В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.
Физические свойства
В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.
Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».
При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).
Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.
Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.
Способы получения железа
1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:
Восстановление происходит постепенно, в 3 стадии:
1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2
2) Fe 3 O 4 + СО = 3FeO +СO 2
3) FeO + СО = Fe + СO 2
Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.
2. Очень чистое железо получают одним из способов:
а) разложение пентакарбонила Fe
Fe(CO) 5 = Fe + 5СО
б) восстановление водородом чистого FeO
FeO + Н 2 = Fe + Н 2 O
в) электролиз водных растворов солей Fe +2
FeC 2 O 4 = Fe + 2СO 2
оксалат железа (II)
Химические свойства
Fe - металл средней активности, проявляет общие свойства, характерные для металлов.
Уникальной особенностью является способность к «ржавлению» во влажном воздухе:
В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:
3Fe + 2O 2 = Fe 3 O 4
В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:
3 Fe + 4Н 2 O(г) = 4H 2
Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.
Виды коррозии
Защита железа от коррозии
1. Взаимодействие с галогенами и серой при высокой температуре.
2Fe + 3Cl 2 = 2FeCl 3
2Fe + 3F 2 = 2FeF 3
Fe + I 2 = FeI 2
Образуются соединения, в которых преобладает ионный тип связи.
2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).
Fe + Р = Fe x P y
Fe + C = Fe x C y
Fe + Si = Fe x Si y
Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)
3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)
Fe 0 + 2Н + → Fe 2+ + Н 2
Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.
Fe + 2HCl = FeCl 2 + Н 2
Fe + H 2 SO 4 = FeSO 4 + Н 2
4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)
Fe 0 - 3e - → Fe 3+
Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).
В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:
Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O
Очень хорошо растворяется в смеси НСl и HNO 3
5. Отношение к щелочам
В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.
6. Взаимодействие с солями менее активных металлов
Fe + CuSO 4 = FeSO 4 + Cu
Fe 0 + Cu 2+ = Fe 2+ + Cu 0
7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)
Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа
Соединения Fe(III)
Fe 2 O 3 - оксид железа (III).
Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».
Способы получения:
1) разложение гидроксида железа (III)
2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O
2) обжиг пирита
4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3
3) разложение нитрата
Химические свойства
Fe 2 O 3 - основный оксид с признаками амфотерности.
I. Основные свойства проявляются в способности реагировать с кислотами:
Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О
Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O
Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O
II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:
Fe 2 О 3 + СаО = Ca(FeО 2) 2
Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O
Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2
III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:
Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2
Fe(OH) 3 - гидроксид железа (III)
Способы получения:
Получают при действии щелочей на растворимые соли Fe 3+ :
FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl
В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.
Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:
4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3
4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3
Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .
Химические свойства
Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:
1) реакции с кислотами протекают легко:
2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:
Fe(OH) 3 + 3КОН = K 3
В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):
2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O
Соли Fe 3+
Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)
б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)
Так как Fe2+ легко окисляются до Fe+3:
Fe+2 – 1e = Fe+3
Так, свежеполученный зеленоватый осадок Fe(OH)2 на воздухе очень быстро изменяет окраску – буреет. Изменение окраски объясняется окислением Fe(OH)2 в Fe(OH)3 кислородом воздуха:
Fe2O3 + 2NaOH = 2NaFeO2 + H2O,
Fe2O3 + 2OH- = 2FeO2- + H2O,
Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.
Феррит натрия
Гидроксид железа (III) получают из солей железа (III) при взаимодействии их со щелочами:
Формирование ржавчины и способы ее предотвращения.
В этой главе мы узнали, как образуются оксиды металлов. Мы видели две демонстрации реакций, в которых металлы образовывались как продукты. Наконец, мы узнали о металлическом оксиде из нашего повседневного опыта, а также о способах предотвращения образования ржавчины, особенно тех, которые используются в зданиях и промышленности.
FeCl3 + 3NaOH = Fe(OH)3¯ + 3NaCl,
Fe3+ + 3OH- = Fe(OH)3¯.
Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и проявляет амфотерные свойства (с преобладанием основных). При взаимодействии с разбавленными кислотами Fe(OH)3 легко образует соответствующие соли:
Fe(OH)3 + 3HCl « FeCl3 + H2O
2Fe(OH)3 + 3H2SO4 « Fe2(SO4)3 + 6H2O
Fe(OH)3 + 3H+ « Fe3+ + 3H2O
Реакции с концентрированными растворами щелочей протекают лишь при длительном нагревании. При этом получаются устойчивые гидрокомплексы с координационным числом 4 или 6:
Вырезанные кусочки яблока становятся коричневыми, так как соединения железа в яблочной мякоти реагируют с кислородом в воздухе! Реакции помогает фермент в яблоке, поэтому капающий лимонный сок на кусочки разрушает фермент и предотвращает его превращение в коричневый цвет.
Почему яблоки становятся коричневыми?
- Когда металл реагирует с кислородом, образуется оксид металла.
- Общее уравнение для этой реакции: металлический кислород → оксид металла.
- Некоторые металлы будут реагировать с кислородом при сжигании.
- Эти реакции называются реакциями горения.
Fe(OH)3 + NaOH = Na,
Fe(OH)3 + OH- = -,
Fe(OH)3 + 3NaOH = Na3,
Fe(OH)3 + 3OH- = 3-.
Соединения со степенью окисления железа +3 проявляют окислительные свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:
Fe+3 + 1e = Fe+2.
Так, например, хлорид железа (III) окисляет йодид калия до свободного йода:
2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20
Качественные реакции на катион железа (III)
Заполните таблицу, предоставив отсутствующие уравнения для реакции между цинком и кислородом. Окись кальция реагирует с водой с образованием гидроксида кальция. Известняк и его изделия имеют много применений, в том числе для цемента, раствора и бетона.
При интенсивном нагревании карбонат кальция разрушается. Эта реакция называется термическим разложением. Вот уравнения для термического разложения карбоната кальция. Двуокись кальция карбонат кальция. Другие карбонаты металлов разлагаются одинаково, в том числе.
Карбонат карбоната карбоната натрия карбонат. . Например, здесь приведены уравнения для термического разложения карбоната меди. Двуокись углерода карбоновой кислоты. Металлы высоко в реакционной серии имеют карбонаты, которые нуждаются в большой энергии для разложения разложения: если вещество разлагается, оно распадается на более простые соединения или элементы. их. Действительно, не все карбонаты металлов группы 1 разлагаются при температурах, достигаемых горелкой Бунзена.
А) Реактивом для обнаружения катиона Fe3+ является гексациано (II) феррат калия (желтая кровяная соль) K2.
При взаимодействии ионов 4- с ионами Fe3+ образуется темно-синий осадок – берлинская лазурь :
4FeCl3 + 3K4 « Fe43¯ +12KCl,
4Fe3+ + 34- = Fe43¯.
Б) Катионы Fe3+ легко обнаруживаются с помощью роданида аммония (NH4CNS). В результате взаимодействия ионов CNS-1 с катионами железа (III) Fe3+ образуется малодиссоциирующий роданид железа (III) кроваво-красного цвета:
Металлы, низко расположенные в ряду реакционной способности, такие как медь, имеют карбонаты, которые легко разлагаются. Вот почему карбонат меди часто используется в школе для проявления термического разложения. Он легко разлагается и его изменение цвета, от зеленого медного карбоната до черного оксида меди, легко увидеть.
Железосодержащая родниковая вода Кенигсбруннен. Желудочная вода епископства Св. Иоанна. Осаждение гидроксида железа из раствора сульфата аммония с частичным окислением до гидроксида железа кислородом воздуха. Кроме того, гидроксид железа относится к группе гидроксидов железа, но он очень неустойчив и быстро окисляется до гидроксида оксида железа в присутствии кислорода.
FeCl3 + 3NH4CNS « Fe(CNS)3 + 3NH4Cl,
Fe3+ + 3CNS1- « Fe(CNS)3.
Применение и биологическая роль железа и его соединений.
Важнейшие сплавы железа – чугуны и стали – являются основными конструкционными материалами практически во всех отраслях современного производства.
Хлорид железа (III) FeCl3 применяется для очистки воды. В органическом синтезе FeCl3 применяется как катализатор. Нитрат железа Fe(NO3)3 · 9H2O используют при окраске тканей.
Гидроксид железа получают осаждением раствора хлорида железа щелочами, предпочтительно с избытком аммиака. При замораживании он кристаллизуется, а также под очень длительным хранением под водой и легко превращается в водорастворимые соединения. Противоядие арсеници, используемое при отравлении мышьяком, также содержит гидроксид железа в качестве активного ингредиента.
Другим, ранее официальным гидроксидом железа является железное волокно. Гидрат оксида железа образуется, когда железо начинает ржаветь на влажном угле или в воздухе, содержащем диоксид серы. Именно из-за присутствия небольших количеств углекислоты железо окисляется, в то время как в каждом случае чистая вода или сухой воздух не вызывает никакой реакции. Гидроксид железа темно-коричневый, нерастворим в воде, легко растворим в кислотах и разлагается при нагревании в воде и оксиде железа. Он легко переносит свой кислород в окисляемые тела и превращается в оксид железа, который энергично поглощает кислород из воздуха.
Железо является одним из важнейших микроэлементов в организме человека и животных (в организме взрослого человека содержится в виде соединений около 4 г Fe). Оно входит в состав гемоглобина, миоглобина, различных ферментов и других сложных железобелковых комплексов, которые находятся в печени и селезенке. Железо стимулирует функцию кроветворных органов.
Поэтому он действует как гниющий агент и разрушает вращающиеся вещества, содержащиеся в жидкостях. На древесину можно также нападать, например, на ржавые гвозди. Гидроксид железа поглощает энергичные газы и, следовательно, благоприятно воздействует на почву; в сочетании с волокнистыми волокнами и некоторыми красителями, служит пятном при окрашивании.
Материалы, составляющие сплавы Зама. Цинк - голубоватый белый металл, который не может быть изменен в воздухе, который можно отполировать. Неизменный в холодном воздухе на сухом воздухе влажный воздух покрыт легким слоем гидрокарбоната, что делает его темнее и защищает его от более глубокого окисления. Общий цинк легко прикрепляется из-за примесей, которые он содержит, из разбавленных кислот, с образованием соли водорода и цинка. из благородных металлов, таких как медь, свинец, серебро и т.д. на них воздействуют горячие растворы щелочных гидроксидов путем обеспечения оцинкованного растворимого и водорода.
Список использованной литературы:
1. «Химия. Пособие репетитор». Ростов-на-Дону. «Феникс». 1997 год.
2. «Справочник для поступающих в вузы». Москва. «Высшая школа», 1995 год.
3. Э.Т. Оганесян. «Руководство по химии поступающим в вузы». Москва. 1994 год.
Неорганическое соединение гидроксид железа 3 имеет химическую формулу Fe(OH)2. Оно принадлежит к ряду амфотерных в которых преобладают свойства, характерные для оснований. На вид это вещество представляет собой кристаллы белого цвета, которые при длительном пребывании на открытом воздухе постепенно темнеют. Имеются варианты кристаллов зеленоватого оттенка. В повседневной жизни вещество может наблюдать каждый в виде зеленоватого налета на металлических поверхностях, что свидетельствует о начала процесса ржавления - гидроксид железа 3 выступает в качестве одной из промежуточных стадий этого процесса.
Это белый порошок, используемый во имя белого или белого снега цинка, не является токсичным и не черным в контакте с сероводородом. Кристаллическое разнообразие фосфоресцирует до света или в присутствии радиоактивных веществ. Соли цинка бесцветные или белые.
Их растворы обеспечивают щелочью осадок белого гидроксида, растворимый в избытке реагента. Сульфид аммония образует белый сульфидный осадок. Цинковые угли - неприятный запах жидкости, волдыри; обычно легко воспламеняются на воздухе и могут обрабатываться только в потоке инертного газа, таком как азот. Они получают путем взаимодействия цинка, чистого или сплава с алкилиодидом.
В природе соединение находят в виде амакинита. Этот кристаллический минерал, кроме собственно железа, содержит в себе еще примеси магния и марганца, все эти вещества придают амакиниту разные оттенки - от желто-зеленого до бледно- зеленого, в зависимости от процентного содержания того или иного элемента. Твердость минерала составляет 3,5-4 единицы по шкале Мооса, а плотность равна примерно 3 г/см³.
Иолоид алкилозина, который образуется в качестве промежуточного продукта, разлагает при повышении температуры в цинк в процессе образования йодида цинка. Кажется, что цинк в Китае известен с древних времен. В Европе цинковые сплавы с медью использовались в первом тысячелетии до нашей эры. При извлечении металла используются две группы минералов. Поскольку минералы цинка обычно связаны с минералами свинца, предварительное обогащение минерала должно выполняться магнитным разделением и флотацией. Чтобы облегчить отделение полезных частей от стерильных, добавьте разбавленное серное масло или серную кислоту, добавив поверхностно минерал, вызывает выброс газа, который способствует флотации.
К физическим свойствам вещества следует также отнести его крайне слабую растворимость. В том случае, когда гидроксид железа 3 подвергается нагреванию, он разлагается.
Это вещество очень активно и взаимодействует со многими другими веществами и соединениями. Так, например, обладая свойствами основания, оно вступает в с различными кислотами. В частности, серная кислота, гидроксид железа 3 в ходе реакции ведут к получению (III). Так как эта реакция может происходить путем обычного прокаливания на открытом воздухе, такой недорогой сульфата используется как в лабораторных, так и в промышленных условиях.
В зависимости от стран и состава минералов соблюдаются два разных процесса экстракции. Последующая фаза приводит к образованию металла для восстановления оксида углерода. Операция должна проводиться при более высокой температуре, чем температура кипения цинка, чтобы отделить металл от примесей путем дистилляции. Часть цинка, которая была бы потеряна для пара-побегов, восстанавливается при остановке. Полученный таким образом металл содержит в качестве основных примесей кадмий, свинец, медь, железо.
Очищенный раствор подвергают электролизу нерастворимым свинцовым анодом и катодом, состоящим из алюминиевого листа. Затем электролитический цинк отделяют от алюминиевой подложки и сливают в реверберирующей печи. Насекомое его неизменяемости к цинковому воздуху используется в листах или листах для покрытия крыш, в состоянии листов или листов оно также используется в графике и сухих батареях. Различные предметы, которые затем покрываются гальванопластикой специальным сплавом, который придает им вид бронзового искусства.
В ходе реакции с ее результатом является образование хлорида железа (II).
В некоторых случаях гидроксид железа 3 может проявлять и кислотные свойства. Так, например, при взаимодействии с сильно концентрированным (концентрация должна быть не менее 50%) раствором гидроксида натрия получается тетрагидроксоферрат (II) натрия, выпадающий в виде осадка. Правда, для течения такой реакции необходимо обеспечить довольно сложные условия: реакция должна происходить в условиях кипения раствора в азотной атмосферной среде.
Цинк обладает эффективным защитным действием на железо и сталь, подвергшиеся воздействию в определенных средах, таких как вода, водяной пар, вещества органические, бензольные или хлорированные растворители. Эта защита обеспечивается различными процессами.
Лозинко входит в состав многочисленных медных сплавов: латуни, специальной латуни. Цинк является основным компонентом сплавов Зама. Исследования немецкого химика Фридриха Вёрлера позволили измерить его относительную плотность, подчеркнув особую легкость металла. Процесс Холла-Йёруля по-прежнему остается основным методом используется для производства алюминия, хотя новые методы все еще изучаются. Металл, контактирующий с воздухом, быстро покрывается прозрачной и высокостойкой оксидной вуалью, которая защищает поверхность от воздействия агрессивных веществ и глубокого окисления.
Как уже говорилось, при нагревании вещество разлагается. Результатом этого разложения выступает (II), а, кроме того, в виде примесей получаются металлическое железо и его производные: оксид дижелеза (III), химическая формула которого Fe3O4.
Как произвести гидроксид железа 3, получение которого связано с его способностью вступать в реакции с кислотами? До того как приступить к проведению опыта, следует обязательно напомнить о правилах безопасности при проведении таких опытов. Эти правила применимы для всех случаев обращения с кислотно-щелочными растворами. Главное здесь - обеспечить надежную защиту и избегать попадания капель растворов на слизистые оболочки и кожу.
Итак, получить гидроксид можно в ходе проведения реакции, в которой взаимодействуют хлорид железа (III) и KOH - калия гидроксид. Данный метод - самый распространенный для образования нерастворимых оснований. При взаимодействии этих веществ протекает обычная реакция обмена, в результате которой получается осадок бурого цвета. Этот осадок и есть искомое вещество.
Применение гидроксида железа в промышленном производстве довольно широко. Наиболее распространенным является его использование в качестве активного вещества в аккумуляторах железо-никелевого типа. Кроме того, соединение используется в металлургии для получения различных металлосплавов, а также в гальваническом призводстве, авомобилестроении.
Получение
Алюмотермия: 3MnO 2 + 4Al = 2Al 2 O 3 + 3Mn
Химические свойства
Металл средней активности. На воздухе покрывается тонкой плёнкой оксидов. Реагирует с неметаллами, например, с серой:
Растворяется в кислотах: Mn + 2HCl = MnCl 2 + H 2 (При этом образуются соединения двухвалентного марганца).
Соединения Mn(II)
Оксид марганца (II) MnO получается восстановлением природного пиролюзита MnO 2 водородом: MnO 2 + H 2 ╝ MnO + H 2 O
Гидроксид марганца (II) Mn(OH) 2 - светло-розовое нерастворимое в воде основание: MnSO 4 + 2NaOH = Mn(OH) 2 + Na 2 SO 4 , Mn 2+ + 2OH - = Mn(OH) 2
Легко растворимо в кислотах:
Mn(OH) 2 + 2HCl = MnCl 2 + 2H 2 O Mn(OH) 2 + 2H + = Mn 2+ + 2H 2 O
На воздухе Mn(OH) 2 быстро темнеет в результате окисления:
2Mn(OH) 2 + O 2 + 2H 2 O ╝ 2
При действии сильных окислителей наблюдается переход Mn 2+ в MnO 4 - :
2Mn(OH) 2 + 5Br 2 + 12NaOH═ кат. CuSO 4 ═ 2NaMnO 4 + 10NaBr + 8H 2 O
2Mn(NO 3) 2 + 5PbO 2 + 6HNO 3 = 2HMnO 4 + 5Pb(NO 3) 2 + 2H 2 O
2Mn(NO 3) 2 + 5NaBiO 3 + 16HNO 3 = 2HMnO 4 + 5NaNO 2 + 5Bi(NO 3) 3 + 7H 2 O
Оксид марганца (IV) MnO 2 - тёмно-коричневый порошок, нерастворимый в воде. Образуется при термическом разложении нитрата марганца (II):
Mn(NO 3) 2 ═ MnO 2 + 2NO 2 ╜
При сильном нагревании теряет кислород, превращаясь в Mn 2 O 3 (при 600C) или Mn 3 O 4 (при 1000C).
Сильный окислитель:
MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O
При сплавлении с содой и селитрой образует манганат натрия тёмно - зелёного цвета:
MnO 2 + Na 2 CO 3 + NaNO 3 ═ Na 2 MnO 4 + NaNO 2 + CO 2 ╜
Манганаты также могут быть получены при восстановлении перманганатов в щелочной среде:
Na 2 SO 3 + 2KMn +7 O 4 + 2KOH ╝ Na 2 SO 4 + 2K 2 Mn +6 O 4 + H 2 O
Гидролиз манганатов протекает по схеме:
3K 2 MnO 4 + 2H 2 O = 2KMnO 4 + MnO 2 + 4KOH
3MnO 4 2- + 2H 2 O = 2MnO 4 - + MnO 2 + 4OH -
За способность обратимо менять окраску манганат калия называют "минеральным хамелеоном".
Оксид марганца (VII) Mn 2 O 7 - тёмно-зелёная жидкость, кислотный оксид. Получают действием концентрированной cерной кислоты на кристаллический KMnO 4 (марганцевая кислота HMnO 4 ═ нестабильна):
2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + H 2 O(взрывается от нагревания и соприкосновения, неустойчив)
При растворении в щелочах образует перманганаты:
Mn 2 O 7 + 2KOH = 2KMnO 4 + H 2 O
Перманганат калия KMn +7 O 4 -тёмно-фиолетовое кристаллическое вещество, растворимое в воде. При нагревании разлагается с выделением кислорода:
2KMnO 4 ═K 2 MnO 4 + MnO 2 + O 2
Сильный окислитель, причём восстанавливается в кислой среде до Mn 2+ , в нейтральной до Mn +4 O 2 , а в щелочной до Mn +6 O 4 2
KMn +7 O 4 = (H2SO4разб) MnSO4
Манганаты
Марганцевая кислота неустойчива, в водном растворе диспропорционирует
3 H2MnO4 = 2 HMnO4 + Mn02 + 2H2O
Билет 22: Получение металлов подгруппы железа
Восстановлением из оксидов углём или оксидом углерода (II)
FeO + C = Fe + CO
Fe 2 O 3 + 3CO = 2Fe + 3CO 2
NiO + C = Ni + CO
Co 2 O 3 + 3C = 2Co + 3CO
Fe железо
d- элемент VIII группы; порядковый номер 26; атомная масса 56; (26p 1 1 ; 30 n 0 1), 26
Металл средней активности, восстановитель. Основные степени окисления - +2, +3
Железо и его соединения
Химические свойства
1) На воздухе железо легко окисляется в присутствии влаги (ржавление):
4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3
Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III):
3Fe + 2O 2 = Fe 3 O 4
2) При высокой температуре (700-900╟C) железо реагирует с парами воды:
3Fe + 4H 2 O═ t ═ Fe 3 O 4 + 4H 2 ╜
3) Железо реагирует с неметаллами при нагревании:
Fe + S═ t ═ FeS
4) Железо легко растворяется в соляной и разбавленной серной кислотах:
Fe + 2HCl = FeCl 2 + H 2 ╜
Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2 ╜
В концентрированных кислотах-окислителях железо растворяется только при нагревании
2Fe + 6H 2 SO 4 (конц.)═ t ═ Fe 2 (SO 4) 3 + 3SO 2 ╜ + 6H 2 O
Fe + 6HNO 3 (конц.)═ t ═ Fe(NO 3) 3 + 3NO 2 ╜ + 3H 2 O
(на холоде концентрированные азотная и серная кислоты пассивируют железо).
5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Fe + CuSO 4 = FeSO 4 + Cu¯
Соединения двухвалентного железа
Гидроксид железа (II)
Образуется при действии растворов щелочей на соли железа (II) без доступа воздуха:
FeCl + 2KOH = 2KCl + Fе(OH) 2 ¯
Fe(OH) 2 - слабое основание, растворимо в сильных кислотах:
Fe(OH) 2 + H 2 SO 4 = FeSO 4 + 2H 2 O
Fe(OH) 2 + 2H + ═ Fe 2+ + 2H 2 O
При прокаливании Fe(OH) 2 без доступа воздуха образуется оксид железа (II) FeO:
Fe(OH) 2 ═ t ═ FeO + H 2 O
В присутствии кислорода воздуха белый осадок Fe(OH) 2 , окисляясь, буреет образуя гидроксид железа (III) Fe(OH) 3:
4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3
Соединения железа (II) обладают восстановительными свойствами, они легко превращаются в соединения железа (III) под действием окислителей:
10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 = 5Fe 2 (SO 4) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O
6FeSO 4 + 2HNO 3 + 3H 2 SO 4 = 3Fe 2 (SO 4) 3 + 2NO╜ + 4H 2 O
Соединения железа склонны к комплексообразованию (координационное число=6):
FeCl 2 + 6NH 3 = Cl 2
Fe(CN) 2 + 4KCN = K 4 = Fe 3 2 ¯ + 3K 2 SO 4
3Fe 2+ + 3SO 4 2- +6K + + 2 3- = Fe 3 2 ¯ + 6K + + 3SO 4 2-
3Fe 2+ + 2 3- = Fe 3 2 ¯
Соединения трёхвалентного железа
Оксид железа (III)
Образуется при сжигании сульфидов железа, например, при обжиге пирита:
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ╜
или при прокаливании солей железа:
2FeSO 4 ═ t ═ Fe 2 O 3 + SO 2 ╜ + SO 3 ╜
Fe 2 O 3 - основной оксид, в незначительной степени проявляющий амфотерные свойства
Fe 2 O 3 + 6HCl═ t ═ 2FeCl 3 + 3H 2 O
Fe 2 O 3 + 6H + ═ t ═ 2Fe 3+ + 3H 2 O
Fe 2 O 3 + 2NaOH + 3H 2 O═ t ═ 2Na
Fe 2 O 3 + 2OH - + 3H 2 O = 2 -
Гидроксид железа (III)
Образуется при действии растворов щелочей на соли трёхвалентного железа: выпадает в виде красно-бурого осадка
Fe(NO 3) 3 + 3KOH = Fe(OH) 3 ¯ + 3KNO 3
Fe 3+ + 3OH - = Fe(OH) 3 ¯
Fe(OH) 3 более слабое основание, чем гидрооксид железа (II).
Это объясняется тем, что у Fe 2+ меньше заряд иона и больше его радиус, чем у Fe 3+ , а поэтому, Fe 2+ слабее удерживает гидроксид-ионы, т.е. Fe(OH) 2 более легко диссоциирует.
В связи с этим соли железа (II) гидролизуются незначительно, а соли железа (III) - очень сильно. Гидролизом объясняется и цвет растворов солей Fe(III): несмотря на то, что ион Fe 3+ почти бесцветен, содержащие его растворы окрашены в жёлто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fe(OH) 3 , которые образуются благодаря гидролизу:
Fe 3+ + H 2 O = 2+ + H +
2+ + H 2 O = + + H +
H 2 O = Fe(OH) 3 + H +
При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза. Fe(OH) 3 обладает слабо выраженной амфотерностью: он растворяется в разбавленных кислотах и в концентрированных растворах щелочей:
Fe(OH) 3 + 3HCl = FeCl 3 + 3H 2 O
Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O
Fe(OH) 3 + NaOH = Na
Fe(OH) 3 + OH - = -
Соединения железа (III) - слабые окислители, реагируют с сильными восстановителями:
2Fe +3 Cl 3 + H 2 S -2 = S 0 + 2Fe +2 Cl 2 + 2HCl
Качественные реакции на Fe 3+
1) При действии гексацианоферрата (II) калия K 4 (жёлтой кровяной соли) на растворы солей трёхвалентного железа образуется синий осадок (берлинская лазурь):
4FeCl 3 +3K 4 = Fe 4 3 ¯ + 12KCl
4Fe 3+ + 12C l - + 12K + + 3 4- ╝═ Fe 4 3 ¯ + 12K + + 12C l -
4Fe 3+ + 3 4- = Fe 4 3 ¯
2) При добавлении к раствору, содержащему ионы Fe 3+ роданистого калия или аммония появляется интенсивная кроваво-красная окраска роданида железа(III):
FeCl 3 + 3NH 4 CNS = 3NH 4 Cl + Fe(CNS) 3
(при взаимодействии же с роданидами ионов Fe 2+ раствор остаётся практически бесцветным).
СургутскийГосударственный Университет
Кафедра химии
по теме:
Выполнил:
Бондаренко М.А.
Проверил:
Щербакова Л.П.
Сургут, 2000
Впериодической системе железо находится в четвертом периоде, в побочнойподгруппе VIII группы.
Химический знак – Fe (феррум). Порядковый номер –26, электронная формула 1s2 2s2 2p6 3d64s2 .
¯ 3d 4p 4s Электронно-графическаяформула¯ 3d ¯ 4p
Валентные электроны у атома железа находятся напоследнем электронном слое (4s2 ) и предпоследнем (3d6 ).В химических реакциях железо может отдавать эти электроны и проявлять степениокисления +2, +3 и, иногда, +6.
Нахождение в природе.
Железо является вторым пораспространенности металлом в природе (после алюминия). В свободном состояниижелезо встречается только в метеоритах, падающих на землю. Наиболее важныеприродные соединения:
Fe2O3· 3H2O – бурый железняк;
Fe2O3 – красный железняк;
Fe3O4(FeO· Fe2O3) – магнитныйжелезняк;
FeS2 - железный колчедан (пирит).
Соединения железа входят всостав живых организмов.
Получение железа.
В промышленности железо получаютвосстановлением его из железных руд углеродом (коксом) и оксидом углерода (II)в доменных печах. Химизм доменного процесса следующий:
3Fe2O3 + CO = 2Fe3O4+ CO2,
Fe3O4 + CO = 3FeO + CO2,
FeO + CO = Fe + CO2.
Физические свойства.
Железо – серебристо серыйметалл, обладает большой ковкостью, пластичностью и сильными магнитнымисвойствами. Плотность железа – 7,87 г/см3, температура плавления1539°С.
Химические свойства.
В реакциях железо являетсявосстановителем. Однако при обычной температуре оно не взаимодействует даже ссамыми активными окислителями (галогенами, кислородом, серой), но принагревании становится активным и реагирует с ними:
2Fe+ 3Cl2 = 2FeCl3 Хлорид железа (III)
3Fe+ 2O2 = Fe3O4(FeO · Fe2O3) Оксид железа (II,III)
Fe+ S = FeS Сульфид железа (II)
При очень высокой температурежелезо реагирует с углеродом, кремнием и фосфором:
3Fe + C = Fe3C Карбиджелеза (цементит)
3Fe + Si = Fe3Si Силициджелеза
3Fe + 2P = Fe3P2 Фосфиджелеза (II)
Железо реагирует сосложными веществами.
Во влажном воздухе железо быстроокисляется (корродирует):
4Fe + 3O2 + 6H2O = 4Fe(OH)3,
Fe(OH)3 = Fe
O– H + H2O
Ржавчина
Железо находится в серединеэлектрохимического ряда напряжений металлов, поэтому является металлом среднейактивности . Восстановительная способность у железа меньше, чем у щелочных,щелочноземельных металлов и у алюминия. Только при высокой температурераскаленное железо реагирует с водой:
3Fe + 4H2O = Fe3O4 +4H2
Железо реагирует с разбавленнымисерной и соляной кислотами , вытесняя из кислот водород:
Fe + 2HCl = FeCl2 + H2
Fe + H2SO4 = FeSO4 +H2
При обычной температуре железоне взаимодействует с концентрированной серной кислотой, так как пассивируетсяею. При нагревании концентрированная H2SO4 окисляетжелезо до сульфита железа (III):
2Fe + 6H2SO4 = Fe2(SO4)3+ 3SO2 + 6H2O.
3FeSO4 + 2K3 = Fe32¯ + 3K2SO4.
При взаимодействии ионов 3- с катионами железа Fe2+ образуется темно-синий осадок – турнбулева синь:
3Fe2+ +23- = Fe32¯
Соединения железа (III)
Оксид железа (III) Fe2O3 – порошок бурого цвета, не растворяется в воде. Оксид железа (III) получают:
А) разложением гидроксида железа (III):
2Fe(OH)3 = Fe2O3 + 3H2O
Б) окислением пирита (FeS2):
4Fe+2S2-1 + 11O20 = 2Fe2+3O3 + 8S+4O2-2.
Fe+2 – 1e ® Fe+3
2S-1 – 10e ® 2S+4
O20 + 4e ® 2O-2 11e
Оксид железа (III) проявляет амфотерные свойства:
А) взаимодействует с твердыми щелочами NaOH и KOH и с карбонатами натрия и калия при высокой температуре:
Fe2O3 + 2NaOH = 2NaFeO2 + H2O,
Fe2O3 + 2OH- = 2FeO2- + H2O,
Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.
Феррит натрия
Гидроксид железа (III) получают из солей железа (III) при взаимодействии их со щелочами:
FeCl3 + 3NaOH = Fe(OH)3¯ + 3NaCl,
Fe3+ + 3OH- = Fe(OH)3¯.
Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и проявляет амфотерные свойства (с преобладанием основных). При взаимодействии с разбавленными кислотами Fe(OH)3 легко образует соответствующие соли:
Fe(OH)3 + 3HCl « FeCl3 + H2O
2Fe(OH)3 + 3H2SO4 « Fe2(SO4)3 + 6H2O
Fe(OH)3 + 3H+ « Fe3+ + 3H2O
Реакции с концентрированными растворами щелочей протекают лишь при длительном нагревании. При этом получаются устойчивые гидрокомплексы с координационным числом 4 или 6:
Fe(OH)3 + NaOH = Na,
Fe(OH)3 + OH- = -,
Fe(OH)3 + 3NaOH = Na3,
Fe(OH)3 + 3OH- = 3-.
Соединения со степенью окисления железа +3 проявляют окислительные свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:
Fe+3 + 1e = Fe+2.
Так, например, хлорид железа (III) окисляет йодид калия до свободного йода:
2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20
Качественные реакции на катион железа (III)
А) Реактивом для обнаружения катиона Fe3+ является гексациано (II) феррат калия (желтая кровяная соль) K2.
При взаимодействии ионов 4- с ионами Fe3+ образуется темно-синий осадок – берлинская лазурь :
4FeCl3 + 3K4 « Fe43¯ +12KCl,
4Fe3+ + 34- = Fe43¯.
Б) Катионы Fe3+ легко обнаруживаются с помощью роданида аммония (NH4CNS). В результате взаимодействия ионов CNS-1 с катионами железа (III) Fe3+ образуется малодиссоциирующий роданид железа (III) кроваво-красного цвета:
FeCl3 + 3NH4CNS « Fe(CNS)3 + 3NH4Cl,
Fe3+ + 3CNS1- « Fe(CNS)3.
Применение и биологическая роль железа и его соединений.
Важнейшие сплавы железа – чугуны и стали – являются основными конструкционными материалами практически во всех отраслях современного производства.
Хлорид железа (III) FeCl3 применяется для очистки воды. В органическом синтезе FeCl3 применяется как катализатор. Нитрат железа Fe(NO3)3 · 9H2O используют при окраске тканей.
Железо является одним из важнейших микроэлементов в организме человека и животных (в организме взрослого человека содержится в виде соединений около 4 г Fe). Оно входит в состав гемоглобина, миоглобина, различных ферментов и других сложных железобелковых комплексов, которые находятся в печени и селезенке. Железо стимулирует функцию кроветворных органов.
Список использованной литературы:
1. «Химия. Пособие репетитор». Ростов-на-Дону. «Феникс». 1997 год.
2. «Справочник для поступающих в вузы». Москва. «Высшая школа», 1995 год.
3. Э.Т. Оганесян. «Руководство по химии поступающим в вузы». Москва. 1994 год.
Неорганическое соединение гидроксид железа 3 имеет химическую формулу Fe(OH)2. Оно принадлежит к ряду амфотерных в которых преобладают свойства, характерные для оснований. На вид это вещество представляет собой кристаллы белого цвета, которые при длительном пребывании на открытом воздухе постепенно темнеют. Имеются варианты кристаллов зеленоватого оттенка. В повседневной жизни вещество может наблюдать каждый в виде зеленоватого налета на металлических поверхностях, что свидетельствует о начала процесса ржавления - гидроксид железа 3 выступает в качестве одной из промежуточных стадий этого процесса.
В природе соединение находят в виде амакинита. Этот кристаллический минерал, кроме собственно железа, содержит в себе еще примеси магния и марганца, все эти вещества придают амакиниту разные оттенки - от желто-зеленого до бледно- зеленого, в зависимости от процентного содержания того или иного элемента. Твердость минерала составляет 3,5-4 единицы по шкале Мооса, а плотность равна примерно 3 г/см³.
К физическим свойствам вещества следует также отнести его крайне слабую растворимость. В том случае, когда гидроксид железа 3 подвергается нагреванию, он разлагается.
Это вещество очень активно и взаимодействует со многими другими веществами и соединениями. Так, например, обладая свойствами основания, оно вступает в с различными кислотами. В частности, серная железа 3 в ходе реакции ведут к получению (III). Так как эта реакция может происходить путем обычного прокаливания на открытом воздухе, такой недорогой сульфата используется как в лабораторных, так и в промышленных условиях.
В ходе реакции с ее результатом является образование хлорида железа (II).
В некоторых случаях гидроксид железа 3 может проявлять и кислотные свойства. Так, например, при взаимодействии с сильно концентрированным (концентрация должна быть не менее 50%) раствором гидроксида натрия получается тетрагидроксоферрат (II) натрия, выпадающий в виде осадка. Правда, для течения такой реакции необходимо обеспечить довольно сложные условия: реакция должна происходить в условиях кипения раствора в азотной атмосферной среде.
Как уже говорилось, при нагревании вещество разлагается. Результатом этого разложения выступает (II), а, кроме того, в виде примесей получаются металлическое железо и его производные: оксид дижелеза (III), химическая формула которого Fe3O4.
Как произвести гидроксид железа 3, получение которого связано с его способностью вступать в реакции с кислотами? До того как приступить к проведению опыта, следует обязательно напомнить о правилах безопасности при проведении таких опытов. Эти правила применимы для всех случаев обращения с кислотно-щелочными растворами. Главное здесь - обеспечить надежную защиту и избегать попадания капель растворов на слизистые оболочки и кожу.
Итак, получить гидроксид можно в ходе проведения реакции, в которой взаимодействуют хлорид железа (III) и KOH - калия гидроксид. Данный метод - самый распространенный для образования нерастворимых оснований. При взаимодействии этих веществ протекает обычная реакция обмена, в результате которой получается осадок бурого цвета. Этот осадок и есть искомое вещество.
Применение гидроксида железа в промышленном производстве довольно широко. Наиболее распространенным является его использование в качестве активного вещества в аккумуляторах железо-никелевого типа. Кроме того, соединение используется в металлургии для получения различных металлосплавов, а также в гальваническом призводстве, авомобилестроении.