Спасибо
Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!
Что за вещества липиды?
Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.
Какая разница между липидами и жирами?
В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.Липиды в организме человека
Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:
- выработка организмом энергии;
- деление клеток;
- передача нервных импульсов;
- образование компонентов крови, гормонов и других важных веществ;
- защита и фиксация некоторых внутренних органов;
- клеточное деление, дыхание и др.
Биологическая роль липидов в живой клетке
Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.В живом организме липиды выполняют следующие функции:
- энергетическая;
- резервная;
- структурная;
- транспортная;
- ферментативная;
- запасающая;
- сигнальная;
- регуляторная.
Энергетическая функция
Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.Резервная (запасающая ) функция
Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.
Структурная и барьерная функции (мембранные липиды )
Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.Почему липиды-мономеры образуют двойной слой (бислой )?
Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.Транспортная функция
Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.Ферментативная функция
В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.Сигнальная функция
Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.Регуляторная функция
Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.
Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )
Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.Также липиды в той или иной степени связаны с обменом следующих веществ:
- Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
- Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
- Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
- Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Переваривание и всасывание липидов (обмен веществ, метаболизм )
Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.
Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.
Что такое эмульгирование липидов?
Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:
- На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
- Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
- При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
- В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
Ферменты для расщепления липидов
Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.За расщепление липидов отвечают следующие группы ферментов:
- липазы;
- фосфолипазы;
- холестеролэстераза и др.
Какие витамины и гормоны участвуют в регуляции уровня липидов?
Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:
- Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
- Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
- Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
- Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
- Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )
Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.Биосинтез липидов происходит в следующих тканях и клетках:
- Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
- Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
- Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Ресинтез липидов в печени и других органах
Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».
Входят ли липиды в состав мозга?
Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.В состав миелиновой оболочки в нервной системе входят следующие липиды:
- фосфолипиды;
- холестерин;
- галактолипиды;
- гликолипиды.
Липидные гормоны
Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.Липиды входят в состав следующих жизненно важных гормонов:
- кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
- мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
- женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Роль липидов для кожи и волос
Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.Для волос и кожи липиды важны по следующим причинам:
- значительная часть вещества волоса состоит из сложных липидов;
- клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
- секрет (выделяемое вещество ) сальных желез увлажняет кожу;
- благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
- небольшое количество липидов на поверхности волос придают им здоровый блеск;
- липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
Классификация липидов
В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.
Экзогенные и эндогенные липиды
Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.
Жирные кислоты
Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.
Наиболее важными источниками жирных кислот для человека являются:
- животные жиры;
- растительные жиры;
- тропические масла (цитрусовое, пальмовое и др. );
- жиры для пищевой промышленности (маргарин и др. ).
Насыщенные и ненасыщенные жирные кислоты
Все жирные кислоты по своей химической структуре делятся на насыщенные и ненасыщенные. Насыщенные кислоты менее полезны для организма, а некоторые из них даже вредны. Это объясняется тем, что в молекуле этих веществ нет двойных связей. Это химически стабильные соединения, и они хуже усваиваются организмом. В настоящее время доказана связь некоторых насыщенных жирных кислот с развитием атеросклероза .Ненасыщенные жирные кислоты делятся на две большие группы:
- Мононенасыщенные. Данные кислоты имеют в своей структуре одну двойную связь и являются, таким образом, более активными. Считается, что их употребление в пищу может понижать уровень холестерина и препятствовать развитию атеросклероза. Наибольшее количество мононенасыщенных жирных кислот содержится в ряде растений (авокадо , оливки, фисташки, лесные орехи ) и, соответственно, в маслах, получаемых из этих растений.
- Полиненасыщенные. Полиненасыщенные жирные кислоты имеют в своей структуре несколько двойных связей. Отличительной особенностью этих веществ является то, что человеческий организм не способен их синтезировать. Другими словами, если в организм не будут поступать с пищей полиненасыщенные жирные кислоты, со временем это неизбежно приведет к определенным нарушениям. Лучшими источниками этих кислот являются морепродукты, соевое и льняное масло, семена кунжута , мака , пророщенная пшеница и др.
Фосфолипиды
Фосфолипиды являются сложными липидами, содержащими в своем составе остаток фосфорной кислоты. Эти вещества наряду с холестерином являются основным компонентом клеточных мембран. Также эти вещества принимают участие в транспорте других липидов в организме. С медицинской точки зрения фосфолипиды могут выполнять и сигнальную роль. Например, они входят в состав желчи, так как способствуют эмульгированию (растворению ) других жиров. В зависимости от того, какого вещества в желчи больше, холестерина или фосфолипидов, можно определить риск развития желчекаменной болезни .Глицерин и триглицериды
По химической структуре глицерин не является липидом, однако он является важным структурным компонентом триглицеридов. Это группа липидов, играющих огромную роль в организме человека. Наиболее важной функцией этих веществ является поставка энергии. Триглицериды, попадающие в организм с пищей, расщепляются на глицерин и жирные кислоты. В результате выделяется очень большое количество энергии, которая идет на работу мышц (скелетных мышц, мышцы сердца и др. ).Жировая ткань в организме человека представлена в основном триглицеридами. Большая часть этих веществ, перед тем как отложиться в жировой ткани, претерпевает некоторые химические трансформации в печени.
Бета-липиды
Бета-липидами иногда называют бета-липопротеиды. Двойственность названия объясняется различиями в классификациях. Это одна из фракций липопротеинов в организме, которая играет важную роль в развитии некоторых патологий. Прежде всего, речь идет об атеросклерозе. Бета-липопротеиды транспортируют холестерол от одних клеток к другим, но в силу особенностей строения молекул, этот холестерол часто «застревает» в стенках сосудов, образуя атеросклеротические бляшки и препятствуя нормальному току крови. Перед применением необходимо проконсультироваться со специалистом.ЛИПИДЫ - это разнородная группа природных соединений, полностью или почти полностью нерастворимых в воде, но растворимых в органических растворителях и друг в друге, дающих при гидролизе высокомолекулярные жирные кислоты.
В живом организме липиды выполняют разнообразные функции.
Биологические функции липидов:
1) Структурная
Структурные липиды образуют сложные комплексы с белками и углеводами, из которых построены мембраны клетки и клеточных структур, участвуют в разнообразных процессах, протекающих в клетке.
2) Запасная (энергетическая)
Запасные липиды (в основном жиры) являются энергетическим резервом организма и участвуют в обменных процессах. В растениях они накапливаются главным образом в плодах и семенах, у животных и рыб - в подкожных жировых тканях и тканях, окружающих внутренние органы, а также печени, мозговой и нервной тканях. Содержание их зависит от многих факторов (вида, возраста, питания и т. д.) и в отдельных случаях составляет 95-97% всех выделяемых липидов.
Калорийность углеводов и белков: ~ 4 ккал/грамм.
Калорийность жира: ~ 9 ккал/грамм.
Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.
3) Защитная
Подкожные жировые ткани предохраняют животных от охлаждения, а внутренние органы - от механических повреждений.
Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.
Особую группу по своим функциям в живом организме составляют защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов.
4) Важный компонент пищевого сырья
Липиды являются важным компонентом пищи, во многом определяя ее пищевую ценность и вкусовое достоинство. Исключительно велика роль липидов в разнообразных процессах пищевой технологии. Порча зерна и продуктов его переработки при хранении (прогоркание) в первую очередь связана с изменением его липидного комплекса. Липиды, выделенные из ряда растений и животных, - основное сырье для получения важнейших пищевых и технических продуктов (растительного масла, животных жиров, в том числе сливочного масла, маргарина, глицерина, жирных кислот и др.).
2 Классификация липидов
Общепринятой классификации липидов не существует.
Наиболее целесообразно классифицировать липиды в зависимости от их химической природы, биологических функций, а также по отношению к некоторым реагентам, например, к щелочам.
По химическому составу липиды обычно делят на две группы: простые и сложные.
Простые липиды – сложные эфиры жирных кислот и спиртов. К ним относятся жиры , воски и стероиды .
Жиры – эфиры глицерина и высших жирных кислот.
Воски – эфиры высших спиртов алифатического ряда (с длинной углеводной цепью 16-30 атомов С) и высших жирных кислот.
Стероиды – эфиры полициклических спиртов и высших жирных кислот.
Сложные липиды – помимо жирных кислот и спиртов содержат другие компоненты различной химической природы. К ним относятся фосфолипиды и гликолипиды .
Фосфолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с фосфорной кислотой (фосфорная кислота может быть соединена с дополнительным соединением). В зависимости от того, какой спирт входит в состав фосфолипидов, они подразделяются на глицерофосфолипиды (содержат спирт глицерин) и сфингофосфолипиды (содержат спирт сфингозин).
Гликолипиды – это сложные липиды, в которых одна из спиртовых групп связана не с ЖК, а с углеводным компонентом. В зависимости от того, какой углеводный компонент входит в состав гликолипидов, они подразделяются на цереброзиды (в качестве углеводного компонента содержат какой-либо моносахарид, дисахарид или небольшой нейтральный гомоолигосахарид) и ганглиозиды (в качестве углеводного компонента содержат кислый гетероолигосахарид).
Иногда в самостоятельную группу липидов (минорные липиды ) выделяют жирорастворимые пигменты, стерины, жирорастворимые витамины. Некоторые из этих соединений могут быть отнесены к группе простых (нейтральных) липидов, другие - сложных.
По другой классификации липиды в зависимости от их отношения к щелочам делят на две большие группы: омыляемые и неомыляемые . К группе омыляемых липидов относятся простые и сложные липиды, которые при взаимодействии со щелочами гидролизуются с образованием солей высокомолекулярных кислот, получивших название «мыла». К группе неомыляемых липидов относятся соединения, не подвергающиеся щелочному гидролизу (стерины, жирорастворимые витамины, простые эфиры и т. д.).
По своим функциям в живом организме липиды делятся на структурные, запасные и защитные.
Структурные липиды - главным образом фосфолипиды.
Запасные липиды - в основном жиры.
Защитные липиды растений - воски и их производные, покрывающие поверхность листьев, семян и плодов, животных – жиры.
ЖИРЫ
Химическое название жиров - ацилглицерины. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот".
В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот).
Три гидроксила глицерина могут быть этерифицированы либо только одной кислотой, например пальмитиновой или олеиновой, либо двумя или тремя различными кислотами:
Природные жиры содержат главным образом смешанные триглице-риды, включающие остатки различных кислот.
Так как спирт во всех природных жирах один и тот же - глицерин, наблюдаемые между жирами различия обусловлены исключительно составом жирных кислот.
В жирах обнаружено свыше четырехсот карбоновых кислот различного строения. Однако большинство из них присутствует лишь в незначительном количестве.
Кислоты, содержащиеся в природных жирах, являются монокарбоновыми, построены из неразветвленных углеродных цепей, содержащих четное число углеродных атомов. Кислоты, содержащие нечетное число атомов углерода, имеющие разветвленную углеродную цепочку или содержащие циклические фрагменты, присутствуют в незначительных количествах. Исключение составляют изовалериановая кислота и ряд циклических кислот, содержащихся в некоторых весьма редко встречающихся жирах.
Наиболее распространенные в жирах кислоты содержат от 12 до 18 атомов углерода, они часто называются жирными кислотами. В состав многих жиров входят в небольшом количестве низкомолекулярные кислоты (С 2 -С 10). Кислоты с числом атомов углерода выше 24 присутствуют в восках.
В состав глицеридов наиболее распространенных жиров в значительном количестве входят ненасыщенные кислоты, содержащие 1-3 двойные связи: олеиновая, линолевая и линоленовая. В жирах животных присутствует арахидоновая кислота, содержащая четыре двойные связи, в жирах рыб и морских животных обнаружены кислоты с пятью, шестью и более двойными связями. Большинство ненасыщенных кислот липидов имеет цис-конфигурацию, двойные связи у них изолированы или разделены метиленовой (-СН 2 -) группой.
Из всех непредельных кислот, содержащихся в природных жирах, наиболее распространена олеиновая кислота. В очень многих жирах олеиновая кислота составляет больше половины от общей массы кислот, и лишь в немногих жирах ее содержится меньше 10%. Две другие непредельные кислоты - линолевая и линоленовая - также очень широко распространены, хотя они присутствуют в значительно меньшем количестве, чем олеиновая кислота. В заметных количествах линолевая и линоленовая кислоты содержатся в растительных маслах; для животных организмов они являются незаменимыми кислотами.
Из предельных кислот пальмитиновая кислота почти так же широко распространена, как и олеиновая. Она присутствует во всех жирах, причем некоторые содержат ее 15-50% от общего содержания кислот. Широко распространены стеариновая и миристиновая кислоты. Стеариновая кислота содержится в большом количестве (25% и более) только в запасных жирах некоторых млекопитающих (например, в овечьем жире) и в жирах некоторых тропических растений, например в масле какао.
Целесообразно разделять кислоты, содержащиеся в жирах, на две категории: главные и второстепенные кислоты. Главными кислотами жира считаются кислоты, содержание которых в жире превышает 10%.
Физические свойства жиров
Как правило, жиры не выдерживают перегонки и разлагаются, даже если их перегоняют при пониженном давлении.
Температура плавления, а соответственно и консистенция жиров зависят от строения кислот, входящих в их состав. Твердые жиры, т. е. жиры, плавящиеся при сравнительно высокой температуре, состоят преимущественно из глицеридов предельных кислот (стеариновая, пальмитиновая), а в маслах, плавящихся при более низкой температуре и представляющих собой густые жидкости, содержатся значительные количества глицеридов непредельных кислот (олеиновая, линолевая, ли-ноленовая).
Так как природные жиры представляют собой сложные смеси смешанных глицеридов, они плавятся не при определенной температуре, а в определенном температурном интервале, причем предварительно они размягчаются. Для характеристики жиров применяется, как правило, температура затвердевания, которая не совпадает с температурой плавления - она несколько ниже. Некоторые природные жиры - твердые вещества; другие же - жидкости (масла). Температура затвердевания изменяется в широких пределах: -27 °С у льняного масла, -18 °С у подсолнечного, 19-24 °С у коровьего и 30-38 °С у говяжьего сала.
Температура затвердевания жира обусловлена характером составляющих его кислот: она тем выше, чем больше содержание предельных кислот.
Жиры растворяются в эфире, полигалогенопроизводных, в сероуглероде, в ароматических углеводородах (бензоле, толуоле) и в бензине. Твердые жиры трудно растворимы в петролейном эфире; нерастворимы в холодном спирте. Жиры нерастворимы в воде, однако они могут образовывать эмульсии, которые стабилизируются в присутствии таких поверхностно-активных веществ (эмульгаторов), как белки, мыла и некоторые сульфокислоты, главным образом в слабощелочной среде. Природной эмульсией жира, стабилизированной белками, является молоко.
Химические свойства жиров
Жиры вступают во все химические реакции, характерные для сложных эфиров, однако в их химическом поведении имеется ряд особенностей, связанных со строением жирных кислот и глицерина.
Среди химических реакций с участием жиров выделяют несколько типов превращений.
Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.
В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.
Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) — олеиновая и линолевая.
Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.
Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.
В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.
Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.
К липидам также относятся терпены (ростовые вещества растений — гиббереллины; каротиноиды — фотосинтетичские пигменты; эфирные масла растений, а также воска).
Липиды могут образовывать комплексы с другими биологическими молекулами — белками и сахарами.
Функции липидов следующие:
- Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.
- Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
- Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.
- Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.
- Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.
Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.
В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.
Воск используется пчелами в строительстве сот.
Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"
Состав, свойства и функции липидов в организме
Пищевая ценность масел и жиров, используемых в хлебопекарной и кондитерской промышленности.
Циклические липиды. Роль в пищевой технологии и жизнедеятельности организма.
Простые и сложные липиды.
Состав, свойства и функции липидов в организме.
Липиды в сырье и пищевых продуктах
Липиды объединяют большое количество жиров и жироподобных веществ растительного и животного происхождения, имеющих ряд общих признаков:
а) нерастворимость в воде (гидрофобность и хорошая растворимость в органических растворителях, бензине, диэтиловом эфире, хлороформе и др.);
б) наличие в их молекулах длинноцепочечных углеводородных радикалов и сложноэфирных
группировок ().
Большинство липидов не являются высокомолекулярными соединениями и состоят из нескольких, связанных одна с другой молекул. В состав липидов могут входить спирты и линейные цепи ряда карбоновых кислот. В некоторых случаях их отдельные блоки могут состоять из высокомолекулярных кислот, разнообразных остатков фосфорной кислоты, углеводов, азотистых оснований и других компонентов.
Липиды вместе с белками и углеводами составляют основную массу органических веществ, всех живых организмов, являясь обязательным компонентом каждой клетки.
При выделении липидов из масличного сырья, в масло переходит большая группа сопутствующих им жирорастворимых веществ: стероиды, пигменты, жирорастворимые витамины и некоторые другие соединения. Извлекаемая из природных объектов смесь, состоящая из липидов и растворимых в них соединений, получила название «сырого» жира.
Основные компоненты сырого жира
Вещества сопутствующие липидам играют большую роль в пищевой технологии, влияют на пищевую и физиологическую ценность полученных продуктов питания. Вегетативные части растений накапливают не более 5% липидов, главным образом в семенах и плодах. Например, содержание липидов в различных растительных продуктах составляет (г/100г): подсолнечник 33-57, какао (бобы) 49-57, соя 14-25, конопля 30-38, пшеница 1,9-2,9, арахис 54-61, рожь 2,1-2,8, лён 27-47, кукуруза 4,8-5,9, кокосовая пальма 65-72. Содержание в них липидов зависит не только от индивидуальных особенностей растений, но и от сорта, места, условий произрастания. Липиды играют важную роль в процессах жизнедеятельности организма.
Их функции весьма разнообразны: важна их роль в энергетических процессах, в защитных реакциях организма, в его созревании, старении и т.д.
Липиды входят в состав всех структурных элементов клетки и в первую очередь клеточных мембран, оказывая влияние на их проницаемость. Они участвуют в передаче нервного импульса, обеспечивают межклеточный контакт, активный перенос питательных веществ через мембраны, транспорт жиров в плазме крови, синтез белка и различные ферментативные процессы.
По своим функциям в организме условно делят на две группы: запасные и структурные. Запасные (в основном ацилглицерины) обладают высокой калорийностью, являются энергетическим резервом организма и используются им при недостатке питания и заболеваниях.
Запасные липиды являются запасными веществами, помогающими организму переносить неблагоприятные воздействия внешней среды. Большая часть растений (до 90%) содержит запасные липиды, главным образом в семенах. Они легко извлекаются из жиросодержащего материала (свободные липиды).
Структурные липиды (в первую очередь фосфолипиды) образуют сложные комплексы с белками и углеводами. Они участвуют в разнообразных сложных процессах, протекающих в клетке. По массе они составляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» липиды.
Природные жирные кислоты, входящие в состав липидов, животных и растений, имеют много общих свойств. Они содержат, как правило, четкое число углеродных атомов и имеют неразветвленную цепь. Условно жирные кислоты делят на три группы: насыщенные, мононенасыщенные и полиненасыщенные. Ненасыщенные жирные кислоты животных и человека обычно содержат двойную связь между девятым и десятым атомами углерода, остальные карбоновые кислоты, входящие в состав жиров следующие:
Большинство липидов имеют некоторые общие структурные особенности, однако строгой классификации липидов пока не существует. Один из подходов к вопросу классификации липидов химический, согласно которому к липидам относятся производные спиртов и высших жирных кислот.
Схема классификации липидов.
Простые липиды. Простые липиды представлены двухкомпанентными веществами, сложными эфирами жирных высших кислот с глицерином, высшими или полициклическими спиртами.
К ним относятся жиры и воски. Наиболее важными представителями простых липидов являются ацилглицериды (глицерины). Они составляют основную массу липидов (95-96%) и именно их называют маслами и жирами. В состав жров входят в основном триглицериды, но присутствуют моно− и диацилглицерины:
Свойства конкретных масел определяются составом жирных кислот, участвующих в построении их молекул и положением, которое занимают остатки этих кислот в молекулах масел и жиров.
В жирах и маслах обнаружено до 300 карбоновых кислот различного строения. Однако большинство из них присутствуют в небольшом количестве.
Стеариновые и пальмитиновые кислоты входят в состав практически всех природных масел и жиров. Эруковая кислота входит в состав рапсового масла. В состав большинства наиболее распространенных масел входят ненасыщенные кислоты, содержащие 1-3 двойные связи. Некоторые кислоты природных масел и жиров имеют, как правило, цис-конфигурацию, т.е. заместители распределены по одну сторону плоскости двойной связи.
Кислоты, имеющие разветвлённые углеводные цепи, содержащие окси, кето и другие группы, в липидах, как правило, содержатся в незначительном количестве. Исключение составляет рацинолевая кислота в касторовом масле. В природных растительных триацилглицеринах положения 1 и 3 заняты предпочтительно остатками насыщенных жирных кислот, а положение 2 ненасыщенными. В животных жирах картина обратная.
Положение остатков жирных кислот в триацилглицеринах существенно влияет на их физико-химические свойства.
Ацилглицерины − это жидкость или твердые вещества с низкими температурами плавления и довольно высокими температурами кипения, с повышенной вязкостью, без цвета и запаха, легче воды, нелетучи.
В воде жиры практически нерастворимы, но образуют с ней эмульсии.
Помимо обычных физических показателей жиры характеризуются рядом физико-химических констант. Эти константы для каждого вида жира и его сорта предусмотрены стандартом.
Кислотное число, или коэффициент кислотности, показывает сколько свободных жирных кислот содержится в жире. Оно выражается числом мг KOH, которое требуется для нейтрализации свободных жирных кисло в 1 г жира. Кислотное число служит показателем свежести жира. В среднем оно колеблется для разных сортов жира от 0,4 до 6.
Число омыления, или коэффициент омыления, определяет общее количество кислот, как свободных, так и связанных в триацилглицеринах, находящихся в 1 г жира. Жиры, содержащие остатки высокомолекулярных жирных кислот, имеют меньшее число омыления, чем жиры, образуемые низкомолекулярными кислотами.
Йодное число – показатель ненасыщенности жира. О определяется количеством граммов йода, присоединяющихся к 100 г жира. Чем выше йодное число, тем более ненасыщенным является жир.
Воски. Восками называют сложные эфиры высших жирных кислот и высокомолекулярных спиртов (18-30 атомов углерода). Жирные кислоты, входящие в состав восков такие же, как и для жиров, но есть и специфические, характерные только для восков.
Например: карнаубовая ;
церотиновая ;
монтановая .
Общая формула восков может быть записана так:
Воски широко распространены в природе, покрывая тонким слоем листья, стебли, плоды растений, они предохраняют их от смачивания водой, высыхания, действия микроорганизмов. Содержание воска в зерне и плодах невелико.
Сложные липиды. Сложные липиды имеют многокомпонентные молекулы, отдельные части которых соединены химическими связями различного типа. К ним относятся фосфолипиды, состоящие из остатков жирных кислот, глицерина и других многоатомных спиртов, фосфорной кислоты и азотистых оснований. В структуре гликолипидов наряду с многоатомными спиртами и высокомолекулярной жирной кислотой имеются также углеводы (обычно остатки галактозы, глюкозы, маннозы).
Имеются также две группы липидов в составе которых представлены и простые и сложные липиды. Это − диольные липиды, являющиеся простыми и сложными липидами двухатомных спиртов и высокомолекулярных жирных кислот, содержащих в ряде случаев фосфорную кислоту, азотистые основания.
Ормитинолипиды построены из остатков жирных кислот, аминокислоты ормитина или лизина и включающих в некоторых случаях двухатомные спирты. Наиболее важная и распространенная группа сложных липидов − фосфолипиды. Молекула их построена из остатков спиртов, высокомолекулярных жирных кислот, фосфорной кислоты, азотистых оснований, аминокислот и некоторых других соединений.
Общая формула фосфолипидов (фосфотидов) имеет следующий вид:
Следовательно молекуле фосфолипидов имеются группировки двух типов: гидрофильные и гидрофобные.
В качестве гидрофильных группировок выступают остатки фосфорной кислоты и азотистые основания, а в качестве гидрофобных группировок углеводородные радикалы.
Схема строения фосфолипидов
Рис. 11. Молекула фосфолипидов
Гидрофильная полярная головка − это остаток фосфорной кислоты и азотистого основания.
Гидрофобные хвосты − это углеводородные радикалы.
Фосфолипиды выделены в качестве побочных продуктов при получении масел. Являются поверхностно-активными веществами, улучшающими хлебопекарные достоинства пшеничной муки.
В качестве эмульгаторов они применяются также в кондитерской промышленности и при производстве маргариновой продукции. Они являются обязательным компонентом клеток.
Вместе с белками и углеводами они участвуют в построении мембран клеток и субклеточных структур, выполняющих функции несущих конструкции мембран. Они способствуют лучшему усвоению жиров и препятствуют ожирению печени, играя важную роль в профилактике атеросклероза.
Помимо деления на простые и сложные, липиды можно подразделить на омыляемые и неомыляемые.
Классификация липидов позволяет разобраться с нюансами участия данных микроэлементов во множестве биологических процессов жизнедеятельности человека. Биохимия и строение каждого подобного вещества, входящего в состав клеток, по-прежнему вызывают немало споров среди ученых и экспериментаторов.
Липиды, как известно, – природные соединения, включающие в свой состав различные жиры. Отличием данных веществ от других представителей указанной органической группы является то, что они практически не утилизируются в воде. Будучи активными эфирами кислот с высоким уровнем жирности, они не способны полностью самоустраниться с помощью растворителей неорганического типа.
Липиды имеются в организме каждого человека. Их доля достигает в среднем 10-15% от всего тела. Значение липидов невозможно недооценить: они служат прямым поставщиком жирных ненасыщенных кислот. Извне внутрь организма вещества поступают с витамином F, который крайне важен для полноценной работы пищеварительной системы.
Кроме того, липид – это скрытый ресурс жидкости в человеческом теле. Окисляясь, 100 г жиров способны образовать 106 г воды. Одним из главных предназначений данных элементов является выполнение функции естественного растворителя. Именно благодаря ей в кишечнике происходит беспрерывная абсорбция ценных жирных кислот и витаминов, растворяющихся в органических растворителях. Почти половина всей массы головного мозга принадлежит липидам. В составе остальных тканей и органов их число также велико. В прослойках подкожно-жировой клетчатки может находиться до 90% всех липидов.
Основные виды липидных соединений
Биохимия жировых органических веществ и их строение предопределяют классовые различия. Таблица позволяет наглядно продемонстрировать, какими бывают липиды.
Каждое жиросодержащее вещество относится к одной из двух категорий липидов:
- омыляемых;
- неомыляемых.
Если соли кислот с высокой жирностью были образованы посредством гидролиза с использованием щелочи, может возникать омыление. При этом мылами называют калиевые и натриевые соли. Омыляемые вещества представляют собой наибольшую группу липидов.
В свою очередь, группу омыляемых элементов можно условно разделить на две группы:
- простые (состоящие только из атомов кислорода, углекислого газа и водорода);
- сложные (представляют собой простые соединения в сочетании с фосфорными основаниями, остатками глицерина или двухтомного ненасыщенного сфингозина).
Простые липиды
К типу простых липидов биохимия относит различные жирные кислоты и спиртовые эфиры. Среди последних веществ самыми распространенными являются холестерин (так называемый циклический спирт), глицерин и олеиновый спирт.
Одним из сложных эфиров глицерина можно назвать триациглицерин, который состоит из нескольких молекул кислот высокой жирности. По сути, простые соединения представляют собой часть аподоцитов жировых тканей. Стоит отметить также, что сложные эфирные контакты с жирными кислотами могут возникать сразу в трех точках, поскольку глицерин является трехатомным спиртом. В этом случае и возникают соединения, образованные из вышеупомянутой связи:
- триацилглицериды;
- диацилглицериды;
- моноацилглицериды.
Преимущественная часть данных жиров нейтрального типа присутствует в организме у животных теплокровных. В их структуре находится большая часть остатков пальмитиновой, стеариновой кислот высокой жирности. Кроме того, нейтральные жиры в одних тканях по своему содержимому могут существенно отличаться от жиров других органов в пределах одного и того же организма. К примеру, подкожная клетчатка человека обогащена такими кислотами на порядок выше, чем печень, состоящая из ненасыщенных жиров.
Нейтральные жиры
Оба вида кислот, вне зависимости от насыщенности, относятся к виду алифатических карбоновых. Биохимия позволяет понять, насколько важны эти вещества для липидов, сравнивая микроэлементы со строительными блоками. Благодаря им выстраивается каждый липид.
Если говорить о первом типе, о насыщенных кислотах, то в организме человека чаще всего можно встретить пальмитиновую и стеариновую кислоты. Намного реже в биохимических процессах участвует лигноцериновая, строение которой является более сложным (24 углеродных атома). При этом, в липидах у животных насыщенные кислоты, имеющие в своем составе менее 10 атомов, практически отсутствуют.
Самым распространенным атомным набором ненасыщенных кислот являются соединения, состоящие из 18 атомов углерода. Незаменимыми считают следующие виды ненасыщенных кислот, обладающих от 1 до 4 двойных связей:
- олеиновая;
- линолевая;
- линоленовая;
- арахидоновая.
Простагландиды и воски
В большей или меньшей степени все они обладают в организме млекопитающих. Огромное значение имеют производные кислот ненасыщенного типа, которыми являются простагландиды. Синтезируемые всеми клетками и тканями, кроме эритроцитов, они оказывают колоссальное действие на функционирование главных структур и процессов человеческого организма:
- систему кровообращения и сердце;
- метаболизм и обмен электролитами;
- центральную и периферическую нервные системы;
- органы пищеварения;
- репродуктивную функцию.
В отдельной группе находятся эфиры сложных кислот и спиртов с одним или двумя атомами в цепочке – воски. Общее число углеродных частиц у них может достигать 22. Благодаря твердой текстуре данные вещества воспринимаются липидами в качестве протекторов. Среди природных восков, синтезирующихся организмами, чаще всего встречаются пчелиный, ланолин и элемент, покрывающий поверхность листьев.
Сложные липиды
Классы липидов представлены группами сложных соединений. Биохимия к ним относит:
- фосфолипиды;
- гликолипиды;
- сульфолипиды.
Фосфолипиды являются биологическими конструкциями, имеющими сложное строение. В их состав обязательно входит фосфор, азотистые соединения, спирты и многое другое. Для организма они играют весомую роль, являясь основополагающей составляющей строительного процесса биологических мембран. Фосфолипиды присутствуют в сердце, печени и головном мозге.
К подклассу сложных липидов относятся также гликолипиды – это соединения, в составе которого имеется сфингозиновый спирт, а значит, и углеводы. В большей степени, чем какие-либо другие ткани в организме, нервные оболочки богаты гликолипидами.
Разновидностью гликолипидов, содержащих остатки серной кислоты, считаются сульфолипиды. Между тем, классификация липидов всегда подразумевает выделение данных веществ в отдельную группу. Основное различие между двумя сложными соединениями заключается в особенностях их структуры. На месте галактозы третьего атома углерода у гликолипида располагается остаток серной кислоты.
Группа неомыляемых липидов
В отличие от внушительной по числу разновидностей группы омыляемых липидов, неомыляемые полностью высвобождают жирные кислоты и не проходят гидролизацию путем щелочного воздействия. Такие вещества бывают двух типов:
- высшие спирты;
- высшие углеводороды.
К первой категории относятся витамины, отличающиеся жирорастворимыми качествами – А, Е, D. Самым известным представителем второго типа стеринов – высших спиртов – является холестерин. Выделить элемент из желчных камней путем выделения одноатомного спирта ученым удалось еще несколько веков назад.
Холестерин невозможно обнаружить у растений, в то время, как в организме млекопитающих он присутствует абсолютно во всех клетках. Его наличие является важным условием полноценного функционирования пищеварительной, гормональной и мочеполовой систем.
Рассматривая высшие углеводороды, которые также являются неомыляемыми веществами, важно обратиться к определению, которое дает биохимия. Указанные элементы с научной точки зрения представляют собой компоненты, продуцируемые изопреном. Молекулярное строение углеводородов основано на объединении частиц изопрена.
Как правило, указанные элементы присутствуют в растительных клетках особо душистых видов. Кроме того, известный всем натуральный каучук – политерпен – относят к группе неомыляемых высших углеводородов.