» » Способы защиты от статического электричества. Понятие статического электричества и защита от него. Заряды в газовых смесях

Способы защиты от статического электричества. Понятие статического электричества и защита от него. Заряды в газовых смесях

Статическое электричество (согласно ГОСТ 12.1.018) — это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности (или в объеме) диэлектриков или на изолированных проводниках.

Возникновение зарядов статического электричества. Заряды статического электричества образуются при самых разнообразных производственных условиях, но чаще всего при трении одного диэлектрика о другой или диэлектриков о металлы. На трущихся поверхностях могут накапливаться электрические заряды, легко стекающие в землю, если физическое тело является проводником электричества и заземлено. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они и получили название статического электричества.

Статическое электричество возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твердых веществ, имеющих различные атомные и молекулярные силы поверхностного притяжения.

Мерой электризации является заряд, которым обладает данное вещество. Интенсивность образования зарядов возрастает с увеличением скорости перемещения материалов, их удельного сопротивления, площади контакта и усилия взаимодействия. Степень электризации заряженного тела характеризует его потенциал относительно земли.

В производстве накопление зарядов статического электричества часто наблюдается при: трении приводных ремней о шкивы или транспортерных лент о валы, особенно с пробуксовкой; перекачке огнеопасных жидкостей по трубопроводам и наливе нефтепродуктов в емкости; движении пыли по воздуховодам; дроблении, перемешивании и просеивании сухих материалов и веществ; сжатии двух разнородных материалов, один из которых диэлектрик; механической обработке пластмасс; транспортировании сжатых и сжиженных газов по трубам и истечении их через отверстия, особенно если в газах содержится тонко распыленная жидкость, суспензия или пыль; движении автотранспортера, тележек на резиновых шинах и людей по сухому изолирующему покрытию и т. д.

Сила тока электризации потока нефтепродуктов в трубопроводах зависит от диэлектрических свойств и кинематической вязкости жидкости, скорости потока, диаметра трубопровода и его длины, материала трубопровода, шероховатости и состояния его внутренних стенок, температуры жидкости. При турбулентном потоке в длинных трубопроводах сила тока пропорциональна скорости движения жидкости и диаметру трубопровода. Степень электризации движущихся диэлектрических лент (например, транспортерных) зависит от физико-химических свойств соприкасающихся материалов, плотности их контакта, скорости движения, относительной влажности и т. д.

Опасность разрядов статического электричества. Искровые разряды статического электричества представляют собой большую пожаро- и взрывоопасность. Их энергия может достигать 1,4 Дж, что вполне достаточно для воспламенения паро-, пыле- и газовоздушных смесей большинства горючих веществ. Например, минимальная энергия воспламенения паров ацетона составляет 0,25 ·10-3 Дж, метана 0,28 ·10-3, оксида углерода 8 ·10-3, древесной муки 0,02, угля 0,04Дж. Поэтому в соответствии с ГОСТ 12.1.018 электростатическая безопасность объекта считается достигнутой только в том случае, если максимальная энергия разрядов, которые могут возникнуть внутри объекта или с его поверхности, не превышает 40 % минимальной энергии зажигания веществ и материалов.

Электростатический заряд, возникающий при выполнении некоторых производственных процессов, может достигать нескольких тысяч вольт. Например, при трении частиц песка и пыли о днище кузова при движении автомобиля генерируется потенциал до 3 кВ; при перекачке бензина по трубопроводу — до 3,6кВ; при наливании электризующихся жидкостей (этилового спирта, бензина, бензола, этилового эфира и др.) в незаземленные резервуары в случае свободного падения струи жидкости в наполняемый сосуд и большой скорости истечения —до 18...20кВ; при трении ленты транспортера о вал — до 45 кВ; при трении трансмиссионных ремней о шкивы —до 80кВ.

При этом следует иметь в виду, что для взрыва паров бензина достаточно потенциала 300 В; при разности потенциалов 3 кВ воспламеняются горючие газы, а 5 кВ — большинство горючих пылей.

Статическое электричество может накапливаться и на теле человека при ношении одежды из шерсти или искусственного волокна, движении по токонепроводящему покрытию пола или в диэлектрической обуви, соприкосновении с диэлектриками, достигая в отдельных случаях потенциала 7 кВ и более. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Физиологическое действие статического электричества зависит от освободившейся при разряде энергии и может ощущаться в виде слабых, умеренных или сильных уколов, а в некоторых ситуациях — в виде легких, средних и даже острых судорог. Так как сила тока разряда статического электричества ничтожно мала, то в большинстве случаев такое воздействие неопасно. Однако возникающие при этом явлении рефлекторные движения человека могут привести к тяжелым травмам вследствие падения с высоты, захвата спецодежды или отдельных частей тела неогражденными подвижными частями машин и механизмов и т. п.

Статическое электричество может также нарушать нормальное течение технологических процессов, создавать помехи в работе электронных приборов автоматики и телемеханики, средств радиосвязи.

Мероприятия по защите от статического электричества проводят во взрыво- и пожароопасных помещениях и зонах открытых установок, относящихся к классам B-I, B-I6, В-II и В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защиту осуществляют на тех участках производства, где статическое электричество отрицательно влияет на нормальное протекание технологического процесса и качество продукции.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия.

Предотвращение накопления зарядов статического электричества достигается заземлением оборудования и коммуникаций, на которых они могут появиться, причем каждую систему взаимосвязанных машин, оборудования и конструкций, выполненных из металла (пневмосушилки, смесители, газовые и воздушные компрессоры, мельницы, закрытые транспортеры, устройства для налива и слива жидкостей с низкой электропроводностью и т. п.), заземляют не менее чем в двух местах. Трубопроводы, расположенные параллельно на расстоянии до 10см, соединяют между собой металлическими перемычками через каждые 25 м. Все передвижные емкости, временно находящиеся под наливом или сливом сжиженных горючих газов и пожароопасных жидкостей, на время заполнения присоединяют к заземлителю. Автозаправщики и автомобильные цистерны заземляют металлической цепью, соблюдая длину касания земли не менее 200 мм.

Снижение интенсивности возникновения зарядов статического электричества достигается соответствующим подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения, очисткой горючих газов и жидкостей от примесей. Безопасные скорости транспортировки жидких и пылевидных веществ зависят от их удельного объемного электрического сопротивления ρv. Так, для жидкостей с ρv ≤ 105 Ом ·м допустимая скорость должна быть не более 10 м/с, при 105 Ом ·м < pv < 109 Ом· м — до 5 м/с, а при ρv > 109 Ом·м скорости устанавливают для каждой жидкости отдельно, но, как правило, не более 1,2 м/с. При подаче жидкостей в резервуары необходимо исключить их разбрызгивание, распыление и бурное перемешивание. Наливную трубку необходимо удлинить до дна сосуда с направлением струи вдоль его стенки. При первоначальном заполнении резервуаров жидкость подают со скоростью, не превышающей 0,5...0,7 м/с.

Лучший способ снижения интенсивности накопления зарядов статического электричества в ременных передачах — увеличение электропроводимости ремней, например, с помощью прошивки внутренней поверхности ремня тонкой медной проволокой в продольном направлении или смазыванием его внутренней поверхности токопроводяшими составами (содержащими, например, сажу и графит в соотношении 1:2,5 по массе и др.). Следует также уделять внимание регулировке натяжения ремней и по возможности снижению скорости их движения до 5 м/с.

Если предотвратить накопление зарядов статического электричества заземлением не удается, то следует принять меры по уменьшению объемных и поверхностных диэлектрических сопротивлений обрабатываемых материалов. Это достигается повышением относительной влажности воздуха до 65...70 %, химической обработкой поверхности, применением антистатических веществ, нанесением электропроводных пленок, уменьшением скорости перемещения заряжающихся материалов, увеличением чистоты обработки трущихся поверхностей и т. д.

При невозможности использования средств защиты от статического электричества рекомендуется нейтрализовать заряды ионизацией воздуха в местах их возникновения или накопления. Для этого используют специальные приборы — ионизаторы, создающие вокруг наэлектризованного объекта положительные и отрицательные ионы. Ионы, имеющие заряд, противоположный заряду диэлектрика, притягиваются к объекту и нейтрализуют его. Для отвода статического электричества с тела человека предусматривают токопроводящие полы или заземленные зоны, рабочие площадки, поручни лестниц, рукоятки приборов и т.д.; обеспечивают работающих токопроводящей обувью с сопротивлением подошвы не более 108 Ом, а также антистатической спецодеждой.

Согласно действующим правилам защиты от разрядов статического электричества должна осуществляться во взрывоопасных и пожароопасных производствах при наличие зон классов В-I, B-Ia, B-II, B-IIa, П-I и П-II, в которых применяются и вырабатываются вещества с удельным объёмным электрическим сопротивлением Ом∙м.

В остальных случаях защита осуществляется лишь тогда, когда статическое электричество предоставляет опасность для обслуживающего персонала, отрицательно влияет на технологический процесс или качество продукции.

Основными способами устранения опасности от статического электричества является (слайд):

1) заземление оборудования, коммуникаций, аппаратов и сосудов, а так же обеспечение постоянного электрического контакта с заземлением тела человека;

2) уменьшение удельного объемного и поверхностного электрического сопротивления путем повышения влажности воздуха или применения антистатических примесей;

3) ионизацией воздуха или среды, в частности, в нутрии аппарата, сосуда и т.д.

Кроме этих способов используют: предотвращение образования взрывоопасных концентрации, ограничение скорости движения жидкости, замену ЛВЖ на негорючие растворители и т.д. Практический способ устранения опасности от статического электричества выбирается с учётом эффективности и экономической целесообразности.

Остановимся более подробно на указанных выше способах устранения опасности от статического электричества.

Заземление (18 мин) – наиболее часто применяемая мера защиты от статического электричества. Его целью является устранение опасности возникновения электрических разрядов с проводящих частей оборудования. Поэтому все проводящие части оборудования, и электропроводные неметаллические предметы подлежат обязательному заземлению, независимо от того, применяются ли другие способы защиты от статического электричества. Заземлять следует не только те части оборудования, которые участвуют в генерировании статического электричества, но и все другие указанного выше свойства, так как они могут зарядиться по закону электростатической индукции.

В случаях, когда оборудование выполнено из электропроводящих материалов, заземление является основным и почти всегда достаточным способом защиты.

Если же на внешней поверхности или внутренних стенках металлических аппаратов, резервуаров и трубопроводов образуются отложения непроводящих веществ (смолы, пленки, осадки), заземление становится неэффективным. Заземление не устраняет опасности и при использовании аппаратов с эмалированными и другими неэлектропроводящими покрытиями.

Неметаллическое оборудование считается электростатически заземленным, если сопротивление растеканию тока на землю с любых точек его внешней и внутренней поверхности Ом при относительной влажности. Такое сопротивление обеспечивает необходимое значение постоянной времени релаксации в пределах десятой доли секунды в невзрывоопасной и тысячные доли секунды во взрывоопасной среде. Постоянная времени релаксациисвязана с сопротивлениемR заземления аппарата или оборудования и его емкостью C соотношением τ = R C .

Трубопроводы наружных установок (на эстакадах или в каналах), оборудование и трубопроводы, расположенные в цехах, должны представлять на всем протяжении электрическую цепь и присоединяться к заземляющим устройствам. Считается, что электрическая проводимость фланцевых соединений трубопроводов и аппаратов, соединений крышек с корпусами аппаратов и т.п. достаточно высока, поэтому не требуется устанавливать специальных параллельных перемычек.

Каждая система аппаратов и трубопроводов в пределах цеха должна быть заземлена не менее, чем в двух местах. Все резервуары и емкости вместимостью более 50 м 3 и диаметром более 2,5 м заземляют не менее чем в двух противоположенных точках. На поверхности горючих жидкостей в резервуарах не должно быть плавающих предметов.

Наливные стояки эстакад для заполнения железнодорожных цистерн и рельсы железнодорожных путей в пределах сливоналивного фронта должны быть электрически соединены между собой и надежно заземлены. Автоцистерны, наливные суда, самолеты, находящиеся под наливом (сливом) горючих жидкостей и сжиженных газов, должны также заземляться. Контактные устройства (без средств взрывозащиты) для присоединения заземляющих проводников должны быть установлены за пределами взрывоопасной зоны (не менее 5м от места налива или слива, ПУЭ). При этом проводники вначале присоединяются к корпусу объекта заземления, а затем к заземляющему устройству.

Следует отметить, что применяемые до сих пор для заземления автоцистерн заземляющие проводники не обеспечивают требуемого уровня пожаровзрывобезопасности технологии налива или слива топлива и других ЛВЖ. Поэтому в настоящее время разработаны и серийно выпускаются специальные устройства заземления автоцистерн (УЗА) типов УЗА-2МИ, УЗА-2МК и УЗА-2МК-03, которые соответствуют требованиям ГОСТов и могут устанавливаться во взрывоопасных зонах класса В-Iг.

Если для защиты от статической электризации проводящего неметаллического оборудования с проводящей футеровкой применяется заземление, то к нему применяются те же требования, что и к заземлению металлического оборудования. Например, заземление трубопровода из диэлектрического материала, но с проводящим покрытием (краска, лак), может выполняться присоединением его к заземляющему контуру с помощью металлических хомутов и проводников через 20÷30 м.

Но заземление не решает задачу защиты от статического электричества резервуара, заполняемого наэлектризованной жидкостью, лишь исключает накопление заряда (натекающего из объема жидкости) на его стенках, но не ускоряет процесс рассеяния заряда в жидкости. Это объясняется тем, что скорость релаксации зарядов статического электричества в объеме диэлектрической жидкости нефтепродуктов определяется постоянной времени релаксации . Следовательно, в заполняемом наэлектризованными продуктами резервуаре в течении всего времени закачки жидкости и в течении времени, приблизительно равном, после ее окончания существует электрическое поле зарядов независимо от того, заполняется этот резервуар или нет. Именно в этот промежуток времени может существовать опасность воспламенения паровоздушной смеси нефтепродуктов в резервуаре разрядами статического электричества.

С учетом сказанного выше, значительную опасность представляет забор проб из резервуара сразу после его заполнения. Но через промежуток времени, примерно равный , после окончания заполнения заземленного резервуара заряды статического электричества в нем практически исчезают и проведение забора проб жидкости становится безопасным.

Для светлых нефтепродуктов, имеющих малую электропроводность (при Ом∙м), необходимое время выдержки после заполнения резервуара, обеспечивающее безопасность дальнейших операций, должно быть не менее 10 минут.

Заземление резервуара и выдержка необходимого времени после заполнения не дадут нужного эффекта безопасности, если в резервуаре имеются плавающие на поверхности жидкости изолированные предметы, которые могут приобрести заряд статического электричества при заполнении резервуара и сохранить его в течении времени, значительно превышающем . В этом случае при контакте плавающего предмета с заземленным проводящим телом может произойти опасное искрообразование.

Уменьшение объемного и поверхностного удельных электрических сопротивлений (8 мин).

При этом увеличивается электропроводность и обеспечивается способность диэлектрика отводить заряды статического электричества. Устранение опасности статической электризации диэлектриков этим способом является весьма эффективным и может быть достигнуто повышением влажности воздуха, химической обработкой поверхности, применением электропроводных покрытий и антистатических веществ (присадок).

А. Повышение относительной влажности воздуха.

Большинство пожаров от искр статического электричества происходит обычно зимой, когда относительная влажность воздуха велика. При относительной влажности 65÷70%, как показывают исследования и практика, число вспышек и загораний становится незначительным.

Ускорение стекания электростатических зарядов с диэлектриков при высокой влажности объясняют тем, что на поверхности гидрофильных диэлектриков адсорбируется тонкая пленка влаги, содержащая обычно большое количество ионов из загрязнений и растворенного вещества, за счет которых обеспечивается достаточная поверхностная электропроводность электролитического характера.

Однако, если материал находится при более высокой температуре, чем та, при которой пленка может удерживаться на поверхности, указанная поверхность не может стать проводящей даже при очень высокой влажности воздуха. Эффект также не будет достигнут, если заряженная поверхность диэлектрика гидрофобна (несмачиваемая: сера, парафин, масла и другие углеводороды) или скорость ее перемещения больше, чем скорость образования поверхностной пленки.

Увеличение влажности достигается распылением водяного пара или воды, циркуляцией влажного воздуха, а иногда свободным испарением с поверхности воды или охлаждением электризующей поверхности на 10 о С ниже температуры окружающей среды.

Б.Химическая обработка поверхности, электропроводные покрытия.

Уменьшение удельного поверхностного сопротивления полимерных материалов может быть достигнуто химической обработкой их поверхности кислотами (например серной или хлорсульфоновой). В результате этого поверхности полимера (полистирол, полиэтилен и полиэфирные пленки) окисляются или сульфируются и удельное сопротивление уменьшается до 10 6 Ом при относительной влажности воздуха 75%.

Положительный эффект достигается и при обработке изделий из полистирола и полиолефинов погружением образцов в петролейный эфир при одновременном воздействии ультразвуком. Методы химической обработки эффективны, но требуют точного соблюдения технологических условий.

Иногда нужный эффект достигается нанесением на диэлектрик поверхостной проводящей пленки, например, тонкой металлической, получаемый распылением, разбрызгиванием, испарением в вакууме или наклеиванием металлической фольги. Пленки на углеродной основе получают распылением углерода в жидкой среде или порошка с частицами меньше 1 мкм.

В. Применение антистатических веществ.

Большинство горючих и легковоспламеняющихся жидкостей характеризуются высоким удельным электрическим сопротивлением. Поэтому при некоторых операциях, например с нефтепродуктами, происходит накопление зарядов статического электричества, которое препятствует интенсификации технологических операций, а также служит источником взрывов и пожаров на нефтеперерабатывающих и нефтехимических предприятиях.

Движение жидких углеводородов относительно твердой, жидкой или газообразной среды может привести к разделению электрических зарядов на поверхности соприкосновения. При движение жидкости по трубе слой зарядов находящихся на поверхности жидкости, уносится её потоком, а заряды противоположного знака остаются на контактирующей с жидкостью поверхностью трубы и если, металлическая труба заземлена, стекают в землю. Если же металлический трубопровод изолирован или изготовлен из диэлектрических материалов, то он приобретает положительный заряд, а жидкость - отрицательный.

Степень электризации нефтепродуктов зависит от состава и концентрации содержащихся в них активных примесей, физико-химического состава нефтепродуктов, состояние внутренней поверхности трубопровода или технологического аппарата (наличия коррозии, шероховатости и т.д.), диэлектрических свойств, вязкости и плотности жидкости, а также скорости движения жидкости, диаметра и длины трубопровода. Например, присутствие 0,001% механических примесей превращает инертное углеводородное топливо в электризуемое до опасных пределов.

Один из наиболее эффективных способов устранения электризации нефтепродуктов,- введение специальных антистатических веществ. Добавление их в тысячных или десятитысячных долях процента позволяет уменьшить удельное сопротивление нефтепродуктов на несколько порядков и обезопасить операции с ними. К таким антистатическим веществам относятся: олеаты и нафтенаты хрома и кобальта, соли хрома на основе синтетических жирных кислот, присадка «Сигбаль» и другие. Так, присадка на основе олеиновой кислоты олеат хрома уменьшает ρ v бензина Б-70 в 1,2 ∙ 10 4 раза. Широкое применение в операциях по промывке деталей нашли присадки «Анкор -1» и АСП-1.

Для получения «безопасной» электропроводности нефтепродуктов в любых условиях надо вводить 0,001÷0,005% присадок. На физико-химические свойства нефтепродуктов они обычно не влияют.

Для получения проводящих растворов полимеров (клеев) также применяют антистатические присадки, растворимые в них, например соли металлов переменной валентности высших карбоновых и синтетических кислот.

Положительные результаты достигаются при использовании антистатических веществ на предприятиях по переработке синтетических волокон, поскольку они обладают способностью увеличивать их ионную проводимость и тем самым снижать электрическое сопротивление волокон и получаемых из них материалов.

Для приготовления антистатических веществ, которые влияют на электрические свойства волокон применяют: углеводороды парафинового ряда, жиры, масла, гигроскопические вещества, поверхностно-активные вещества

Антистатические вещества используются в промышленности полимеров, например, при обработке полистирола и полиметилметакрилата. Обработка полимеров антистатическими добавками производится как поверхностным нанесением, так и введением в расплавленную массу. В качестве таких добавок применяют например ПАВ. При поверхностном нанесении ПАВ ρ s полимеров снижается на 5÷8 порядков, но срок эффективного действия мал

(до одного месяца). Введение ПАВ внутрь более перспективно т.к. антистатические свойства полимеров сохраняются несколько лет, полимеры становятся менее подверженными действию растворителей, истиранию и т.д. Для каждого диэлектрика оптимальные концентрации ПАВ различны и варьируются от 0,05 до 3,0%.

В настоящее время широко используются трубы, выполненные из полупроводящих полимерных композиций с наполнителями: ацетиленовой сажей, алюминиевой пудрой. графитом, цинковой пылью. Лучший наполнитель – ацетиленовая сажа, снижающая сопротивление на 10÷11 порядков даже при 20% от массы полимера. Её оптимальная массовая концентрация для создания электропроводящего полимера составляет 25%.

Для получения электропроводной или антистатической резины в неё вводят наполнители: порошковый графит, различные сажи, мелкодисперсные металлы. Удельное сопротивление ρ v такой резины достигает 5 ∙10 2 Ом∙м, а обычной до 10 6 Ом∙м.

Антистатическими резинами марки КР-388, КР-245 пользуются во взрывоопасных производствах, покрывают полы, рабочие столы, детали оборудования и колеса внутрицехового транспорта. Такое покрытие быстрее отводит возникающие заряды, снижает электризацию людей до безопасного уровня.

В последнее время разработана маслобензостойкая электропроводящая резина с использованием бутадиеннитральных и полихлоропреновых каучуков, которая широко используется для изготовления напорных рукавов и шлангов для перекачки ЛВЖ. Такие рукава значительно снижают опасность воспламенения при сливе и наливе ЛВЖ в авто- и железнодорожные цистерны и другие емкости, исключают применение специальных устройств для заземления заправочных воронок и наконечников.

Эффективное снижение потенциала ременных передач и ленточных транспортеров, изготовленных из материалов с ρ s =10 5 Ом∙м, достигается увеличением поверхностной проводимости ремня и обязательным заземлением установки. Для увеличения поверхностной проводимости ремня его внутренняя поверхность покрывается антистатической смазкой, возобновляемой не реже одного раза в неделю.

Ионизация воздуха (9 мин).

Сущность этого способа состоит в нейтрализации или компенсации поверхностных электрических зарядов ионами разного знака, которые создаются специальными приборами - нейтрализаторами. Ионы, имеющие полярность, противоположную полярности зарядов наэлектризованных материалов, под действием электрического поля, создаваемое зарядами таких материалов, оседают на их поверхностях и нейтрализуют заряды.

Ионизация воздуха электрическим полем высокой напряженности осуществляется с помощью нейтрализаторов двух типов: индукционных и высоковольтных.

Индукционные нейтрализаторы бывают с остриями (рис.2,а) и проволочными (рис. 2,б) У нейтрализатора с остриями в деревянном или металлическом стержне укреплены заземленные острия, тонкие проволочки или фольга. У проволочного нейтрализатора применена тонкая стальная проволочка, натянутая поперек движущегося заряженного материала. Работают они следующим образом. Под действием сильного электрического поля наэлектризованного тела вблизи острия или проволоки происходит ударная ионизация, в результате которой образуются ионы обоих знаков. Для повышения эффективности действия нейтрализаторов стремятся к сокращению расстояния между кончиками игл или проволокой и нейтрализуемой поверхностью до 5÷20 мм. Такие нейтрализаторы обладают высокой ионизационной способностью, особенно нейтрализаторы с остриями.

Рис. 2. Схема индукционного нейтрализатора (слайд):

а- с остриями; б- проволочного; 1- острия; 1"- проволока; 2- заряженная поверхность.

Недостатками их являются то, что они действуют, если потенциал наэлектризованного тела достигает несколько кВ.

Их достоинства: простота конструкции, низкая стоимость, малые эксплуатационные затраты, не требуют источника питания.

Высоковольтные нейтрализаторы (рис.3) работают на переменном, постоянном и токе высокой частоты. Они состоят из трансформатора с высоким выходным напряжением и игольчатого разрядника. В нейтрализатор на постоянном токе входит и высоковольтный выпрямитель. Принцип действия их основан на ионизации воздуха высоким напряжением. Максимальное расстояние между разрядным электродом и нейтрализуемым материалом, при нейтрализатор ещё эффективен, у таких нейтрализаторов может достигать 600 мм, но обычно рабочее расстояние принимается равным 200÷300 мм. Достоинство высоковольтных нейтрализаторов- достаточное ионизирующее действие и при низком потенциале наэлектризованного диэлектрического материала. Недостатком их является большая энергия возникающих искр, способных воспламенять любые взрывоопасные смеси, поэтому для взрывоопасных зон они могут применяться только во взрывозащищенном исполнении.

Рис.3 Схема высоковольтного нейтрализатора (слайд).

Для защиты обслуживающего персонала от высокого напряжения в высоковольтную цепь их включаются защитные сопротивления, которые ограничивают ток до величины в 50÷100 раз меньше тока, опасного для жизни.

Радиоизотопные нейтрализаторы очень просты по устройству, не требуют источника питания. достаточно эффективны и безопасны при использовании во взрывоопасных средах. Они широко применяются в различных отраслях промышленности. При использовании таких нейтрализаторов необходимо предусматривать надежную защиту людей, оборудования и выпускаемой продукции от вредного воздействия радиоактивного излучения.

Радиоизотопные нейтрализаторы чаще всего имеют вид длинных пластинок или маленьких дисков. Одна сторона содержит радиоактивное вещество, создающее радиоактивное излучение, ионизирующее воздух. Чтобы не загрязнять воздух, продукцию и оборудование, радиоактивное вещество покрывают тонким защитным слоем и специальной эмали и ли фольги. Для защиты от механических повреждений ионизатор помещают в металлический кожух, который одновременно создает нужное направление ионизированного воздуха. В таблице 3 приведены данные по применяемым в радиоизотопных нейтрализаторах радиоактивным веществам.

Данные по радиоактивным веществам радиоизотопных нейтрализаторов (слайд).

Таблица 3

Наиболее эффективны и безопасны радиоактивные вещества с α-частицами. Проникающая способность α-частиц в воздухе до 10см, а в более плотных средах значительно меньше. Например, лист обычной чистой бумаги ее полностью поглощает.

Нейтрализаторы с таким излучением пригодны для локальной ионизации воздуха и нейтрализации зарядов в месте их образования. Для нейтрализации электрических зарядов в аппаратах с большим объемом используют β-излучатели.

Радиоактивное вещество с γ-изучением из-за высокой проникающей способности и опасности для людей в нейтрализаторах не применяются.

Основным недостатком радиоизотопных нейтрализаторов является малый ионизационный ток по сравнению с другими нейтрализаторами.

Для нейтрализации электрических зарядов могут использоваться комбинированные нейтрализаторы, например, радиоактивно-индукционный. Подобные нейтрализаторы выпускаются промышленностью и имеют улучшенные рабочие характеристики. Рабочие характеристики выражают зависимость разряжающего ионизационного тока от величины потенциала заряженного тела.

Дополнительные способы уменьшения опасности от статической электризации (3 мин, слайд № 13).

Опасность статической электризации ЛВЖ и горючих жидкостей может быть значительно снижена или даже устранена уменьшением скорости потока v . Поэтому рекомендуется следующая скорость v диэлектрических жидкостей:

При ρ ≤ 10 5 Ом∙м принимают v ≤ 10 м/с;

При ρ > 10 5 Ом∙м принимают v ≤ 5 м/с.

Для жидкостей с ρ > 10 9 Ом∙м скорость транспортировки и истечения устанавливается отдельно для каждой жидкости. Безопасной для таких жидкостей обычно является скорость движения или истечения 1,2 м/с.

Для транспортировки жидкостей с ρ > 10 11 -10 12 Ом∙м со скоростью v ≥ 1,5 м/с рекомендуется применять релаксаторы (например, горизонтальные участки трубы увеличенного диаметра) непосредственно у входа в приёмный резервуар. Необходимый диаметр Д р ,м этого участка определяется по формуле

Д р =1.4 Д т ∙ . (7)

Длина релаксатора L p определяется по формуле

L p ≥ 2.2 ∙ 10 -11 ξρ, (8)

где ξ – относительная диэлектрическая проницаемость жидкости;

ρ – удельное объемное сопротивление жидкости Ом∙м.

При заполнении резервуара жидкостью с ρ >10 5 Ом∙м до момента затопления загрузочной трубы рекомендуется подавать жидкости со скоростью v ≤ 1 м/с, а затем с указанной скоростью v ≤ 5 м/с.

Иногда требуется увеличивать скорость жидкостей в трубопроводе до 4÷5 м/с.

Диаметр релаксатора, рассчитанный по формуле (7), оказывается в этом случае непомерно большим. Поэтому для увеличения эффективности релаксатора рекомендуется применять их со струнами или иглами. В первом случае внутри релаксатора и вдоль его оси натягиваются заземленные струны что более чем на 50% уменьшает ток электризации а во втором в поток жидкости вводят заземлённые иглы, чтобы отводить заряды от потока жидкости.

Максимально допустимые и безопасные (в отношении возможности воспламенения паров жидкости в промышленном резервуаре) режимы транспортировки нефтепродуктов по длинным трубам диаметром 100÷250 мм могут быть оценены по соотношению

v т 2 Д т ≤ 0.64 , (9)

где v т – линейная скорость жидкости в трубе м/с, Д т – диаметр трубы, м.

При операциях с сыпучими и мелко дисперсными материалами снижение опасности от статической электризации можно достичь следующими мерами: при их пневмотранспортировке использовать трубы из полиэтилена или из того же материала (или близкому по составу к транспортируемому веществу); относительная влажность воздуха на выходе из пневмотранспорта должна быть не менее 65% (если это неприемлемо, то рекомендуется ионизировать воздух или применять инертный газ).

Следует избегать возникновения пылевоздушных горючих смесей, не допускать падение пыли, её всклубления или завихрения. Необходимо очищать оборудование и конструкции здания от осевшей пыли.

При операциях с горючими газами необходимо следить за их чистотой, отсутствием на путях их движения незаземлённых частей оборудования или приборов.

Хороший эффект по условиям пожаро - и взрывобезопасности от искр статического электричества и всех других источников зажигания достигается заменой органических растворителей и ЛВЖ на негорючие если такая замена не нарушает хода технологического процесса и экономически целесообразна.

На диэлектрических материалах после их трения между собой или о металлические предметы, происходит образование электрических зарядов повышенной плотности. Таким образом, возникает статическое электричество, меры защиты против которого совершенно необходимы. Прежде всего, это связано с медленным исчезновением заряда из-за того что диэлектрики обладают крайне низкой электропроводностью.

Появление и опасность статического электричества

Причиной электризации также может быть индукция. На металлической поверхности происходит появление электрического заряда с противоположным значением, плотность которого равномерна во всех местах. Условия для возникновения данного явления могут быть самыми различными. Нередко причиной выступает перекачиваемая жидкость, движущаяся по трубопроводам или в виде падающей струи. Такой же эффект дают сжатые или сжиженные газы, работа ременных передач, измельчение и обработка органических и полимерных материалов.

Электризация диэлектрических материалов часто достигает разности потенциалов с высоким напряжением. Например, в процессе перекачивания бензина с помощью трубопровода с изолированным участком, электрические потенциалы могут колебаться на уровне от 1460 до 14600 вольт.

Серьезную опасность представляет накопление статического электричества. В таких случаях нередко проявляется сильный искровой разряд. Освобожденная энергия искры со значением в 0,01 Дж уже способна вызвать пожар и взрыв. Напряжение в 300 вольт приводит к воздушному искровому разряду. Предотвратить последствия электрических разрядов помогает принятие своевременных специальных мер.

Защитные мероприятия от статического электричества

Чтобы выровнять потенциалы и предотвратить возникновение искр все трубопроводы, расположенные параллельно, на расстоянии менее 100 мм, соединяются перемычками через каждые 20-25 метров. Системы трубопроводов и оборудования должны иметь заземление минимум в двух местах. Проверка наличия заземления производится с помощью тестера или один раз в 6 месяцев и после выполнения ремонтных работ.

Во время налива, перекачки и транспортировки нефтепродуктов, возникающие электростатические разряды снимаются путем металлического соединения между собой насосов, трубопроводов, цистерн и других устройств. В случае разлива диэлектрических жидкостей в сосуды из стекла и других изолирующих материалов, необходимо пользоваться воронками, изготовленными из электропроводящих материалов. К ним подводится заземление и соединение медными тросами с подводящими шлангами. Каждая воронка должна доставать до дна сосуда. Если это невозможно, то через воронку пропускается заземленный трос, достающий до дна, по которому будет стекать жидкость.

Следует помнить, что максимальная электризация возникает в трубах, материалом которых служит низкоуглеродистая сталь. При наличии шероховатой поверхности появляется статическое электричество, меры защиты от которого заключаются в устранении завихрений жидкости, возникающих во время движения. Для усиления электризации необходимы наиболее благоприятные условия, возникающие в определенных местах. Участки с менее подходящими условиями способствуют потере зарядов электризованной жидкостью или сохранению их на одном и том же уровне.

Загрузочная труба во время наполнения емкости должна доходить до ее дна. Загрузочное отверстие должно иметь большое поперечное сечение, чтобы струя не могла соприкасаться со стенками и поверхностью заливаемой жидкости. При невозможности выполнения этих условий, необходимо максимально снизить скорость загрузки, доведя ее до 0,5-0,7 м/с. Принятые меры позволят гарантированно избежать неприятных последствий.

Повседневная деятельность любого человека связана с его перемещением в пространстве. При этом он не только ходит пешком, но и ездит на транспорте.

Во время любого движения происходит перераспределение статических зарядов, изменяющих баланс внутреннего равновесия между атомами и электронами каждого вещества. Он связан с процессом электризации, образованием статического электричества.

У твердых тел распределение зарядов происходит за счет перемещения электронов, а у жидких и газообразных - как электронов, так и заряженных ионов. Все они в комплексе создают разность потенциалов.

Причины образования статического электричества

Наиболее распространенные примеры проявления сил статики объясняют в школе на первых уроках физики, когда натирают стеклянные и эбонитовые палочки о шерстяную ткань и демонстрируют притяжение к ним мелких кусочков бумаги.

Также известен опыт по отклонению тонкой струи воды под действием статических зарядов, сконцентрированных на эбонитовом стержне.

В быту статическое электричество проявляется чаще всего:

    при ношении шерстяной или синтетической одежды;

    хождении в обуви с резиновой подошвой или в шерстяных носках по коврам и линолеуму;

    пользовании пластиковыми предметами.


Ситуацию усугубляют:

    сухой воздух внутри помещений;

    железобетонные стены, из которых выполнены многоэтажные здания.

Как создается статический заряд

Обычно физическое тело содержит в себе равное количество положительных и отрицательных частиц, за счет чего в нем создан баланс, обеспечивающий его нейтральное состояние. Когда оно нарушается, то тело приобретает электрический заряд определённого знака.

Под статикой подразумевают состояние покоя, когда тело не движется. Внутри его вещества может происходить поляризация - перемещение зарядов с одной части на другую или перенос их с рядом расположенного предмета.

Электризация веществ происходит за счет приобретения, удаления или разделения зарядов при:

    взаимодействии материалов за счет сил трения или вращения;

    резком температурном перепаде;

    облучении различными способами;

    разделении или разрезании физических тел.

Распределяются по поверхности предмета или на удалении от нее в несколько междуатомных расстояний. У незаземленных тел они распространяются по площади контактного слоя, а у подключенных к контуру земли стекают на него.

Приобретение статических зарядов телом и их стекание происходит одновременно. Электризация обеспечивается тогда, когда тело получает бо́льший потенциал энергии, чем расходует во внешнюю среду.

Из этого положения вытекает практический вывод: для защиты тела от статического электричества необходимо с него отводить приобретаемые заряды на контур земли.

Способы оценки статического электричества

Физические вещества по способности образовывать электрические заряды разных знаков при взаимодействии трением с другими телами, характеризуют по шкале трибоэлектрического эффекта. Часть их показана на картинке.


В качестве примера их взаимодействия можно привести следующие факты:

    хождение в шерстяных носках или обуви с резиновой подошвой по сухому ковру может зарядить человеческое тело до 5÷-6 кВ;

    корпус автомобиля, едущего по сухой дороге, приобретает потенциал до 10 кВ;

    ремень привода, вращающий шкив, заряжается до 25 кВ.

Как видим, потенциал статического электричества достигает очень больших величин даже в бытовых условиях. Но он не причиняет нам большого вреда потому, что не обладает высокой мощностью, а его разряд проходит через высокое сопротивление контактных площадок и измеряется в долях миллиампера или чуть больше.

К тому же его значительно уменьшает влажность воздуха. Ее влияние на величину напряжения тела при контакте с различными материалами показано на графике.


Из его анализа следует вывод: во влажной среде статическое электричество проявляется меньше. Поэтому для борьбы с ним используют различные увлажнители воздуха.

В природе статическое электричество может достигать огромных величин. При перемещении облаков на дальние расстояния между ними скапливаются значительные потенциалы, которые проявляются молниями, энергии которых бывает достаточно для того, чтобы расколоть вдоль ствола вековое дерево или сжечь жилое здание.

При разряде статического электричества в быту мы чувствуем «пощипывания» пальцев, видим искры, исходящие от шерстяных вещей, ощущаем снижение бодрости, работоспособности. Ток, действию которого подвергается наш организм в быту, отрицательно сказывается на самочувствии, состоянии нервной системы, но он не приносит явных, видимых повреждений.

Производители измерительного промышленного оборудования выпускают приборы, позволяющие точно определить величину напряжения накопленных статических зарядов как на корпусах оборудования, так и на теле человека.


Как защититься от действия статического электричества в быту

Каждый из нас должен понимать процессы, которые образуют статические разряды, представляющие угрозу для нашего организма. Их следует знать и ограничивать. С этой целью проводятся различные обучающие мероприятия, включая популярные телепередачи для населения.


На них доступными средствами показываются способы создания статического напряжения, принципы его замера и методы выполнения профилактических мероприятий.

Например, учитывая трибоэлектрический эффект, лучше всего для расчесывания волос использовать расчески из натурального дерева, а не металла или пластика, как делает большинство людей. Древесина обладает нейтральными свойствами и при трении по волосам не образует заряды.


Для снятия статического потенциала с корпуса автомобиля при его движении по сухой дороге служат специальные ленты с антистатиком, крепящиеся к днищу. Различные их виды широко представлены в продаже.


Если такой защиты на автомобиле нет, то потенциал напряжения можно снимать кратковременным заземлением корпуса через металлический предмет, например, ключ зажигания автомобиля. Особенно важно выполнять эту процедуру перед заправкой топливом.

Когда на одежде из синтетических материлов накапливается статический заряд, то снять его можно обработкой паров из специального баллончика с составом «Антистатика». А вообще лучше меньше пользоваться подобными тканями и носить натуральные материалы из льна или хлопка.

Обувь с прорезиненной подошвой тоже споосбствует накапливанию зарядов. Достаточно положить в нее антистатические стельки из натуральных материалов, как вредное воздействие на организм будет снижено.

Влияние сухого воздуха, характерного для городских квартир в зимнее время, уже обговорено. Специальные увлажнители или даже небольшие куски смоченной материи, положенные на бытарею, улучшают обстановку, снижают процесс образования статического электричества. А вот регулярное выполнение влажной уборки в помещениях позволяет своевременно удалять наэлектризованные частички и пыль. Это один из лучших способов защиты.

Бытовые электрические приборы при работе тоже накапливают на корпусе статические заряды. Снижать их воздействие призвана система уравнивания потенциалов, подключаемая к общему контуру заземления здания. Даже простая акрилловая ванна или старая чугунная конструкция с такой же вставкой подвержена статике и требует защиты подобным способом.

Как выполняется защита от действия статического электричества на производстве

Факторы, снижающие работоспособность электронного оборудования

Разряды, возникающе при изготовлении полупроводниковых материалов, способны причинить большой вред, нарущить электрические характеристики приборов или вообще вывести их из строя.

В условиях производства разряд может носить случайный характер и зависеть от ряда различных факторов:

    величин образовавшейся емкости;

    энергии потенциала;

    электрического сопротивления контактов;

    вида переходных процессов;

    других случайностей.

При этом в начальный момент порядка десяти наносекунд происходит возрастание тока разряда до максимума, а затем он снижается в течение 100÷300 нс.

Характер возникновения статического разряда на полупроводниковый прибор через тело оператора показан на картинке.

На величину тока оказывают влияние: емкость заряда, накопленного человеком, сопротивление его тела и контактных площадок.

При производстве электротехнического оборудования статический разряд может создаться и без участия оператора за счет образования контактов через заземленные поверхности.

В этом случае на ток разряда влияет емкость заряда, накопленная корпусом прибора и сопротивление образовавшихся контактных площадок. При этом на полупроводник в первоначальный момент одновременно влияют наведенный потенциал высокого напряжения и разрядный ток.

За счет такого комплексного воздействия повреждения могут быть:

1. явными, когда работоспособность элементов уменьшена до такой степени, что они становятся непригодными к эксплуатации;

2. скрытыми - за счет снижения выходных параметров, иногда даже укладывающихся в рамки установленных заводских характеристик.

Второй вид неисправностей обнаружить сложно: они сказываются чаще всего потерей работоспособности во время эксплуатации.

Пример подобного повреждения от действия высокого напряжения статики демонстрируют графики отклонения вольт амперных характеристик применительно к диоду КД522Д и интегральной микросхеме БИС КР1005ВИ1.


Коричневая линия под цифрой 1 показывает параметры полупроводниковых приборов до испытаний повышенным напряжением, а кривые с номером 2 и 3 - их снижение под действием увеличенного наведенного потенциала. В случае №3 оно имеет большее воздействие.

Причинами повреждений могут быть действия от:

    завышенного наведенного напряжения, которое пробивает слой диэлектрика полупроводниковых приборов или нарушает структуру кристалла;

    высокой плотности протекающего тока, вызывающей большую температуру, приводящую к расплавлению материалов и прожигу оксидного слоя;

    испытания, электротермотренировки.

Скрытые повреждения могут сказаться на работоспособности не сразу, а через несколько месяцев или даже лет эксплуатации.

Способы выполнения защит от статического электричества на производстве

В зависимости от типа промышленного оборудования используют один из следующих методов сохранения работоспособности или их сочетания:

1. исключение образования электростатических зарядов;

2. блокирование их попадания на рабочее место;

3. повышение стойкости приборов и комплектующих приспособлений к действию разрядов.

Способы №1 и №2 позволяют выполнять защиту большой группы различных приборов в комплексе, а №3 - используется для отдельных устройств.

Высокая эффективность сохранения работоспособности оборудования достигается помещением его внутрь клетки Фарадея - огражденного со всех сторон пространства мелкоячеистой металлической сеткой, подключенной к контуру заземления. Внутри нее не проникают внешние электрические поля, а статическое магнитное - присутствует.

По этому принципу работают кабели с экранированной оболочкой.

Защиты от статики классифицируют по принципам исполнения на:

    физико-механические;

    химические;

    конструкционно-технологические.

Первые два способа позволяют предотвратить или уменьшить процесс образования статических зарядов и увеличить скорость их стекания. Третий прием защищает приборы от воздействия зарядов, но он не влияет на их сток.

Улучшить стекание разрядов можно за счет:

    создания коронирования;

    повышения проводимости материалов, на которых накапливаются заряды.

Решают эти вопросы:

    ионизацией воздуха;

    повышением рабочих поверхностей;

    подбором материалов с лучшей объемной проводимостью.

За счет их реализации создают подготовленные заранее магистрали для стекания статических зарядов на контур заземления, исключения их попадания на рабочие элементы приборов. При этом учитывают, что общее электрическое сопротивление созданного пути не должно превышать 10 Ом.

Если материалы обладают большим сопротивлением, то защиту выполняют другими способами. Иначе на поверхности начинают скапливаться заряды, которые могут разрядиться при контакте с землей.

Пример выполнения комплексной электростатической защиты рабочего места для оператора, занимающегося обслуживанием и наладкой электронных приборов, показан на картинке.


Поверхность стола через соединительный проводник и токопроводящий коврик подключена к контуру заземления с помощью специальных клемм. Оператор работает в специальной одежде, носит обувь с токопроводящей подошвой и сидит на стуле со специальным сидением. Все эти мероприятия позволяют качественно отводить скапливающиеся заряды на землю.

Работающие ионизаторы воздуха регулируют влажность, снижают потенциал статического электричества. При их использовании учитывают, что повышенное содержание паров воды в воздухе отрицательно влияет на здоровье людей. Поэтому ее стараются поддерживать на уровне порядка 40%.

Также эффективным способом может быть регулярное проветривание помещения или использование в нем системы вентиляции, когда воздух проходит через фильтры, ионизируется и смешивается, обеспечивая таким образом нейтрализацию возникающих зарядов.

Для снижения потенциала, накапливаемого телом человеком, могут применяться браслеты, дополняющие комплект антистатической одежды и обуви. Они состоят из токопроводящей полосы, которая крепится на руке с помощью пряжки. Последняя подключена к проводу заземления.

При этом способе ограничивают ток, протекающий через человеческий организм. Его величина не должна превышать один миллиампер. Бо́льшие значения могут причинять боль и создавать электротравмы.

Во время стекания заряда на землю важно обеспечить скорость его ухода за одну секунду. С этой целью применяют покрытия пола с малым электрическим сопротивлением.

При работе с полупроводниковыми платами и электронными блоками защита от повреждения статическим электричеством обеспечивается также:

    принудительным шунтированием выводов электронных плат и блоков во время проверок;

    использованием инструмента и паяльников с заземлёнными рабочими головками.

Емкости с легковоспламеняющимися жидкостями, расположенные на транспорте, заземляются с помощью металлической цепи. Даже фюзеляж самолета снабжается металлическими тросиками, которые при посадке работают защитой от статического электричества.

Вы наверняка в школе сталкивались на уроках физики с таким определением как – статическое электричество. Далее мы с вами кратко разберем, о чем именно идет речь в этом определении, а также поделимся знаниями о том, из-за чего оно возникает и как бороться с этим явлением в быту и на производстве. Итак, к вашему вниманию причины возникновения статического электричества и меры борьбы с ним.

Что это такое?

Причины возникновения этого явления природы довольно таки интересные. При неправильном балансе внутри атома или внутри молекулы и в итоге потери (обретения) нового электрона возникает статическое электричество. В норме каждый атом должен находиться в «равновесии» из-за равного количества протонов и нейтронов в нем. Ну а в свою очередь, электроны, перемещаясь от атома к атому, могут формировать отрицательные ионы или положительные ионы. И в случае отсутствия равновесия получается данное природное явление.

Более подробно узнать о том, что собой представляет электростатический заряд и как его использовать с пользой, вы можете узнать в этом видео:

В чем опасность явления?

Самой главной опасностью статического электричества является риск поражения током (о нем мы поговорим ниже), однако существует еще и риск возгорания. Считается, что не для каждого производства грозит риск возгорания, но непосредственно для таких предприятий как полиграф это очень опасно, так как они используют в производстве растворители, которые легко воспламеняются.

  1. Энергия, тип и мощность статического разряда.
  2. Необходимость в присутствии среды, которая легко возгорается.

Наглядно опасность данного явления и правила борьбы с ним демонстрируются на видео примере:

Кстати вы должны знать, что негативное влияние статического электричества на организм человека заключается не только в получении травм, но и нарушениях нервной системы!

Причины и источники возникновения

На сегодняшний день мы уверены, что статическое электричество возникает из-за нескольких причин, а именно:

  1. Из-за наличия какого-либо контакта между поверхностями 2 материалов с последующим отделением их друг от друга (например, трение резинового шарика о шерстяной свитер или на производстве при наматывании материалов).
  2. Присутствие ультрафиолета, радиационного излучения и т.д.
  3. При стремительном перепаде температур.

Чаще всего статическое электричество проявляется при первой причине. Данная процедура не полностью ясна, однако это является в наибольшей степени точным объяснением из всех.

Ни для кого не секрет что как на производстве, так и в быту это явление происходит чаще и для контроля над ним следует точно выявить участок проблемной зоны и принять меры для защиты. Интересный факт: это явление может вызвать «искрение» вокруг объекта, который имеет такую способность, как накапливание заряда электричества. И вы спросите, в чем опасность этого? А в том, что при накоплении большого заряда есть возможность поражения рабочего персонала на производстве. На сегодняшний день известно лишь 2 основных причины возникновения удара статическим электричеством.

Первой причиной является наведенный заряд . При условии нахождения человека в электрическом поле и если он держится руками за заряженный предмет, то тело этого человека может зарядиться.

Если на этом человеке будут одеты защитные ботинки с изолирующей подошвой, то заряд электричества будет оставаться в нем. А может ли заряд пропасть? Конечно, причиной этому будет тот момент, когда он дотронется до заземлённого предмета. Именно в этот момент рабочий и получит поражение электрическим током (в момент утечки заряда на землю). Описанный способ получения удара током получается при наличии у него на ногах обуви изолирующей электричество. Ведь при прикосновении к заряженному объекту, из-за обуви заряд остается в теле человека, а когда тот прикасается к объекту, предназначенному для защиты от него (к заземленному оборудованию), заряд стремительно проходит через тело человека и «наносит удар» током. Возникновение данного процесса возможно как в быту, так и на производстве, можно сказать, что никто не защищен от него. При воздействии синтетических ковров и обуви во время передвижения человека появляется заряд статического электричества. Меры борьбы с этим опасным явлением в быту демонстрируются на видео:

Вас когда-нибудь било разрядом электричества при выходе из машины вы до сих пор не знаете, что делать в таком случае? Это возникает при воздействии вашей руки с металлической дверью из-за того что, во время выходы из машины происходит «провокация» заряда между вашей одеждой и сиденьем. К сожалению, как уже говорилось ранее, единственным вариантом, как избавиться от данной дилеммы — это дотронутся до двери машины, чтобы через нее ток по машине «спустился» к земле. Другого более легкого способа, как снять с себя статическое электричество, нет.

Вторая причина поражения статическим электричеством на производстве — возникновение заряда на оборудовании . Данный вид поражения электрическим током случается довольно таки редко в отличие от вышеприведенного примера.

Итак для вашей защиты и для того чтобы вы знали как избавиться от данной неприятности рассмотрим весь этот процесс. Представим, что определенный предмет имеет внушительный заряд статического электричества, бывает, что ваши пальцы накопили заряд в таком количестве что происходит «пробой» и в итоге этого – разряд. Так что вот вам небольшой совет: для вашей защиты на производстве необходимо надевать резиновые перчатки (на всякий случай). Все мы рассмотрели в соответствующей статье!

Меры и средства защиты

В тот момент, когда на производстве стоит вопрос «как снять» опасность возникновения статического электричества и организовать защиту от него многие нефтяники обращаются к постановлению Госгортехнадзора. Известно, что абсолютно всё оборудование, которое заземлено, может считаться защищенным, даже если оборудование имеет окрашенный краской металлический корпус.

Честно говоря, защита оборудования от поражения статическим электричеством нами была уже обговорена ранее. О том, как бороться с этим явление в доме и квартире, доступно рассказывается в видео, предоставленном выше. Важно отметить, что увлажнители воздуха действительно хорошо способствуют снятию электростатического заряда. О том, мы рассказывали в соответствующей статье.

Еще одним примером защиты являются стекатели для автомобилей. Собственно говоря, стекатель это просто «кусок» резины, прикрепленный к машине так, чтобы одной стороной он касался машины а другой земли, этакий «передвижной заземлитель». В целях предосторожности рекомендуется устанавливать стекатели на авто, как показано на фото ниже. Это позволит убрать электростатический заряд, который может нанести вам вред.

Вот и все, что хотелось рассказать вам о том, какие бывают причины возникновения статического электричества и какие методы борьбы с данным явлением существуют на сегодняшний день. Надеемся, информация была для вас полезной и интересной!