достигает наибольшего возможного значения, соответствующего полному статистическому равновесию.
Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это - второй закон термодинамики (Р.Клаузиус, 1865г.). Его статистическое обоснование дано Л.Больцманом в 1870г. Другое определение:
если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает. Она увеличивается или в предельном случае остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые . Необратимые - те процессы, которые сопровождаются увеличением энтропии всей замкнутой системы (процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшаться). Заметим, что уменьшение энтропии может быть вызвано флуктуациями. Обратимыми называются процессы, при которых энтропия замкнутой системы остается постоянной и которые, следовательно, могут проходить и в обратном направлении. Строго обратимый процесс представляет собой идеальный предельный случай.
При адиабатических процессах система не поглощает и не отдает тепло ? Q = 0 .
Замечание: (существенное). Утверждение о том, что замкнутая система должна в течение достаточно длительного времени (большего, чем время релаксации) перейти в состояние равновесия относится лишь к системе, находящейся в стационарных внешних условиях. Пример - поведение доступной нашему наблюдению большой области Вселенной (свойства природы не имеют ничего общего со свойствами равновесной системы).
Информация.
Рассмотрим ленту, разбитую на ячейки - классический регистр. Если в каждой ячейке может быть помещен только один из двух символов, то говорят, что в ячейке содержится бит информации. Очевидно (см. лекцию 1), что в регистре, содержащем N ячеек содержится N бит информации и в нем можно записать 2 N сообщений. Итак, информационная энтропия измеряется в битах:
(7)
Здесь Q N = 2 N - полное число различных сообщений. Из (7) ясно, что информационная энтропия просто равна минимальному числу двоичных ячеек, с помощью которых можно записать некую информацию.
Определение (7) можно переписать по-другому. Пусть у нас имеется множество Q N различных сообщений. Найдем вероятность того, что необходимое нам сообщение совпадет со случайно выбранным из общего числа Q N различных сообщений. Она равна, очевидно, P N = 1/ Q N . Тогда определение (7) запишется как:
(8)
Чем больше число ячеек N , тем меньше вероятность P N и тем больше информационная энтропия H B , содержащейся в данном конкретном сообщении.
Пример . Число букв алфавита равно 32 (без буквы ё). Число 32 есть пятая степень двойки 32 = 2 5 . Чтобы каждой букве сопоставить определенную комбинацию двоичных чисел необходимо иметь 5 ячеек. Добавив к строчным буквам заглавные, мы удваиваем число символов, которые хотим закодировать - их станет 64 = 2 6 - т.е. добавляется лишний бит информации H B = 6. Здесь H B - объем информации, приходящийся на одну букву (строчную или заглавную). Однако такой прямой подсчет информационной энтропии не совсем точен, поскольку в алфавите есть буквы, которые встречаются реже или чаще. Тем буквам, которые встречаются реже, можно отдать большее количество ячеек, а на часто встречающихся буквах - сэкономить и отдать им те состояния регистра, которые занимают меньшее количество ячеек. Точное определение информационной энтропии было дано Шенноном:
(9)
Формально вывод этого соотношения можно обосновать следующим образом.
Мы показали выше, что
из-за аддитивности логарифма функции распределения и его линейности по энергии.
Пусть p - функция распределения какой-нибудь дискретной величины f i (например, буквы “о” в этом тексте). Если с помощью функции p построить функцию распределения вероятностей различных значений величины f = f 1 , f 2 ,... f N , то эта функция будет иметь максимум при , где и (нормировка). Тогда p()= 1 и (вообще говоря, это справедливо для класса функций, удовлетворяющих условию (*))
Суммирование ведется по всем символам (буквам алфавита), а p i означает вероятность появления символа с номером i . Как видно это выражение охватывает как часто используемые буквы, так и буквы, вероятность появления которых в данном сообщении мала.
Поскольку в выражении (9) используется натуральный логарифм, соответствующую единицу информации называют “нат”.
Выражение (9) можно переписать в виде
где скобки означают обычное классическое усреднение с помощью функции распределения p i .
Замечание . В следующих лекциях будет показано, что для квантовых состояний
где - матрица плотности. Формально выражения (10) и (11) совпадают, однако есть и существенная разница. Классическое усреднение производится по ортогональным (собственным) состояниям системы, в то время как для квантового случая состояния могут быть и неортогональные (суперпозиции). Поэтому всегда H quant H class !
В формулах (8) и (9) используются логарифмы при разных основаниях. В (8) - по основанию 2, а в (9) - по основанию е. Соответствующие этим формулам информационные энтропии можно легко выразить друг через друга. Воспользуемся соотношением, в котором M - произвольное число
.
Тогда, учтя, что а получаем
- число бит почти в полтора раза больше числа нат!
Рассуждая аналогично, можно получить соотношение между энтропиями, выраженными в тритах и битах:
В компьютерной технике пользуются информацией по двоичному основанию (в битах). Для рассуждений в физике удобнее пользоваться информацией по Шеннону (в натах), которой можно характеризовать любую дискретную информацию. Всегда можно найти число соответствующих бит.
СВЯЗЬ ЭНТРОПИИ И ИНФОРМАЦИИ. Демон Максвелла
Этот парадокс впервые был рассмотрен Максвеллом в 1871г (см. рис.1). Пусть некая “сверхъестественная” сила открывает и закрывает заслонку в сосуде, перегороженном на две части и содержащем газ. Заслонка управляется по правилу: она открывается, если быстрые молекулы, двигающиеся справа налево, соприкасаются с ней или, если медленные молекулы ударяют в нее, двигаясь в противоположном направлении. Таким образом демон вводит разницу температур между двумя объемами без совершения работы, что нарушает второе начало термодинамики.
Демон Максвелла. Демон устанавливает разность давления открывая заслонку, когда число молекул газа, ударивших в нее слева превышает число ударов справа. Это можно сделать полностью обратимым способом до тех пор, пока в памяти демона сохраняются случайные результаты его наблюдений за молекулами. Поэтому память демона (или его голова) нагревается. Необратимый шаг состоит не в том, что накапливается информация, а в том, что информация теряется, когда демон потом очищает память. Сверху: заполнение памяти демона битами информации – это случайный процесс. По правую сторону от пунктира – незаполненная область памяти (все ячейки находятся в состоянии 0, слева – случайные биты). Внизу – демон.
Был предпринят целый ряд попыток разрешить парадокс или изгнать демона. Например, предполагалось, что демон не может извлечь информацию без совершения работы или без возмущения (т.е. нагрева) газа – но, оказалось, что это не так! Другие попытки сводились к тому, что второе начало может нарушаться под действием неких «разумных» или “мыслящих” сил (существ). В 1929г. Лео Сцилард существенно «продвинул» решение проблемы, сведя ее к минимальной формулировке и выделив существенные компоненты. Главное, что нужно сделать Демону это установить находится ли единичная молекула справа или слева от скользящей заслонки, что позволило бы извлекать тепло. Такое устройство было названо двигателем Сциларда. Однако Сцилард не разрешил парадокса, поскольку его анализ не учитывал, как измерение, посредством которого демон узнает находится ли молекула справа или слева, влияет на увеличение энтропии (см рисунок Szilard_demon.pdf). Двигатель работает по шести-шагвому циклу. Двигатель представляет собой цилиндр, в торцах которого помещены поршни. В середину вставляется заслонка. Работа по вдвиганию перегородки может быть сведена к нулю (это показал Сциллард). Также имеется устройство памяти (УП). Оно может находиться в одном из трех состояний. «Пусто», «Молекула справа» и «Молекула слева». Исходное состояние: УП= «Пусто», поршни – отжаты, перегородка – выдвинута, у молекулы есть средняя скорость, которая определяется температурой термостата (слайд 1).
1. перегородка вставляется, оставляя молекулу справа или слева (слайд 2).
2. Устройство памяти определяет, где находится молекула и переходит в состояние «справа» или «слева».
3. Сжатие. В зависимости от состояния УП происходит вдвигание поршня со стороны, где нет молекулы. Этот этап не требует совершение работы. Поскольку сжимается вакуум (слайд 3).
4. Перегородка удаляется. Молекула начинает оказывать давление на поршень (слайд 4).
5. Рабочий ход. Молекула ударяется в поршень, заставляя его двигаться в обратном направлении. Энергия молекулы передается поршню. При движении поршня ее средняя скорость должна уменьшаться. Однако этого не происходит, поскольку стенки сосуда находятся при постоянной температуре. Поэтому тепло от термостата передается молекуле, поддерживая ее скорость постоянной. Таким образом во время рабочего хода происходит преобразование тепловой энергии, поступаемой из термостата в механическую работу, совершаемую поршнем (слайд 6).
6. Очищение УП, возвращая ее в состояние «Пусто» (слайд 7). Цикл завершен (слайд 8 = слайд 1).
Удивительно, что этот парадокс не был разрешен до 80-ых годов 20-го века. За это время было установлено, что в принципе, любой процесс можно сделать обратимым образом, т.е. без «оплаты» энтропией. Наконец, Беннетт в 1982г. установил окончательную связь между этим утверждением и парадоксом Максвелла. Он предложил, что демон на самом деле может узнать, где находится молекула в двигателе Сциларда без совершения работы или увеличения энтропии окружения (термостата) и таким образом, совершить полезную работу за один цикл работы двигателя. Однако, информация о положении молекулы должна оставаться в памяти демона (рси.1). По мере выполнения большего числа циклов все больше и больше информации накапливается в памяти. Для завершения термодинамического цикла демон должен стереть информацию, запасенную в памяти. Именно эту операцию стирания информации приходится классифицировать как процесс увеличения энтропии окружения, как требуется вторым началом. На этом завершается принципиально физическая часть устройства демона Максвелла.
Некоторое развитие этих идей получило в работах Д.Д.Кадомцева.
Рассмотрим идеальный газ, состоящий только из одной частицы (Кадомцев, «динамика и информация»). Это не абсурд. Если одна частица заключена в сосуде объемом V со стенками, находящимися при температуре Т, то рано или поздно она придет в равновесие с этими стенками. В каждый момент времени она находится во вполне определенной точке пространства и с вполне определенной скоростью. Будем проводить все процессы настолько медленно, что частица успеет в среднем заполнить весь объем и многократно поменять величину и направление скорости при неупругих столкновениях со стенками сосуда. Таким образом, частица оказывает на стенки среднее давление, имеет температуру Т и ее распределение по скоростям является максвелловским с температурой Т . Эту систему из одной частицы можно адиабатически сжимать, можно менять ее температуру, давая ей возможность прийти в равновесие со стенками сосуда.
Среднее давление на стенку при N = 1 , равно p = T/ V , а средняя плотность n = 1/ V . Рассмотрим случай изотермического процесса, когда Т = const . Из первого начала при Т = const . и p = T/ V получаем
, поскольку
Отсюда находим, что изменение энтропии не зависит от температуры, так что
Здесь введена постоянная интегрирования: “размер частицы”< Работа при изотермическом процессе работа определяется разностью энтропий. Пусть у нас имеются идеальные перегородки, которыми можно поделить сосуд на части без затраты энергии. Разделим наш сосуд на две равные части с объемом V
/2
каждая. При этом частица будет находиться в одной из половин - но мы не знаем в какой. Допустим, что у нас есть прибор, который позволяет определить в какой из частей находится частица, например, прецизионные весы. Тогда из симметричного распределения вероятностей 50% на 50% нахождения в двух половинках мы получаем 100% вероятности для одной из половин - происходит “коллапс” распределения вероятностей. Соответственно, новая энтропия окажется меньше исходной энтропии на величину За счет уменьшения энтропии можно совершить работу. Для этого достаточно двигать перегородку в сторону пустого объема вплоть до его исчезновения. Работа будет равна Если бы во внешнем мире ничего не менялось, то повторяя эти циклы, можно построить вечный двигатель второго рода. Это и есть демон Максвелла в варианте Сцилларда. Но второй закон термодинамики запрещает получение работы только за счет тепла. Значит во внешнем мире должно что-то происходить. Что же это? Обнаружение частицы в одной из половин меняет информацию о частице -
из двух возможных половинок указывается только одна, в которой находится частица. Это знание соответствует одному биту информации. Процесс измерения уменьшает энтропию частицы (перевод в неравновесное состояние) и ровно настолько же увеличивает информацию о системе (частице). Если совершать повторные деления пополам полученной ранее половинки, четвертушки, восьмушки и т.д., то энтропия будет последовательно уменьшаться, а информация - увеличиваться! Другими словами Чем больше известно о физической системе, тем меньше ее энтропия. Если о системе известно все - это значит, что мы перевели ее в сильнонеравновесное состояние, когда ее параметры максимально удалены от равновесных значений. Если в нашей модели частицу удастся поместить в элементарную ячейку объема V
0
, то при этом S
= 0
, а информация достигает своего максимального значения поскольку вероятность p min
найти частицу в данной ячейке равна V
0
/
V
. Если в последующие моменты времени частица начнет заполнять больший объем, то информация будет утрачиваться, а энтропия - расти. Подчеркнем, что за информацию нужно платить (по второму началу) увеличением энтропии S e
внешней системы, причем Действительно, если бы за один бит информации прибор (внешняя система) увеличивал свою энтропию на величину меньшую одного бита, то мы могли бы обратить тепловую машину. А именно, расширяя объем, занятый частицей, мы бы увеличивали ее энтропию на величину ln
2
, получая работу Tln
2
, а суммарная энтропия системы частица плюс прибор уменьшилась бы. Но это невозможно по второму началу. Формально, , поэтому уменьшение энтропии системы (частицы) сопровождается увеличением энтропии прибора . Итак, информационная энтропия
- это мера недостатка (или степень неопределенности) информации о действительном состоянии физической системы. Информационная энтропия Шеннона: , где (это относится к двухуровневым системам, типа бит: “0” и “1”. Если размерность равна n
, то H
=
log n
.
Так, для n
= 3, Н =
log
3
причем, = 3.) Количество информации
I
(или просто информация) о состоянии классической системы, получаемое в результате измерений внешним прибором, связанным с рассматриваемой системой некоторым каналом связи, определяется как разность информационной энтропии, соответствующей начальной неопределенности состояния системы H
0
, и информационной энтропии конечного состояния системы после измерения H
. Таким образом, I
+
H
=
H
0
=
const
.
В идеальном случае, когда отсутствуют шумы и помехи, создаваемые внешними источниками в канале связи, конечное распределение вероятностей после измерения сводится к одному определенному значению p n
= 1, т.е. H
=
0, а максимальное значение полученной при измерении информации будет определяться:
I max
=
H
0
. Таким образом, информационная энтропия Шеннона системы имеет смысл максимальной информации, заключенной в системе; она может быть определена в идеальных условиях измерения состояния системы в отсутствие шумов и помех, когда энтропия конечного состояния равна нулю: Рассмотрим классический логический элемент, который может находиться в одном из двух равновероятных логических состояний “0” и “1”. Такой элемент вместе с окружающей средой - термостатом и генерируемым внешним теплоизолированным объектом сигналом единую неравновесную замкнутую систему. Переход элемента в одно из состояний, например, в состояние “0”, соответствует уменьшению стат. веса его состояния по сравнению с начальным состоянием в 2 раза (для трехуровневых систем - в 3 раза). Найдем уменьшение информационной энтропии
Шеннона, которое соответствует увеличению количества информации об элементе на единицу, которая называется битом
: Следовательно, информационная энтропия определяет число битов, которое требуется для кодирования информации в рассматриваемой системе или сообщении. ЛИТЕРАТУРА 1. Д.Ландау, И.Лифшиц. Статистическая физика. Часть 1. Наука, М 1976. 2. М.А.Леонтович. Введение в термодинамику. Статистическая физика. Москва, Наука, 1983. - 416с. 3. Б.Б.Кадомцев. Динамика и информация. УФН, 164, №5, 449 (1994).