Вряд ли кто-либо поверит рассказу о капитане дальнего плавания, который, кроме того, профессиональный цирковой борец, известный металлург и врач-консультант хирургической клиники. В мире же химических элементов подобное разнообразие профессий - явление весьма распространенное, и к ним неприменимо выражение Козьмы Пруткова: «Специалист подобен флюсу: полнота его односторонняя». Вспомним (еще до разговора о главном объекте нашего рассказа) железо в машинах и железо в крови, железо - концентратор магнитного поля и железо - составную часть охры... Правда, на «профессиональную выучку» элементов порой уходило намного больше времени, чем на подготовку йога средней квалификации. Так и элемент № 52, о котором предстоит нам рассказать, долгие годы применяли лишь для того, чтобы продемонстрировать, каков он в действительности, этот элемент, названный в честь нашей планеты: «теллур» - от tellus, что по-латыни значит «Земля».
Открыт этот элемент почти два века назад. В 1782 г. горный инспектор Франц Йозеф Мюллер (впоследствии барон фон Рейхенштейн) исследовал золотоносную руду, найденную в Семигорье, на территории тогдашней Австро-Венгрии. Расшифровать состав руды оказалось настолько сложно, что ее назвали Aurum problematicum - «золото сомнительное». Именно из этого «золота» Мюллер выделил новый металл, но полной уверенности в том, что он действительно новый, не было. (Впоследствии оказалось, что Мюллер ошибался в другом: открытый им элемент был новым, но к числу металлов отнести его можно лишь с большой натяжкой.)
Чтобы рассеять сомнения, Мюллер обратился за помощью к видному специалисту, шведскому минералогу и химику-аналитику Бергману.
К сожалению, ученый умер, не успев закончить анализ присланного вещества - в те годы аналитические методы были уже достаточно точными, но анализ занимал очень много времени.
Элемент, открытый Мюллером, пытались изучать и другие ученые, однако лишь через 16 лет после его открытия Мартин Генрих Клапрот - один из крупнейших химиков того времени - неопровержимо доказал, что этот элемент на самом деле новый, и предложил для него название «теллур».
Как и всегда, вслед за открытием элемента начались поиски его применений. Видимо, исходя из старого, еще времен иатрохимии принципа - мир это аптека, француз Фурнье пробовал лечить теллуром некоторые тяжелые заболевания, в частности проказу. Но без успеха - лишь спустя много лет теллур смог оказать медикам некоторые «мелкие услуги». Точнее, не сам теллур, а соли теллуристой кислоты К 2 Те0 3 и Na 2 Te0 3 , которые стали использовать в микробиологии как красители, придающие определенную окраску изучаемым бактериям. Так, с помощью соединений теллура надежно выделяют из массы бактерий дифтерийную палочку. Если не в лечении, так хоть в диагностике элемент № 52 оказался полезен врачам.
Но иногда этот элемент, а в еще большей мере некоторые его соединения прибавляют врачам хлопот. Теллур Достаточно токсичен. В нашей стране предельно допустимой концентрацией теллура в воздухе считается 0,01 мг/м3. Из соединений теллура самое опасное - теллуроводород H 2 Те, бесцветный ядовитый газ с неприятным запахом. Последнее вполне естественно: теллур - аналог серы, значит, Н 2 Те должен быть подобен сероводороду. Он раздражает бронхи, вредно влияет на нервную систему.
Эти неприятные свойства не помешали теллуру выйти в технику, приобрести множество «профессий».
Металлурги интересуются теллуром потому, что уже небольшие его добавки к свинцу сильно повышают прочность и химическую стойкость этого важного металла. Свинец, легированный теллуром, применяют в кабельной и химической промышленности. Так, срок службы аппаратов сернокислотного производства, покрытых изнутри свинцово-теллуровым сплавом (до 0,5% Те), вдвое больше, чем у таких же аппаратов, облицованных просто свинцом. Присадка теллура к меди и стали облегчает их механическую обработку.
В стекольном производстве теллуром пользуются, чтобы придать стеклу коричневую окраску и больший коэффициент лучепреломления. В резиновой промышленности его, как аналог серы, иногда применяют для вулканизации каучуков.
Теллур - полупроводник
Однако не эти отрасли были виновниками скачка в ценах и спросе на элемент № 52. Произошел этот скачок в начале 60-х годов нашего века. Теллур - типичный полупроводник, и полупроводник технологичный. В отличие от германия и кремния, он сравнительно легко плавится (температура плавления 449,8° С) и испаряется (закипает при температуре чуть ниже 1000° С). Из него, следовательно, легко получать тонкие полупроводниковые пленки, которыми особенно интересуется современная микроэлектроника.
Однако чистый теллур как полупроводник применяют ограниченно - для изготовления полевых транзисторов некоторых типов и в приборах, которыми меряют интенсивность гамма-излучения. Да еще примесь теллура умышленно вводят в арсенид галлия (третий по значению после кремния и германия полупроводник), чтобы создать в нем проводимость электронного типа.
Намного обширнее область применения некоторых теллуридов - соединений теллура с металлами. Теллуриды висмута Bi 2 Te 3 и сурьмы Sb 2 Te 3 стали самыми важными материалами для термоэлектрических генераторов. Чтобы объяснить, почему это произошло, сделаем небольшое отступление в область физики и истории.
Еще полтора века назад (в 1821 г.) немецкий физик Зеебек обнаружил, что в замкнутой электрической цепи, состоящей из разных материалов, контакты между которыми находятся при разной температуре, создается электродвижущая сила (ее называют термо-ЭДС). Через 12 лет швейцарец Пельтье обнаружил эффект, обратный эффекту Зеебека: когда электрический ток течет по цепи, составленной из разных материалов, в местах контактов, кроме обычной джоулевой теплоты, выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла.
Примерно 100 лет эти открытия оставались «вещью в себе», любопытными фактами, не более. И не будет преувеличением утверждать, что новая жизнь обоих этих эффектов началась после того, как академик А. Ф. Иоффе с сотрудниками разработал теорию применения полупроводниковых материалов для изготовления термоэлементов. А вскоре эта теория воплотилась в реальные термоэлектрогенераторы и термоэлектрохолодильники различного назначения.
В частности, термоэлектрогенераторы, в которых использованы теллуриды висмута, свинца и сурьмы, дают энергию искусственным спутникам Земли, навигационно - метеорологическим установкам, устройствам катодной защиты магистральных трубопроводов. Те же материалы помогают поддержать нужную температуру во многих электронных и микроэлектронных устройствах.
В последние годы большой интерес вызывает еще одно химическое соединение теллура, обладающее полупроводниковыми свойствами,- теллурид кадмия CdTe. Этот материал используют для изготовления солнечных батарей, лазеров, фотосопротнвлений, счетчиков радиоактивных излучений. Теллурид кадмия знаменит и тем, что это один из немногих полупроводников, в которых заметно проявляется эффект Гана.
Суть последнего заключается в том, что уже само введение маленькой пластинки соответствующего полупроводника в достаточно сильное электрическое поле приводит к генерации высокочастотного радиоизлучения. Эффект Гана уже нашел применение в радиолокационной технике.
Заключая, можно сказать, что количественно главная «профессия» теллура - легирование свинца и других металлов. Качественно же главное, безусловно, это работа теллура и теллуридов как полупроводников.
Полезная примесь
В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре - 0,03%, селена всего - 10-5 %, теллура же еще на порядок меньше - 10~6%. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы - как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом , серебром , медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.
В России известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.
Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера вьпадает осадок - шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.
Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но - в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты - селенистую Н 2 SeОз и теллуристую Н 2 ТеОз. Если через этот раствор пропустить сернистый газ S0 2 , произойдут реакции
H 2 Se0 3 + 2S0 2 + Н 2 0 → Se ↓ + 2H 2 S0 4 .
H2Te03 + 2S02 + Н20 → Те ↓ + 2H 2 S0 4 .
Теллур и селен выпадают одновременно, чтo весьма не-желательно - они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.
Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.
Теллур вреден
Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об эле-менте № 52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней - именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.
И сам теллур
и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементарным теллуром - тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.
При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой
, а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика - это надежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.
Элемент № 52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки - сосредоточенного внимания.
ВНЕШНИЙ ВИД ТЕЛЛУРА. Кристаллический теллур больше всего похож на сурьму. Цвет его - серебристо-белый. Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.
ДВУХЦВЕТНЫЙ АНГИДРИД. Как и положено аналогу серы, теллур проявляет валентности 2-, 4+ и 6+ и значительно реже 2+. Моноокись теллура ТеО может существовать лишь в газообразном виде и легко окисляется до Те0 2 . Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733° С; оно имеет полимерное строение.
В воде двуокись теллура почти не растворяется - в раствор переходит лишь одна часть Те0 2 на 1,5 млн. частей воды и образуется раствор слабой теллуристой кислоты Н 2 Те0 3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты
H 6 TeO 6 . Эту формулу (а не Н 2 ТеО 4 ей присвоили после того, как были получены соли состава Ag 6 Te0 6 и Hg 3 Te0 6 , хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид ТеОз в воде практически не растворяется. Это вещество существует в двух модификациях - желтого и серого цвета: α-ТеОз и β-ТеОз. Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют "кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.
ВТОРОЕ ИСКЛЮЧЕНИЕ. При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура - 127,61, а иода - 126,91 Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в пра
вильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.
Кстати, об изотонах. Сейчас известно 22 изотопа элемента № 52. Восемь из них - с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 - стабильны. Последние два изотопа - самые распространенные: 31,79 и 34,48% соответственно.
МИНЕРАЛЫ ТЕЛЛУРА. Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента № 52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe 2 и креннерит (Au, Ag) Те2, входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют - весь промышленный теллур является попутным продуктом переработки руд других металлов.
Теллур - химический элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы, халькогены), 5-го периода в периодической системе, имеет атомный номер 52; обозначается символом Te (лат. Tellurium), относится к семейству металлоидов.
Содержание в земной коре 1·10-6 % по массе. Известно около 100 минералов теллура. Наиболее часты теллуриды меди, свинца, цинка, серебра и золота.
Изоморфная примесь теллура наблюдается во многих сульфидах, однако изоморфизм Te - S выражен хуже, чем в ряду Se - S, и в сульфиды входит ограниченная примесь теллура. Среди минералов теллура особое значение имеют алтаит (PbTe), сильванит (AgAuTe4), калаверит (AuTe2), гессит (Ag2Te), креннерит [(Au, Ag)Te], петцит (Ag3AuTe2), мутманнит [(Ag, Au)Te], монбрейит (Au2Te3), нагиагит (4S5), тетрадимит (Bi2Te2S). Встречаются кислородные соединения теллура, например ТеО2 - теллуровая охра. Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17% Те и 0,06% Se).
Запасы на месторождениях теллура в 2012 году, тонн *
Перу | 3,600.0 |
США | 3,500.0 |
Канада | 800.0 |
Прочие страны | 16,100.0 |
Всего запасы | 24,000.0 |
* данные US Geological Survey
Основной источник теллура - шламы, произведенные во время электролитической очистки черновой (анодной) меди. На 500 тонн медной руды, как правило, приходится один фунт (0,45 кг) теллура. Теллур производится, главным образом, в Соединенных Штатах, Китае, Бельгии, России, Японии и Канаде.
Анодный шлам содержит селениды и теллуриды благородных металлов в составах с формулой M2Se или M2Te (M = Cu, Ag, Au). При температурах 500 °C анодные шламы нагреваются с карбонатом натрия в присутствии воздуха. Металлические ионы восстанавливаются до металлов, в то время как теллурид преобразуется в теллурит натрия - M2Te + O2 + Na2CO3 > Na2TeO3 + 2М + CO2.
Теллуриты выщелачиваются из смеси с водой и обычно присутствуют как гидротеллуриты HTeO3– в растворе. Селениты также формируются во время этого процесса, но они могут быть отделены, при добавлении серной кислоты. Гидротеллуриты преобразуются в нерастворимый диоксид теллура, в то время как селениты остаются в растворе - HTeO3- + ОH– + H2SO4 > TeO2 + SO42- + 2H2O.
Восстановление до металла делается или электролизом или реакцией диоксида теллура с двуокисью серы в серной кислоте - TeO2 + 2 SO2 + 2H2O > Те + SO42- + 4H+.
Теллур товарного сорта обычно продается как порошок, а также доступен в виде плит, слитков или прутков.
Крупнейший потребитель теллура - металлургия, где он используется в железных, медных и свинцовых сплавах. Добавление теллура к нержавеющей стали и меди делает эти металлы более пригодными для обработки. Добавление теллура позволяет получить ковкий чугун, обладающий при его выплавке преимуществами серого чугуна: жидким литьем, литейными качествами, обрабатываемостью. В свинце теллур улучшает силу и длительность и уменьшает коррозийное действие серной кислоты.
Полупроводники и электроника. Теллурид кадмия (CdTe) используется в солнечных батареях. Тесты лаборатории Лаборатории возобновляемой энергии в США показали, что этот материал дает много полезного для работы нового поколения солнечных батарей. Массивное коммерческое производство солнечных батарей с применением CdTe в последние годы, привело к значительному увеличению спроса на теллур. Если часть кадмия в CdTe заменяется цинком, формируется отношение (Cd,Zn), которое используется в датчиках рентгена твердого состояния.
Совершенно исключительное значение получили сплавы КРТ (кадмий-ртуть-теллур), которые обладают фантастическими характеристиками для обнаружения излучения от стартов ракет и наблюдения за противником из космоса через атмосферные окна (не имеет значение облачность). КРТ является одним из наиболее дорогих материалов в современной электронной промышленности.
Органотеллуры, такие как теллурид этана, диэтиловый теллурид, диизопропил теллурид, диэтил и метил теллурид, аллиловый теллурид используются в качестве основы для металорганического роста эпитаксии фазы для получения многослойных полупроводниковых соединений.
Ряд систем, имеющих в своем составе теллур, недавно обнаружили существование в них трёх (возможно четырёх) фаз, сверхпроводимость в которых не исчезает при температуре несколько выше температуры кипения жидкого азота.
Теллур в качестве подокиси теллура используется для создания слоев перезаписываемых оптических дисков, включая компакт-диски ReWritable (CD-RW), ReWritable Цифровые видео диски blu-ray ReWritable и (DVD-RW).
Теллур используется в новых микросхемах памяти фазового перехода, разработанных компанией Intel. Теллурид висмута (Bi2Te3) и теллурид свинца применяется в элементах термоэлектрических устройств. Теллурид свинца используется также в инфракрасных датчиках.
Другое применение. Теллур используется, чтобы окрасить керамику. Явление сильного увеличения оптического преломления после добавления селенидов и теллуридов в стекло используется в производстве стеклянных волокон для телекоммуникаций. Смеси селена и теллура используются с пероксидом бария в качестве окислителя в порошке задержки электрических капсюлей-детонаторов.
Органические теллуриды используются как инициаторы для радикальной полимеризации, богатые электронами моно- и дителлуриды обладают антиокислительной деятельностью. Для вулканизации резины вместо серы или селена может использоваться теллур. Резина, произведенная таким образом, демонстрирует улучшенное тепловое сопротивление. Теллуриты используются, чтобы идентифицировать болезнетворные микроорганизмы, ответственные за дифтерию.
Потребление теллура в странах мира распределено следующим образом: Китай - 80-100 тонн, Россия - 10 тонн, США - 50-60 тонн. Всего в мире в целом ежегодно потребляется около 400 тонн теллура. В таблице ниже представлены приблизительные данные по производству теллура в мире (данные USGS, различных обзоров и статей по рынку).
Производство теллура в мире, тонн*
год | 2008 | 2009 | 2010 | 2011 | 2012 |
Бельгия | 50.0 | 50.0 | 50.0 | 50.0 | 50.0 |
Канада | 19.0 | 16.0 | 8.0 | 6.0 | 6.0 |
Китай | 65.0 | 60.0 | 65.0 | 70.0 | 70.0 |
Япония | 46.5 | 49.2 | 47.0 | 40.0 | 35.0 |
Казахстан | 18.0 | 17.0 | 18.0 | 18.0 | 17.0 |
Перу | 28.0 | 7.0 | -- | -- | -- |
Россия | 34.0 | 33.0 | 34.0 | 34.0 | 35.0 |
США | 50.0 | 50.0 | 50.0 | 50.0 | 45.0 |
Прочие страны | 79.5 | 97.8 | 128.0 | 132.0 | 122.0 |
Всего | 390.0 | 380.0 | 400.0 | 400.0 | 380.0 |
* данные US Geological Survey
Теллур - редкий элемент, и значительный спрос при малом объёме добычи определяет его высокую цену (около $200-300 за кг в зависимости от чистоты), но, несмотря на это, диапазон областей его применения постоянно расширяется.
Цена на теллур в 2000 году составляла около 30 US$ за килограмм. В период с 2004 по 2011 год цен на теллур непрерывно росла за исключением 2009 года. В эти годы цена на теллур определялась существенным ростом спроса и ограниченным предложением. В 2011 году цена на теллур достигла 350 US$ за килограмм. Однако, в 2012 году цены на теллур резко упали - примерно до 150 US$ за килограмм.
Рынок теллура в настоящее время стоит перед целым рядом проблем. Будучи побочным продуктом производства меди, рынок теллура очень зависит от тенденций на основном (медном) рынке. Уменьшение производства меди вместе с применением новых альтернативных технологий получения данного металла, например, повлияют объемы поставок теллура.
Поскольку объемы поставки находятся под вопросом, цена на материал взлетает. Согласно многим прогнозам рынка цена на теллур снова повысится в ближайшие 2-3 года. Известно, что на рынке существует спектр различных продуктов замены для теллура, которые уже начинают использоваться на фоне нехватки поставок. Однако, как отмечают эксперты, ни одна из замен не обладает равноценными свойствами, что и теллур. Кроме того, потенциальное повышение спроса на теллур может следовать из событий в секторе производства тонкой пленки для солнечных батарей.
Вряд ли кто-либо поверит рассказу о капитане дальнего плавания, который, кроме того, профессиональный цирковой борец, известный металлург и врач-консультант хирургической клиники. В мире же химических элементов подобное разнообразие профессий – явление весьма распространенное, и к ним неприменимо выражение Козьмы Пруткова: «Специалист подобен флюсу: полнота его односторонняя». Вспомним (еще до разговора о главном объекте нашего рассказа) железо в машинах и железо в крови, железо – концентратор магнитного поля и железо – составную часть охры... Правда, на «профессиональную выучку» элементов порой уходило намного больше времени, чем на подготовку йога средней квалификации. Так и элемент №52, о котором предстоит нам рассказать, долгие годы применяли лишь для того, чтобы продемонстрировать, каков он в действительности, этот элемент, названный в честь нашей планеты: «теллур» – от tellus, что по-латыни значит «Земля».
Открыт этот элемент почти два века назад. В 1782 г. горный инспектор Франц Иозеф Мюллер (впоследствии барон фон Рейхенштейн) исследовал золотоносную руду, найденную в Семигорье, на территории тогдашней Австро-Венгрии. Расшифровать состав руды оказалось настолько сложно, что ее назвали Aurum problematicum – «золото сомнительное». Именно из этого «золота» Мюллер выделил новый металл, но полной уверенности в том, что он действительно новый, не было. (Впоследствии оказалось, что Мюллер ошибался в другом: открытый им элемент был новым, но к числу металлов отнести его можно лишь с большой натяжкой.)
Чтобы рассеять сомнения, Мюллер обратился за помощью к видному специалисту, шведскому минералогу и химику-аналитику Бергману.
К сожалению, ученый умер, не успев закончить анализ присланного вещества – в те годы аналитические методы были уже достаточно точными, но анализ занимал очень много времени.
Элемент, открытый Мюллером, пытались изучать и другие ученые, однако лишь через 16 лет после его открытия Мартин Генрих Клапрот – один из крупнейших химиков того времени – неопровержимо доказал, что этот элемент на самом деле новый, и предложил для него название «теллур».
Как и всегда, вслед за открытием элемента начались поиски его применений. Видимо, исходя из старого, еще времен иатрохимии принципа – мир это аптека, француз Фурнье пробовал лечить теллуром некоторые тяжелые заболевания, в частности проказу. Но без успеха – лишь спустя много лет теллур смог оказать медикам некоторые «мелкие услуги». Точнее, не сам теллур, а соли теллуристой кислоты К 2 TeO 3 и Na 2 TeO 3 , которые стали использовать в микробиологии как красители, придающие определенную окраску изучаемым бактериям. Так, с помощью соединений теллура надежно выделяют из массы бактерий дифтерийную палочку. Если не в лечении, так хоть в диагностике элемент №52 оказался полезен врачам.
Но иногда этот элемент, а в еще большей мере некоторые его соединения прибавляют врачам хлопот. Теллур достаточно токсичен. В нашей стране предельно допустимой концентрацией теллура в воздухе считается 0,01 мг/м 3 . Из соединений теллура самое опасное – теллуроводород Н 2 Te, бесцветный ядовитый газ с неприятным запахом. Последнее вполне естественно: теллур – аналог серы, значит, Н 2 Te должен быть подобен сероводороду. Он раздражает бронхи, вредно влияет на нервную систему.
Эти неприятные свойства не помешали теллуру выйти в технику, приобрести множество «профессий».
Металлурги интересуются теллуром потому, что уже небольшие его добавки к свинцу сильно повышают прочность и химическую стойкость этого важного металла. Свинец, легированный теллуром, применяют в кабельной и химической промышленности. Так, срок службы аппаратов сернокислотного производства, покрытых изнутри свинцово-теллуровым сплавом (до 0,5% Te), вдвое больше, чем у таких же аппаратов, облицованных просто свинцом. Присадка теллура к меди и стали облегчает их механическую обработку.
В стекольном производстве теллуром пользуются, чтобы придать стеклу коричневую окраску и больший коэффициент лучепреломления. В резиновой промышленности его, как аналог серы, иногда применяют для вулканизации каучуков.
Теллур – полупроводник
Однако не эти отрасли были виновниками скачка в ценах и спросе на элемент №52. Произошел этот скачок в начале 60-х годов нашего века. Теллур – типичный полупроводник, и полупроводник технологичный. В отличие от германия и кремния, он сравнительно легко плавится (температура плавления 449,8°C) и испаряется (закипает при температуре чуть ниже 1000°C). Из него, следовательно, легко получать тонкие полупроводниковые пленки, которыми особенно интересуется современная микроэлектроника.
Однако чистый теллур как полупроводник применяют ограниченно – для изготовления полевых транзисторов некоторых типов и в приборах, которыми меряют интенсивность гамма-излучения. Да еще примесь теллура умышленно вводят в арсенид галлия (третий по значению после кремния и германия полупроводник), чтобы создать в нем проводимость электронного типа*.
* О двух типах проводимости, присущих полупроводникам, подробно рассказано в статье «Германий» .
Намного обширнее область применения некоторых теллуридов – соединений теллура с металлами. Теллуриды висмута Bi 2 Te 3 и сурьмы Sb 2 Te 3 стали самыми важными материалами для термоэлектрических генераторов. Чтобы объяснить, почему это произошло, сделаем небольшое отступление в область физики и истории.
Еще полтора века назад (в 1821 г.) немецкий физик Зеебек обнаружил, что в замкнутой электрической цепи, состоящей из разных материалов, контакты между которыми находятся при разной температуре, создается электродвижущая сила (ее называют термо-ЭДС). Через 12 лет швейцарец Пельтье обнаружил эффект, обратный эффекту Зеебека: когда электрический ток течет по цепи, составленной из разных материалов, в местах контактов, кроме обычной джоулевой теплоты, выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла.
Примерно 100 лет эти открытия оставались «вещью в себе», любопытными фактами, не более. И не будет преувеличением утверждать, что новая жизнь обоих этих эффектов началась после того, как Герой Социалистического Труда академик А.Ф. Иоффе с сотрудниками разработал теорию применения полупроводниковых материалов для изготовления термоэлементов. А вскоре эта теория воплотилась в реальные термоэлектрогенераторы и термоэлектрохолодильники различного назначения.
В частности, термоэлектрогенераторы, в которых использованы теллуриды висмута, свинца и сурьмы, дают энергию искусственным спутникам Земли, навигационно-метеорологическим установкам, устройствам катодной защиты магистральных трубопроводов. Те же материалы помогают поддержать нужную температуру во многих электронных и микроэлектронных устройствах.
В последние годы большой интерес вызывает еще одно химическое соединение теллура, обладающее полупроводниковыми свойствами, – теллурид кадмия CdTe. Этот материал используют для изготовления солнечных батарей, лазеров, фотосопротивлений, счетчиков радиоактивных излучений. Теллурид кадмия знаменит и тем, что это один из немногих полупроводников, в которых заметно проявляется эффект Гана.
Суть последнего заключается в том, что уже само введение маленькой пластинки соответствующего полупроводника в достаточно сильное электрическое поле приводит к генерации высокочастотного радиоизлучения. Эффект Гана уже нашел применение в радиолокационной технике.
Заключая, можно сказать, что количественно главная «профессия» теллура – легирование свинца и других металлов. Качественно же главное, безусловно, это работа теллура и теллуридов как полупроводников.
Полезная примесь
В таблице Менделеева место теллура находится в главной подгруппе VI группы рядом с серой и селеном. Эти три элемента сходны по химическим свойствам и часто сопутствуют друг другу в природе. Но доля серы в земной коре – 0,03%, селена всего – 10 –5 %, теллура же еще на порядок меньше – 10 –6 %. Естественно, что теллур, как и селен, чаще всего встречается в природных соединениях серы – как примесь. Бывает, правда (вспомните о минерале, в котором открыли теллур), что он контактирует с золотом, серебром, медью и другими элементами. На нашей планете открыто более 110 месторождений сорока минералов теллура. Но добывают его всегда заодно или с селеном, или с золотом, или с другими металлами.
В СССР известны медно-никелевые теллурсодержащие руды Печенги и Мончегорска, теллурсодержащие свинцово-цинковые руды Алтая и еще ряд месторождений.
Из медной руды теллур выделяют на стадии очистки черновой меди электролизом. На дно электролизера выпадает осадок – шлам. Это очень дорогой полупродукт. Приведем для иллюстрации состав шлама одного из канадских заводов: 49,8% меди, 1,976% золота, 10,52% серебра, 28,42% селена и 3,83% теллура. Все эти ценнейшие компоненты шлама надо разделить, и для этого существует несколько способов. Вот один из них.
Шлам расплавляют в печи, и через расплав пропускают воздух. Металлы, кроме золота и серебра, окисляются, переходят в шлак. Селен и теллур тоже окисляются, но – в летучие окислы, которые улавливают в специальных аппаратах (скрубберах), затем растворяют и превращают в кислоты – селенистую H 2 SeO 3 и теллуристую H 2 TeO 3 . Если через этот раствор пропустить сернистый газ SO 2 , произойдут реакции:
H 2 SeO 3 + 2SO 2 + H 2 O → Se ↓ + 2H 2 SO 4 ,
H 2 TeO 3 + 2SO 2 + H 2 O → Te ↓ + 2H 2 SO 4 .
Теллур и селен выпадают одновременно, что весьма нежелательно – они нужны нам порознь. Поэтому условия процесса подбирают таким образом, чтобы в соответствии с законами химической термодинамики сначала восстанавливался преимущественно селен. Этому помогает подбор оптимальной концентрации добавляемой в раствор соляной кислоты.
Затем осаждают теллур. Выпавший серый порошок, разумеется, содержит некоторое количество селена и, кроме того, серу, свинец, медь, натрий, кремний, алюминий, железо, олово, сурьму, висмут, серебро, магний, золото, мышьяк, хлор. От всех этих элементов теллур приходится очищать сначала химическими методами, затем перегонкой или зонной плавкой. Естественно, что из разных руд теллур извлекают по-разному.
Теллур вреден
Теллур применяют все шире и, значит, все возрастает число работающих с ним. В первой части рассказа об элементе №52 мы уже упоминали о токсичности теллура и его соединений. Расскажем об этом подробней – именно потому, что с теллуром приходится работать все большему числу людей. Вот цитата из диссертации, посвященной теллуру как промышленному яду: белые крысы, которым ввели аэрозоль теллура, «проявляли беспокойство, чихали, терли мордочки, делались вялыми и сонливыми». Подобным образом действует теллур и на людей.
И сам теллур и его соединения могут приносить беды разных «калибров». Они, например, вызывают облысение, влияют на состав крови, могут блокировать различные ферментные системы. Симптомы хронического отравления элементарным теллуром – тошнота, сонливость, исхудание; выдыхаемый воздух приобретает скверный чесночный запах алкилтеллуридов.
При острых отравлениях теллуром вводят внутривенно сыворотку с глюкозой, а иногда даже морфий. Как профилактическое средство употребляют аскорбиновую кислоту. Но главная профилактика – это падежная герметизация аппаратов, автоматизация процессов, в которых участвуют теллур и его соединения.
Элемент №52 приносит много пользы и уже потому заслуживает внимания. Но работа с ним требует осторожности, четкости и опять-таки – сосредоточенного внимания.
Внешний вид теллура
Кристаллический теллур больше всего похож на сурьму. Цвет его – серебристо-белый. Кристаллы – гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам. Теллур хрупок, его довольно просто превратить в порошок. Вопрос о существовании аморфной модификации теллура однозначно не решен. При восстановлении теллура из теллуристой или теллуровой кислот выпадает осадок, однако до сих пор не ясно, являются ли эти частички истинно аморфными или это просто очень мелкие кристаллы.
Двухцветный ангидрид
Как и положено аналогу серы, теллур проявляет валентности 2–, 4+ и 6+ и значительно реже 2+. Моноокись теллура TeO может существовать лишь в газообразном виде и легко окисляется до TeO 2 . Это белое негигроскопичное, вполне устойчивое кристаллическое вещество, плавящееся без разложения при 733°C; оно имеет полимерное строение, молекулы которого построены так:
В воде двуокись теллура почти не растворяется – в раствор переходит лишь одна часть TeO 2 на 1,5 млн частей воды и образуется раствор слабой теллуристой кислоты H 2 TeO 3 ничтожной концентрации. Так же слабо выражены кислотные свойства и у теллуровой кислоты H 6 TeO 6 . Эту формулу (а не H 2 TeO 4) ей присвоили после того, как были получены соли состава Ag 6 TeO 6 и Hg 3 TeO 6 , хорошо растворяющиеся в воде. Образующий теллуровую кислоту ангидрид TeO 3 в воде практически не растворяется. Это вещество существует в двух модификациях – желтого и серого цвета: α-TeO 3 и β-TeO 3 . Серый теллуровый ангидрид очень устойчив: даже при нагревании на него не действуют кислоты и концентрированные щелочи. От желтой разновидности его очищают, кипятя смесь в концентрированном едком кали.
Второе исключение
При создании периодической таблицы Менделеев поставил теллур и соседний с ним иод (так же, как аргон и калий) в VI и VII группы не в соответствии, а вопреки их атомным весам. Действительно, атомная масса теллура – 127,61, а иода – 126,91. Значит, иод должен был бы стоять не за теллуром, а впереди него. Менделеев, однако, не сомневался в правильности своих рассуждений, так как считал, что атомные веса этих элементов определены недостаточно точно. Близкий друг Менделеева чешский химик Богуслав Браунер тщательно проверил атомные веса теллура и иода, но его данные совпали с прежними. Правомерность исключений, подтверждающих правило, была установлена лишь тогда, когда в основу периодической системы легли не атомные веса, а заряды ядер, когда стал известен изотопный состав обоих элементов. У теллура, в отличие от иода, преобладают тяжелые изотопы.
Кстати, об изотопах. Сейчас известно 22 изотопа элемента №52. Восемь из них – с массовыми числами 120, 122, 123, 124, 125, 126, 128 и 130 – стабильны. Последние два изотопа – самые распространенные: 31,79 и 34,48% соответственно.
Минералы теллура
Хотя теллура на Земле значительно меньше, чем селена, известно больше минералов элемента №52, чем минералов его аналога. По своему составу минералы теллура двояки: или теллуриды, или продукты окисления теллуридов в земной коре. В числе первых калаверит AuTe 2 и креннерит (Au, Ag) Te 2 , входящие в число немногих природных соединений золота. Известны также природные теллуриды висмута, свинца, ртути. Очень редко в природе встречается самородный теллур. Еще до открытия этого элемента его иногда находили в сульфидных рудах, но не могли правильно идентифицировать. Практического значения минералы теллура не имеют – весь промышленный теллур является попутным продуктом переработки руд других металлов.
Открыт Ф.Мюллером в 1782 г. Название элемента происходит от латинского tellus, родительный падеж telluris, Земля (название предложил М.Г. Клапрот, который выделил элемент в виде простого вещества и определил его важнейшие свойства).
Получение:
В природе существует как смесь 8 стабильных изотопов (120, 122-126, 128, 130). Содержание в земной коре 10 -7 %. Основные минералы - алтаит (PbTe), теллуровисмутит (Bi 2 Te 3), тетрадимит (Bi 2 Te 2 S), содержится во многих сульфидных рудах.
Получают из шламов производства меди выщелачиванием раствором NaOH в виде Na 2 TeO 3 , откуда теллур выделяется электролитически. Дальнейшая очистка - сублимацией и зонной плавкой.
Физические свойства:
Компактный теллур серебристо-серое вещество с металлическим блеском, имеющее гексагональную кристаллическую решетку (плотность 6,24 г/см 3 , температура плавления - 450°С, кипения - 990°С). Из растворов осаждается в виде коричневого порошка, в парах состоит из молекул Te 2 .
Химические свойства:
На воздухе при комнатной температуре теллур устойчив, при нагревании реагирует с кислородом. Взаимодействует с галогенами, со могими металлами вступает в реакцию при нагревании.
При нагревании теллур окисляется водяным паром с образованием оксида теллура(II), взаимодействует с концентрированными серной и азотной кислотами. При кипячении в водных растворах щелочей диспропорционирует аналогично сере:
8 Te + 6NаОН = Na 2 TeO 3 + 2Na 2 Te + 3H 2 O
В соединениях проявляет степени окисления -2, +4, +6, реже +2.
Важнейшие соединения:
Оксид теллура(IV),
диоксид теллура, TeO 2 , плохо растворим в воде, кислотный оксид, реагирует со щелочами, образуя соли теллуристой кислоты. Применяется в лазерной технике, компонент оптических стекол.
Оксид теллура(VI)
, триоксид теллура, TeO 3 , желтое или серое вещество, в воде практически не растворимо, при нагревании разлагается образуя диоксид, реагирует со щелочами.
Получают разложением теллуровой кислоты.
Теллуристая кислота
, H 2 TeO 3 , малорастворима, склонна к полимеризации, поэтому обычно представляет собой осадок с переменым содержанием воды
TeO 2 *nH 2 O. Соли - теллуриты
(M 2 TeO 3) и полителлуриты (M 2 Te 2 O 5 и др.), обычно получают спеканием карбонатов с TeO 2 , применяются как компоненты оптических стекол.
Теллуровая кислота
, H 6 TeO 6 , белые кристаллы, хорошо растворима в горячей воде. Очень слабая кислота, в растворе образует соли состава MH 5 TeO 6 и M 2 H 4 TeO 6 . При нагревании в запаянной ампуле была получена также метателлуровая кислота H 2 TeO 4 , которая в растворе постепенно превращается в теллуровую.
Соли - теллураты
. Получают также сплавлением оксида теллура(IV) со щелочами в присутствии окислителей, сплавлением теллуровой кислоты с карбонатом или оксидом металла. Теллураты щелочных металлов растворимы. Применяются как сегнетоэлектрики, ионообменники, компоненты люминисцирующих составов.
Теллуроводород
, H 2 Te - ядовитый газ с неприятным запахом, получают гидролизом теллурида алюминия. Сильный восстановитель, в растворе быстро окисляется кислородом до теллура. В водном растворе кислота, более сильная чем серо- и селеноводородная. Соли - теллуриды
, получают обычно взаимодействием простых веществ, теллуриды щелочных металлов растворимы. Многие теллуриды p- и d- элементов - полупроводники.
Галогениды
. Известны галогениды теллура(II), например TeCl 2 , солеподобные, при нагревании и в растворе диспропорционируют на Te и соединения Te(IV). Тетрагалогениды теллура - твердые вещества, в растворе гидролизуются с образованием теллуристой кислоты, легко образуют комплексные галогениды (например K 2 ).
Гексафторид TeF 6 , бесцветный газ, в отличие от гексафторида серы легко гидролизуется, образуя теллуровую кислоту.
Применение:
Компонент полупроводниковых материалов; легирующая добавка к чугуну, сталям, сплавам свинца.
Мировое производство (без СССР) - около 216 т/год (1976).
Теллур и его соединения токсичны. ПДК около 0,01 мг/м 3 .
См. также:
Теллур // Википедия. (дата обращения: 23.12.2019).
"Открытие элементов и происхождение их названий".
За период 05.12.16 - 24.07..2%. Динамика цен на Теллур за последние 3 месяца представлена на графике:
62.00 | |||||||||||||||||
38.00 | |||||||||||||||||
05.12.16 | 19.12.16 | 26.01.17 | 11.03.17 | 27.03.17 | 26.04.17 | 30.05.17 | 24.07.17 |
Теллур: Динамика изменения цен на мировом рынке |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Теллур – серебристо-белое хрупкое вещество с характерным металлическим блеском. При этом тонкий слой теллура на просвет имеет красно-коричневый оттенок, а пары – золотисто-желтый окрас. Из-за того, что теллур инертен, при его плавке в качестве контейнерных материалов используют кварц или графит. Теллур относится к редким элементам, а значительный спрос на него определяет его высокую стоимость.
При получении теллура в основном используют отходы электролитического рафинирования свинца и меди. После обжига шламов, теллур выпадает в огарке, после чего его промывают в соляной кислоте. Полученный солянокислый раствор выделяют, пропуская сквозь сернистый газ. Для дальнейшей очистки от серы, селена и других примесей, теллур растворяют в щелочной среде, где под действием алюминия или цинка он переходит в дителлурид динатрия. После его пропускают через кислород или воздух, а для получения теллура высокой чистоты, его хлорируют с последующим очищением ректификацией, гидролизуют водой и восстанавливают водородом.
Основными производителями теллура в СНГ являются:
ОАО «Алмалыкский горно-металлургический комбинат» (Узбекистан);
- ОАО «Уральская горно-металлургическая компания» (Российская Федерация);
- ЗАО «Кыштымский медеэлектролитный завод» (Российская Федерация).
Теллур применяют в производстве особых свинцов, которые обладают повышенной прочностью и пластичностью. Данное свойство широко используется при производстве проводов и другой кабельной продукции. Соединение теллура и свинца снижает в 10 раз растворение свинца под влиянием серной кислоты. Данное свойство применяется в свинцово-кислотных аккумуляторных батареях.
В специальной химической аппаратуре применяют теллуровые стекла, которые обладают исключительной прозрачностью, электропроводностью и легкоплавкостью. Некоторые виды стекол с добавлением теллура являются полупроводниками. Они получили широкое применение в электронике. А специальные стекла, с диоксидом теллура, легированные редкоземельными металлами, используют в оптических квантовых генераторах в качестве активных тел.
Для создания отражающего деформируемого слоя компакт-дисков применяются сплавы теллура. Теллур в виде паров применяется для ламп дневного света. Свет, испускаемый такими лампами, имеют спектр, сравнимый с естественным солнечным светом.