Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.
В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.
Навигация по странице.
Основные тригонометрические тождества
Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.
Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .
Формулы приведения
Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.
Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .
Формулы сложения
Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.
Формулы двойного, тройного и т.д. угла
Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.
Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .
Формулы половинного угла
Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.
Их вывод и примеры применения можно посмотреть в статье .
Формулы понижения степени
Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.
Формулы суммы и разности тригонометрических функций
Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.
Формулы произведения синусов, косинусов и синуса на косинус
Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .
Универсальная тригонометрическая подстановка
Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.
Список литературы.
- Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
- Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
- Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
- Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
Copyright by cleverstudents
Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.
Тригонометрия - это один из важнейших разделов, который изучается в курсе алгебры в 10 классе. Ему уделяется достаточно щедрое количество уроков. Ведь для того, чтобы как следует понять тригонометрию и в теории и на практике, необходимо постоянно решать огромное количество примеров, которые укрепят теорию и позволят расширить навыки выполнения той или иной работы: домашней, контрольной, самостоятельной или просто классной.
Видеурок имеет грамотное составление, все последовательно и логично. Структура является четкой, текст составлен грамотно и понятно для школьного уровня. Данный ресурс поможет сделать процесс изучения темы «Формулы понижения степени» намного интереснее и эффективное. Благодаря визуализации, ученики смогут лучше запомнить формулы, а сопровождению спокойным голосом диктора видеозаписи, запоминание ускориться.
Материал, который рассказывается и рассматривается в ресурсе, составлен специалистами таким образом, чтобы полностью раскрыть тему, не упустить ни один важный момент. Это говорит о том, что его можно смело использовать при составлении планов-конспектов к урокам, что делают молодые учителя в обязательном порядке.
Ранее были рассмотрены уже формулы косинуса, синуса, тангенса суммы аргументов, двойного аргумента. Котангенс в отдельности не рассматривался, ведь его всегда можно представить в виде обратной дроби к тангенсу. В этой видеозаписи будут рассматриваться еще одни важные формулы, с помощью которых можно понизить степень.
В первую очередь выводятся формулы понижения квадрата. Мы видим, как просто можно избавиться от второй степени в косинусе и синусе. Для того чтобы школьники могли понять, откуда взялись эти формулы, следующим шагом диктор подробно рассказывает, все шаги. В первую очередь, стоит вспомнить основную формулу в тригонометрии, гласящую о том, что сумма квадрата синуса и косинуса дает нам единицу. Из этого тождества можно вывести в отдельности и квадрат синуса, и косинуса. Вспомнив формулу косинуса и синуса двойного аргумента, можно понять, откуда появились новые правила.
Заметно, что при выполнении любого шага, мы обращаемся к материалу, который ранее был изучен. Это указывает на важность и взаимосвязанность тем в тригонометрии. Ни в коем случае нельзя упускать те или иные темы и приступить к новым. Материал станет непонятным, ведь будет неизвестно, откуда появились те или иные значения и преобразования. Так как тригонометрия содержит большое количество формул, без которых двигаться дальше невозможно, стоит постепенно их запоминать и изучать новые. Также закреплять материал нужно на практике и получать новые навыки, которые пригодятся в дальнейшем при написании контрольных и семестровых работ.
Видеоурок «Формулы понижения степени» после рассмотрения формул переходит к практическому разбору примеров, что, как было уже сказано, очень важно. Примеры будут понятны, при внимательном просмотре самостоятельно либо вместе с учителем.
В первом примере необходимо найти значение некоторого выражения при определенных условиях. При его решении используется формула понижения градуса косинуса. Чтобы она была на виду, в видеозаписи выводится с правой стороны. Таким образом, у учеников будет возможность повторить и пользоваться ею.
После этого диктор предлагает решить похожий пример, в котором используется формула понижения степени синуса. Его школьники могут самостоятельно решить. Если они поняли предыдущий пример, то справятся и с этим.
В итоге приводится еще один более сложный пример. При ее решении используется формула тангенса. Диктор подробно объясняет решение, после чего выводится ответ.
Видеоурок за короткое время расскажет полностью о том, что такое формулы понижения степени и как ими необходимо пользоваться на практике.
ТЕКСТОВАЯ РАСШИФРОВКА:
Формулы понижения степени
называют формулами понижения степени.
Выведем эти формулы:
Из формулы cos 2 х + sin 2 х= 1, из найдем sin 2 х:
sin 2 х= 1-cos 2 х
В формуле cos 2x= cos 2 х - sin 2 х, значение sin 2 х заменим на 1- cos 2 х и получим cos 2 х - (1- cos 2 х)
при раскрытии скобок получаем cos 2 х - 1+ cos 2 х
так как cos 2 х + cos 2 х в сумме 2cos 2 х
получаем, что cos 2x = 2 cos 2 х - 1.
cos 2x = cos 2 х - sin 2 х = cos 2 х - (1-cos 2 х) = 2 cos 2 х - 1.
Отсюда выражаем cos 2 х
cos 2x +1 = 2 cos 2 х
cos 2 х = (квадрат косинуса икс равен полу-сумме единицы и косинуса двойного аргумента).
Мы вывели первую формулу понижения степени для cos 2 х.
Аналогично выведем и вторую формулу понижения степени для sin 2 х:
Из формулы cos 2 х + sin 2 х= 1, из найдем cos 2 х:
cos 2 х = 1 - sin 2 х
В формуле cos 2x= cos 2 х - sin 2 х, значение cos 2 х:
заменим на 1 - sin 2 х
и получим 1 - sin 2 х- sin 2 х
Так как -sin 2 х -sin 2 х в сумме даст -2 sin 2 х,
получаем, что cos 2x = 1 -2 sin 2 х.
Отсюда выражаем sin 2 х:
переносим единицу с противоположным знаком
cos 2x-1 = -2 sin 2 х
меняем знаки на противоположные
1- cos 2x = 2 sin 2 х
делим на 2 обе части равенства:
sin 2 х = (квадрат синуса икс равен полу-разности единицы и косинуса двойного аргумента).
Запомните, формулы, которые мы получили, называют формулами понижения степени.
Такое название было дано из-за того, что в левой части обоих тождеств содержится вторая степень косинуса и синуса, а в правой части - первая степень, т.е наблюдается понижение степени.
Рассмотрим решение примеров с применением формул понижения степени.
ПРИМЕР 1. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить cos.
Будем использовать формулу понижения степени
квадрат косинуса икс cos 2 х =, так как, то получим:
по условию cosx= - подставив данные в формулу имеем:
cos 2 = , сделав вычисления в правой части выражения, получим
cos 2 = , извлечем корень квадратный из, получим
По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где косинус отрицательный. Поэтому cos = − .
Ответ: cos = − .
ПРИМЕР 2. Зная, что cosx= - и хϵ (π;)
(икс принадлежит промежутку от пи до трех пи на два), вычислить sin.
Решение. Будем использовать формулу понижения степени sin 2 х =
sin 2 =, так как по условию cosx= -
Имеем: sin 2 = = , извлечем корень квадратный и получим
По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где синус положительный. Поэтому sin = .
Ответ: sin = .
ПРИМЕР 3. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить tg.
Решение. Зная, что тангенс икс - это отношение синуса икс к косинусу икс, имеем
в примерах 1 и 2 мы нашли, что sin = и cos = − , поэтому
Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени.Они способствуют упрощению выражений при помощи уменьшения степени.
Определение 1
Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .
Формулы понижения степени, их доказательство
Ниже приводится таблица формул понижения степенисо 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.
sin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α - sin 3 α 4 sin 4 = 3 - 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8
Данные формулы предназначены для понижения степени.
Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 - 2 · sin 2 α и cos 2 α = 2 · cos 2 α - 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 - cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .
Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.
Имеет место применение формулы тройного угла sin 3 α = 3 · sin α - 4 · sin 3 α и cos 3 α = - 3 · cos α + 4 · cos 3 α .
Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:
sin 3 α = 3 - 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .
Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 - 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .
Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:
sin 4 α = (sin 2 α) 2 = (1 - cos 2 α 2) 2 = 1 - 2 · cos 2 α + cos 2 2 α 4 = = 1 - 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 - 4 · cos 2 α + cos 4 α 8 ; cos 4 α = (cos 2 α) 2 = (1 + cos 2 α 2) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8
Основные формулы тригонометрии - это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.
Основные тождества тригонометрии
Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.
Тригонометрические тождества
sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α
Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).
Формулы приведения
Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.
Формулы приведения
sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin - α + 2 π z = - sin α , cos - α + 2 π z = cos α t g - α + 2 π z = - t g α , c t g - α + 2 π z = - c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = - sin α t g π 2 + α + 2 π z = - c t g α , c t g π 2 + α + 2 π z = - t g α sin π 2 - α + 2 π z = cos α , cos π 2 - α + 2 π z = sin α t g π 2 - α + 2 π z = c t g α , c t g π 2 - α + 2 π z = t g α sin π + α + 2 π z = - sin α , cos π + α + 2 π z = - cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π - α + 2 π z = sin α , cos π - α + 2 π z = - cos α t g π - α + 2 π z = - t g α , c t g π - α + 2 π z = - c t g α sin 3 π 2 + α + 2 π z = - cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = - c t g α , c t g 3 π 2 + α + 2 π z = - t g α sin 3 π 2 - α + 2 π z = - cos α , cos 3 π 2 - α + 2 π z = - sin α t g 3 π 2 - α + 2 π z = c t g α , c t g 3 π 2 - α + 2 π z = t g α
Формулы приведения являются следствием периодичности тригонометрических функций.
Тригонометрические формулы сложения
Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.
Тригонометрические формулы сложения
sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β - sin α · sin β cos α - β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = - 1 ± c t g α · c t g β c t g α ± c t g β
На основе формул сложения выводятся тригонометрические формулы кратного угла.
Формулы кратного угла: двойного, тройного и т.д.
Формулы двойного и тройного углаsin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α - sin 2 α , cos 2 α = 1 - 2 sin 2 α , cos 2 α = 2 cos 2 α - 1 t g 2 α = 2 · t g α 1 - t g 2 α с t g 2 α = с t g 2 α - 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α - sin 3 α , sin 3 α = 3 sin α - 4 sin 3 α cos 3 α = cos 3 α - 3 sin 2 α · cos α , cos 3 α = - 3 cos α + 4 cos 3 α t g 3 α = 3 t g α - t g 3 α 1 - 3 t g 2 α c t g 3 α = c t g 3 α - 3 c t g α 3 c t g 2 α - 1
Формулы половинного угла
Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.
Формулы половинного угла
sin 2 α 2 = 1 - cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 - cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 - cos α
Формулы понижения степени
Формулы понижения степениsin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α - sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 - 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8
Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:
Общий вид формул понижения степени
для четных n
sin n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 (- 1) n 2 - k · C k n · cos ((n - 2 k) α) cos n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 C k n · cos ((n - 2 k) α)
для нечетных n
sin n α = 1 2 n - 1 ∑ k = 0 n - 1 2 (- 1) n - 1 2 - k · C k n · sin ((n - 2 k) α) cos n α = 1 2 n - 1 ∑ k = 0 n - 1 2 C k n · cos ((n - 2 k) α)
Сумма и разность тригонометрических функций
Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.
Сумма и разность тригонометрических функций
sin α + sin β = 2 sin α + β 2 · cos α - β 2 sin α - sin β = 2 sin α - β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α - β 2 cos α - cos β = - 2 sin α + β 2 · sin α - β 2 , cos α - cos β = 2 sin α + β 2 · sin β - α 2
Произведение тригонометрических функций
Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход - от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.
Формулы произведения тригонометрических функций
sin α · sin β = 1 2 · (cos (α - β) - cos (α + β)) cos α · cos β = 1 2 · (cos (α - β) + cos (α + β)) sin α · cos β = 1 2 · (sin (α - β) + sin (α + β))
Универсальная тригонометрическая подстановка
Все основные тригонометрические функции - синус, косинус, тангенс и котангенс, - могут быть выражены через тангенс половинного угла.
Универсальная тригонометрическая подстановка
sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 - t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 - t g 2 α 2 c t g α = 1 - t g 2 α 2 2 t g α 2
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту. Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат - борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого "борщевого" прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.
Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.
В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.
Линейные угловые функции - это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.
Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания. А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.
Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.
На рисунке показаны два уровня различий для математических . Первый уровень - это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень - это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой U . Этим занимаются физики. Мы же можем понимать третий уровень - различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B - борщ. Вот как будут выглядеть линейные угловые функции для борща.
Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики - мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.
И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.
Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.
Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.
Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.
Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.
Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).
Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните - все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: "деление на ноль невозможно", "любое число, умноженное на ноль, равняется нулю", "за выколом точки ноль" и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу - это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что " мы покрасили". Но я немного отвлекся.
Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.
Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).
Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.
Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))
Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.
Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.
Появление математики на нашей планете.
Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.
суббота, 26 октября 2019 г.
Просмотрел интересное видио про ряд Гранди Один минус один плюс один минус один - Numberphile . Математики врут. Они не выполнили проверку равенства в ходе своих рассуждений.
Это перекликается с моими рассуждениями о .
Давайте более детально рассмотрим признаки обмана нас математиками. В самом начале рассуждений, математики говорят, что сумма последовательности ЗАВИСИТ от того, четное количество элементов в ней или нет. Это ОБЪЕКТИВНО УСТАНОВЛЕННЫЙ ФАКТ. Что происходит дальше?
Дальше математики из единицы вычитают последовательность. К чему это приводит? Это приводит к изменению количества элементов последовательности - четное количество изменяется на нечетное, нечетное изменяется на четное. Ведь мы добавили к последовательности один элемент, равный единице. Несмотря на всю внешнюю схожесть, последовательность до преобразования не равна последовательности после преобразования. Даже если мы рассуждаем о бесконечной последовательности, необходимо помнить, что бесконечная последовательность с нечетным количеством элементов не равна бесконечной последовательности с четным количеством элементов.
Ставя знак равенства между двумя разными по количеству элементов последовательностями, математики утверждают, что сумма последовательности НЕ ЗАВИСИТ от количества элементов в последовательности, что противоречит ОБЪЕКТИВНО УСТАНОВЛЕННОМУ ФАКТУ. Дальнейшие рассуждения о сумме бесконечной последовательности являются ложными, поскольку основаны на ложном равенстве.
Если вы видите, что математики в ходе доказательств расставляют скобки, переставляют местами элементы математического выражения, что-нибудь добавляют или убирают, будьте очень внимательны, скорее всего вас пытаются обмануть. Как карточные фокусники, математики различными манипуляциями с выражением отвлекают ваше внимание, чтобы в итоге подсунуть вам ложный результат. Если карточный фокус вы не можете повторить, не зная секрета обмана, то в математике всё гораздо проще: вы даже ничего не подозреваете об обмане, но повторение всех манипуляций с математическим выражением позволяет вам убедить других в правильности полученного результата, точно так же, как когда-то убедили вас.
Вопрос из зала: А бесконечность (как количество элементов в последовательности S), она четная или нечётная? Как можно поменять четность у того, что четности не имеет?
Бесконечность для математиков, как Царство Небесное для попов - никто никогда там не был, но все точно знают, как там всё устроено))) Согласен, после смерти вам будет абсолютно безразлично, четное или нечетное количество дней вы прожили, но... Добавив всего один день в начало вашей жизни, мы получим совсем другого человека: фамилия, имя и отчество у него точно такие же, только дата рождения совсем другая - он родился за один день до вас.
А теперь по существу))) Допустим, конечная последовательность, имеющая четность, теряет эту четность при переходе к бесконечности. Тогда и любой конечный отрезок бесконечной последовательности должен потерять четность. Мы этого не наблюдаем. То, что мы не можем точно сказать, четное или нечетное количество элементов у бесконечной последовательности, совсем не означает, что четность исчезла. Не может четность, если она есть, бесследно исчезнуть в бесконечности, как в рукаве шулера. Для этого случая есть очень хорошая аналогия.
Вы никогда не спрашивали у кукушки, сидящей в часах, в каком направлении вращается стрелка часов? Для неё стрелка вращается в обратном направлении тому, которое мы называем "по часовой стрелке". Как это не парадоксально звучит, но направление вращения зависит исключительно от того, с какой стороны мы вращение наблюдаем. И так, у нас есть одно колесо, которое вращается. Мы не можем сказать, в каком направлении происходит вращение, поскольку мы его можем наблюдать как с одной стороны плоскости вращения, так и с другой. Мы можем только засвидетельствовать факт, что вращение есть. Полная аналогия с четностью бесконечной последовательности S .
Теперь добавим второе вращающееся колесо, плоскость вращения которого параллельна плоскости вращения первого вращающегося колеса. Мы по прежнему не можем точно сказать, в каком направлении вращаются эти колеса, но мы абсолютно точно можем сказать, вращаются оба колеса в одну сторону или в противоположные. Сравнивая две бесконечные последовательности S и 1-S , я при помощи математики показал, что у этих последовательностей разная четность и ставить знак равенства между ними - это ошибка. Лично я верю математике, я не доверяю математикам))) Кстати, для полного понимания геометрии преобразований бесконечных последовательностей, необходимо вводить понятие "одновременность" . Это нужно будет нарисовать.
среда, 7 августа 2019 г.
Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие "бесконечность" действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:
Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:
Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.
Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".
Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.
Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:
Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.
Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:
Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.
Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.
Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).
pozg.ru
воскресенье, 4 августа 2019 г.
Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:
Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."
Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:
Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.
За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.
суббота, 3 августа 2019 г.
Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.
Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.
После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.
Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.
Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.
В заключение, я хочу показать вам, как математики манипулируют с
Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.
Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.
С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.
Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".
Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:
За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.
Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.
Другая интересная апория Зенона повествует о летящей стреле:
Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.
В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.
А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.
Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.
Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.
При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.