Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH 2 -CH 2 -COOH
Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH 2 - и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.
Физические свойства.
Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.
Кислоты (проявляются основные свойства)
Основания
+оксиды металловАминокислоты – образование пептидов
Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.
1) NH 2 -CH 2 -COOH + НCl → NH 3 Cl-CH 2 -COOH
2) NH 2 -CH 2 -COOH + NaOH → NH 2 -CH 2 -COONa + H 2 O
3) NH 2 -CH 2 -COOH + NH 2 -CH 2 -COOH → NH 2 -CH 2 -CO NH-CH 2 -COOH + H 2 O
Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту - при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.
Билет № 16
Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.
Амины - это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.
Общая формула:
Физические свойства.
Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь .
Химические свойства.
Кислоты (реакции по аминогруппе)
Br 2 (водный раствор)
C 6 H 5 NН 2 + НCl → C 6 H 5 NН 3 Cl
Химические свойства анилина обусловлены наличием в его молекуле аминогруппы -NH 2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.
Получение.
Восстановление нитросоединений – реакция Зинина
C 6 H 5 NО 2 + Н 2 → C 6 H 5 NН 2 + Н 2 О
Применение.
Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.
Билет № 17
Белки - как биополимеры. Строение, свойства и биологические функции белков.
Белки (протеины , полипептиды ) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.
Структура белка
Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот. Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.
· Первичная структура - последовательность аминокислот в полипептидной цепи-линейно.
· Вторичная структура - закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.
· Третичная структура -упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.
Свойства
Белки являются амфотерными веществами, также как и аминокислоты.
Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.
Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.
Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.
Функции белков в организме
Каталитическая функция
Ферменты - группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки: трипсин, пепсин, амилаза, липаза.
Структурная функция
Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.
Защитная функция
Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.
Сигнальная функция
Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.
Транспортная функция
Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.
Запасающая функция
К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.
Двигательная функция
Белки, осуществляющие сократительную деятельность это актин и миозин
Билет №18
1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена).
Высокомолекулярные соединения (полимеры ) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.
Мономер – это низкомолекулярное вещество из которого получают полимер.
Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.
Степень полимеризации – количество повторяющихся структурных звеньев.
nСН 2 =СН 2 → (-СН 2 -СН 2 -) n
Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.
Признаки реакции полимеризации :
1. Не образуется побочных веществ.
2. Реакция идет за счет двойных или тройных связей.
nСН 2 =СН 2 → (-СН 2 -СН 2 -) n – реакция полимеризации этилена - образование полиэтилена.
Признаки реакции поликонденсации :
1. Образуются побочные вещества.
2. Реакция идет за счет функциональных групп.
Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.
Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.
Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.
Аминокислоты.
Аминокислоты - органические бифункциональные соединения, в состав которых входит карбоксильная группа -СООН , а аминогруппа - NH 2 .
Разделяют α и β - аминокислоты:
В природе встречаются в основном α -кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С 5 Н 9 NO 2 ):
Самая простая аминокислота - глицин. Остальные аминокислоты можно разделить на следующие основные группы:
1) гомологи глицина - аланин, валин, лейцин, изолейцин.
Получение аминокислот.
Химические свойства аминокислот.
Аминокислоты - это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы - аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:
Кислотно-основные превращение можно представить в виде:
Аминокислоты (АК) - органические молекулы, которые состоят из основной аминогруппы (-NH 2), кислотной карбоксильной группы (-СООН), и органической R радикала (или боковой цепи), которая является уникальной для каждой АК
Структура аминокислот
Функции аминокислот в организме
Примеры биологических свойств АК. Хотя в природе встречается более 200 различных АК только около одной десятой из них включаются в белки, другие выполняют иные биологические функции:
- Они строительные блоки белков и пептидов
- Предшественники многих биологически важных молекул, производных АК. Например, тирозин является предшественником гормона тироксина и пигмента кожи меланина, тирозин также предшественник соединения ДОФА (диокси-фенилаланина). Это нейромедиатор передачи импульсов в нервной системе. Триптофан является предшественником витамина В3 - никотиновой кислоты
- Источники серы - серосодержащие АК.
- АК участвуют во многих метаболических путях, таких как глюконеогенез - синтез глюкозы в организме, синтез жирных кислот и др.
В зависимости от положения аминогруппы относительно карбоксильной группы АК могут быть альфа, α-, бета, β- и гамма,γ.
Альфа - аминогруппа присоединена к углероду, примыкающему к карбоксильной группе: |
Бета - аминогруппа находятся на 2-м углероде от карбоксильной группы |
Гамма - аминогруппа на 3-м углерое от карбоксильной группы |
В состав белков в ходят только альфа-АК
Общие свойства альфа-АК белков
1 - Оптическая активность - свойство аминокислот
Все АК, за исключекнием глицина, проявляют оптическую активность, т.к. содержат по крайней мере один асимметричный атом углерода (хиральный атом).
Что представляет собой асимметричный атом углерода? Это атом углерода, к которому присоединены четыре различных химических заместителя. Почему глицина не проявляет оптическую активность? В его радикале только три разных заместителя, т.е. альфа-углерод не асимметричный.
Что означает оптическая активности? Это означает, что АК в растворе может присутствовать в двух изомерах. Правовращающий изомер (+), который обладает способностью вращать плоскость поляризацованного света вправо. Левовращающий изомер (-), который обладает способностью вращать плоскость поляризации света влево. Оба изомера могут вращать плоскость поляризации света на одну ту же величину, но в противоположном направлении.
2 - Кислотно-основные свойства
В результате их способности к ионизации можно записать следующее равновесие этой реакции:
R-СООН<-------> R-C00 - + H +
R- NH 2 <--------->R-NH 3 +
Поскольку эти реакции обратимы это означает, что они могут действовать как кислоты (прямая реакция) или как основания (обратная реакция), что объясняет амфотерные свойства аминокислот.
Цвиттер ион - свойство АК
Все нейтральные аминокислоты при физиологическом значении рН (около 7,4) присутствуют как цвиттерионы - карбоксильная группа непротонированная и аминогруппа протонированная (рис.2). В растворах более основных, чем изоэлектрическая точка аминокислоты (ИЭТ), аминогруппа -NH3 + в АК жертвует протон. В растворе более кислом, чем ИЭТ АК, карбоксильная группа -СОО - в АК принимает протон. Таким образом, АК иногда ведет себя как кислота, в другие время как основание в зависимости от рН раствора.
Полярность как общее свойство аминокислот
При физиологическом рН АК присутствуют как цвиттер ионы.Положительный заряд несет альфа -аминогруппа, а отрицательный карбоновая. Таким образом, создаётся два противоволожных заряда с обеих концов молекулы АК, молекула имеет полярные свойства.
Наличие изоэлектрической точки (ИЭТ) - свойство амингокислот
Значение рН, при котором чистый электрический заряд аминокислоты равен нулю, и, следовательно, она не может перемещаться в электрическом поле называется ИЭТ.
Способность поглощать в ультрафиолете - свойство ароматических аминокислот
Фенилаланин, гистидин, тирозин и триптофан поглощают при 280 нм. На рис. оторажены значения молярного коэффициента экстинкции (ε) этих АК. В видимой части спектра аминокислоты не поглощают, следовательно, они бесцветны.
АК могут присутствовать в двух вариантах изомеров: L-изомера и D-изомера, которые являются зеркальными отражениями, и отличаются расположением химических групп вокруг атома α-углерода.
Все аминокислоты в белках в L-конфигурации, L-аминокиcлоты.
Физические свойства аминокислоты
Аминокислоты в основном водорастворимые, что объясняется их полярностью и наличием заряженных групп. Они растворимы в полярных и не растворяется в неполярных растворителях.
АК имеют высокую температуру плавления, что отражает наличие сильных связей, поддерживающих их кристаллическую решетку.
Общие свойства АК является общим для всех АК и во многих случаях определяются альфа-аминогруппой и альфа- карбоксильной группой. АК обладают и специфическими свойствами, которые диктуются уникальной боковой цепью.
Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты .
В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.
Аминокислоты - органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .
Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.
КЛАССИФИКАЦИЯ
Аминокислоты классифицируют по структурным признакам.1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.
2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.
Примером ароматической аминокислоты может служить пара -аминобензойная кислота:
Примером гетероциклической аминокислоты может служить триптофан –незаменимая α- аминокислота
НОМЕНКЛАТУРА
По систематической номенклатуре названия
аминокислот образуются из названий соответствующих кислот прибавлением
приставки амино-
и указанием места расположения аминогруппы по отношению
к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.
Например:
Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.
Пример:
Для α-аминокислот R-CH(NH 2)COOH
Которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.
Таблица.
Аминокислота |
Сокращённое обозначение |
Строение радикала (R) |
Глицин |
Gly (Гли) |
H - |
Аланин |
Ala (Ала) |
CH 3 - |
Валин |
Val (Вал) |
(CH 3) 2 CH - |
Лейцин |
Leu (Лей) |
(CH 3) 2 CH – CH 2 - |
Серин |
Ser (Сер) |
OH- CH 2 - |
Тирозин |
Tyr (Тир) |
HO – C 6 H 4 – CH 2 - |
Аспарагиновая кислота |
Asp (Асп) |
HOOC – CH 2 - |
Глутаминовая кислота |
Glu (Глу) |
HOOC – CH 2 – CH 2 - |
Цистеин |
Cys (Цис) |
HS – CH 2 - |
Аспарагин |
Asn (Асн) |
O = C – CH 2 – │ NH 2 |
Лизин |
Lys (Лиз) |
NH 2 – CH 2 - CH 2 – CH 2 - |
Фенилаланин |
Phen (Фен) |
C 6 H 5 – CH 2 - |
Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино- , три группы NH 2 – триамино- и т.д.
Пример:
Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота :
ИЗОМЕРИЯ
1. Изомерия углеродного скелета
2. Изомерия положения функциональных групп
3. Оптическая изомерия
α-аминокислоты, кроме глицина NН 2 -CH 2 -COOH.
ФИЗИЧЕСКИЕ СВОЙСТВА
Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.
ПОЛУЧЕНИЕ
3. Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют α - аминокислоты белков.
ХИМИЧЕСКИЕ СВОЙСТВА
Аминокислоты амфотерные органические соединения, для них характерны кислотно-основные свойства.
I . Общие свойства
1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:
Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:
цвиттер-ион
Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.
ПРИМЕНЕНИЕ
1) аминокислоты широко распространены в природе;
2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;
3) аминокислоты прописываются при сильном истощении, после тяжелых операций;
4) их используют для питания больных;
5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);
6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;
7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.
О РОЛИ АМИНОКИСЛОТ
Нахождение в природе и биологическая роль аминокислот
Нахождение в природе и би...гическая роль аминокислот
По характеру углеводородных заместителей амины делят на
Общие особенности строения аминов
Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:
По этой причине у аминов как и у аммиака существенно выражены основные свойства.
Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:
Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н + .
Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.
Химические свойства предельных аминов
Как уже было сказано, амины обратимо реагируют с водой:
Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:
Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.
Основные свойства предельных аминов увеличиваются в ряду.
Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H + .
Взаимодействие с кислотами
Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:
Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:
Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:
2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N 2 и воды. Например:
Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:
Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.
Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:
Взаимодействие с галогеналканами
Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:
Получение аминов:
1) Алкилирование аммиака галогеналканами:
В случае недостатка аммиака вместо амина получается его соль:
2) Восстановление металлами (до водорода в ряду активности) в кислой среде:
с последующей обработкой раствора щелочью для высвобождения свободного амина:
3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:
Химические свойства анилина
Анилин – тривиальное название аминобензола, имеющего формулу:
Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.
Взаимодействие анилина с кислотами
Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:
Взаимодействие анилина с галогенами
Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах, втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:
Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.
Взаимодействие анилина с азотистой кислотой
Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.
Реакции алкилирования анилина
С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:
Химические свойства аминокислот
Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH 2) и карбокси- (-COOH) группы.
Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.
Таким образом, общую формулу аминокислот можно записать как (NH 2) x R(COOH) y , где x и y чаще всего равны единице или двум.
Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.
Кислотные свойства аминокислот
Образование солей с щелочами и карбонатами щелочных металлов
Этерификация аминокислот
Аминокислоты могут вступать в реакцию этерификации со спиртами:
NH 2 CH 2 COOH + CH 3 OH → NH 2 CH 2 COOCH 3 + H 2 O
Основные свойства аминокислот
1. Oбразование солей при взаимодействии с кислотами
NH 2 CH 2 COOH + HCl → + Cl —
2. Взаимодействие с азотистой кислотой
NH 2 -CH 2 -COOH + HNO 2 → НО-CH 2 -COOH + N 2 + H 2 O
Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами
3. Алкилирование
NH 2 CH 2 COOH + CH 3 I → + I —
4. Взаимодействие аминокислот друг с другом
Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-
При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:
Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:
И аланина:
Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.
Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:
Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.
Образование внутренних солей аминокислот в водном растворе
В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов).