Вы можете заказать подробное решение вашей задачи !!!
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| \leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| \leq 1` имеет бесконечное множество решений.
Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + \pi n, n \in Z`
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + \pi n, n \in Z`
Формулы корней тригонометрических уравнений в таблице
Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`
`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,
делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.
2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.
Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:
`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
- `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.
Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:
`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:
`cos \varphi sin x + sin \varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:
`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos \varphi sin x+sin \varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`sin (x+\varphi)=2/5`,
`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`
`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`
`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`
`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`
`\frac {sin x-sin^2 x}{1+cos x}=0`
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=\pi n`, `n \in Z`
- `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.
Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.
Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.
Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.
Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.
По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.
Чтобы решить тригонометрическое уравнение, надо попытаться:
1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.
Рассмотрим основные методы решения тригонометрических уравнений.
I. Приведение к простейшим тригонометрическим уравнениям
Схема решения
Шаг 1. Выразить тригонометрическую функцию через известные компоненты.
Шаг 2. Найти аргумент функции по формулам:
cos x = a; x = ±arccos a + 2πn, n ЄZ.
sin x = a; x = (-1) n arcsin a + πn, n Є Z.
tg x = a; x = arctg a + πn, n Є Z.
ctg x = a; x = arcctg a + πn, n Є Z.
Шаг 3. Найти неизвестную переменную.
Пример.
2 cos(3x – π/4) = -√2.
Решение.
1) cos(3x – π/4) = -√2/2.
2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;
3x – π/4 = ±3π/4 + 2πn, n Є Z.
3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;
x = ±3π/12 + π/12 + 2πn/3, n Є Z;
x = ±π/4 + π/12 + 2πn/3, n Є Z.
Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.
II. Замена переменной
Схема решения
Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.
Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).
Шаг 3. Записать и решить полученное алгебраическое уравнение.
Шаг 4. Сделать обратную замену.
Шаг 5. Решить простейшее тригонометрическое уравнение.
Пример.
2cos 2 (x/2) – 5sin (x/2) – 5 = 0.
Решение.
1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;
2sin 2 (x/2) + 5sin (x/2) + 3 = 0.
2) Пусть sin (x/2) = t, где |t| ≤ 1.
3) 2t 2 + 5t + 3 = 0;
t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.
4) sin (x/2) = 1.
5) x/2 = π/2 + 2πn, n Є Z;
x = π + 4πn, n Є Z.
Ответ: x = π + 4πn, n Є Z.
III. Метод понижения порядка уравнения
Схема решения
Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:
sin 2 x = 1/2 · (1 – cos 2x);
cos 2 x = 1/2 · (1 + cos 2x);
tg 2 x = (1 – cos 2x) / (1 + cos 2x).
Шаг 2. Решить полученное уравнение с помощью методов I и II.
Пример.
cos 2x + cos 2 x = 5/4.
Решение.
1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.
2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;
3/2 · cos 2x = 3/4;
2x = ±π/3 + 2πn, n Є Z;
x = ±π/6 + πn, n Є Z.
Ответ: x = ±π/6 + πn, n Є Z.
IV. Однородные уравнения
Схема решения
Шаг 1. Привести данное уравнение к виду
a) a sin x + b cos x = 0 (однородное уравнение первой степени)
или к виду
б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).
Шаг 2. Разделить обе части уравнения на
а) cos x ≠ 0;
б) cos 2 x ≠ 0;
и получить уравнение относительно tg x:
а) a tg x + b = 0;
б) a tg 2 x + b arctg x + c = 0.
Шаг 3. Решить уравнение известными способами.
Пример.
5sin 2 x + 3sin x · cos x – 4 = 0.
Решение.
1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;
5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;
sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.
2) tg 2 x + 3tg x – 4 = 0.
3) Пусть tg x = t, тогда
t 2 + 3t – 4 = 0;
t = 1 или t = -4, значит
tg x = 1 или tg x = -4.
Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.
Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.
V. Метод преобразования уравнения с помощью тригонометрических формул
Схема решения
Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.
Шаг 2. Решить полученное уравнение известными методами.
Пример.
sin x + sin 2x + sin 3x = 0.
Решение.
1) (sin x + sin 3x) + sin 2x = 0;
2sin 2x · cos x + sin 2x = 0.
2) sin 2x · (2cos x + 1) = 0;
sin 2x = 0 или 2cos x + 1 = 0;
Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.
Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.
В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.
С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.
Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.
Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Краткое изложение теоретических вопросов дифференцированного зачета
Для студентов 1 курса
Специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»
Уравнение. Корень уравнения. Что значит «решить уравнение»?
Уравнение – это равенство, содержащее переменную.
Корень уравнения - такое значение переменной, которое при подстановке его в уравнение, обращает его в верное числовое равенство.
Решить уравнение – это значит найти все его корни или доказать, что корней нет.
Система уравнений – это совокупность из двух и более уравнений с двумя и более неизвестными; причём решение одного из уравнений является одновременно и решением всех остальных.
Виды уравнений и их решение: линейное, квадратное.
Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а. Если а равно нулю и b равно нулю, то корнем уравнения ах + b = 0 является любое число. Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.
Способы решения линейных уравнений
1) тождественные преобразования
2) графический способ.
Квадратное уравнение - это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c - произвольные числа, причем a ≠ 0.
Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант - это число D = b 2 − 4ac .
1. Если D < 0, корней нет;
2. Если D = 0, есть ровно один корень;
3. Если D > 0, корней будет два.
Если дискриминант D > 0, корни можно найти по формулам: Корни квадратного уравнения. Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Решение простейших тригонометрических уравнений
Общий вид решения уравнения cos x = a, где | a | ≤ 1, определяется формулой:
x = ± arccos(a) + 2πk, k ∈ Z (целые числа), при | a | > 1 уравнение cos x = a не имеет решений среди вещественных чисел.
Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:
x = (- 1)k · arcsin(a) + πk, k ∈ Z (целые числа), при | a | > 1 уравнение sin x = a не имеет решений среди вещественных чисел.
Общий вид решения уравнения tg x = a определяется формулой:
x = arctg(a) + πk, k ∈ Z (целые числа).
Общий вид решения уравнения ctg x = a определяется формулой:
x = arcctg(a) + πk, k ∈ Z (целые числа).
Решение линейных тригонометрических уравнений
Линейные тригонометрические уравнения имеют вид k*f(x) + b = 0, где f(x) – тригонометрическая функция, а k и b - действительные числа.
Для решения уравнения его приводят к простейшему виду путем тождественных преобразований
Решение линейно – комбинированных тригонометрических уравнений
Линейно - комбинированные тригонометрические уравнения имеют вид f(kx + b) = а, где f(x) – тригонометрическая функция, а, k и b - действительные числа.
Для решения уравнения его вводят новую переменную у = kx + b. Решают полученное простейшее тригонометрическое уравнение относительно у и производят обратную замену.
Решение тригонометрических уравнений с использованием формул приведения
Решение тригонометрических уравнений с использованием тригонометрических тождеств
При решении тригонометрических уравнений, не являющихся простейшими, выполняются тождественные преобразования по следующим формулам:
Решение квадратных тригонометрических уравнений
Отличительные признаки уравнений, сводящихся к квадратным:
В уравнении присутствуют тригонометрические функции от одного аргумента или они легко сводятся к одному аргументу.
В уравнении присутствует только одна тригонометрическая функция или все функции можно свести к одной.
Алгоритм решения:
Выполняется подстановка.
Выполняется преобразование выражения.
Вводится обозначение (например, sinx = y).
Решается квадратное уравнение.
Подставляется значение обозначенной величины, и решается тригонометрическое уравнение
Урок и презентация на тему: "Решение простейших тригонометрических уравнений"
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"
Что будем изучать:
1. Что такое тригонометрические уравнения?
3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.
Что такое тригонометрические уравнения?
Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.
Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.
Повторим вид решения простейших тригонометрических уравнений:
1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:
X= ± arccos(a) + 2πk
2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:
3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk
5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk
Для всех формул k- целое число
Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.
Пример.Решить уравнения: а) sin(3x)= √3/2
Решение:
А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:
Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.
Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.
Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,
Тогда x= ((-1)^n)×π/9+ πn/3
Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.
Ещё примеры тригонометрических уравнений.
Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3Решение:
А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:
X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk
Ответ: x=5πk, где k – целое число.
Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3
3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3
Ответ: x=2π/9 + πk/3, где k – целое число.
Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .
Решение:
Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk
4x= ± π/4 + 2πk;
X= ± π/16+ πk/2;
Теперь давайте посмотрим какие корни попадут на наш отрезок. При k
При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.
Ответ: x= π/16, x= 9π/16
Два основных метода решения.
Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.Решим уравнение:
Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).
В результате замены получим: t 2 + 2t -1 = 0
Найдем корни квадратного уравнения: t=-1 и t=1/3
Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.
X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.
Ответ: x= -π/4+πk; x=arctg(1/3) + πk.
Пример решения уравнения
Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0
Решение:
Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1
Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0
2 cos 2 (x) - 3 cos(x) -2 = 0
Введем замену t=cos(x): 2t 2 -3t - 2 = 0
Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2
Тогда cos(x)=2 и cos(x)=-1/2.
Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.
Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk
Ответ: x= ±2π/3 + 2πk
Однородные тригонометрические уравнения.
Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.Уравнения вида
однородными тригонометрическими уравнениями второй степени.
Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x):
Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.
Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0
Решение:
Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0
Тогда нам надо решить два уравнения:
Cos(x)=0 и cos(x)+sin(x)=0
Cos(x)=0 при x= π/2 + πk;
Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):
1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk
Ответ: x= π/2 + πk и x= -π/4+πk
Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!
1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде
2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:
Делаем замену переменной t=tg(x) получаем уравнение:
Решить пример №:3
Решить уравнение:Решение:
Разделим обе части уравнения на косинус квадрат:
Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0
Найдем корни квадратного уравнения: t=-3 и t=1
Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk
Tg(x)=1 => x= π/4+ πk
Ответ: x=-arctg(3) + πk и x= π/4+ πk
Решить пример №:4
Решить уравнение:Решение:
Преобразуем наше выражение:
Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk
Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk
Решить пример №:5
Решить уравнение:Решение:
Преобразуем наше выражение:
Введем замену tg(2x)=t:2 2 - 5t + 2 = 0
Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2
Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2
2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2
Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2
Задачи для самостоятельного решения.
1) Решить уравнениеА) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7
2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].
3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0
4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0
5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0
6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)
Назад
Вперёд
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Цели и задачи урока.
- Образовательные
:
- повторить: определение и способы решения простейших тригонометрических уравнений; определение квадратного уравнения, формулы дискриминанта и корней квадратного уравнения
- сформировать знания об отличительных признаках и способах решения тригонометрических уравнений, сводящихся к квадратным.
- уметь: выделять среди тригонометрических уравнений тригонометрические уравнения, сводящиеся к квадратным и решать их.
- Развивающие
:
- развивать логическое мышление учащихся, память, внимание, речь; умения рассуждать и выделять главное; умение самостоятельно приобретать знания и применять их на практике, развивать навыки самоконтроля и взаимоконтроля.
- Воспитательные
:
- воспитывать уважительное отношение к одноклассникам, самостоятельность, ответственность, эстетический вкус, аккуратность, интерес к математике.
Оборудование: мультимедийный проектор, экран, лист самооценки.
Организационные формы общения: фронтальная, групповая, индивидуальная.
Тип урока: усвоения новых знаний.
Образовательные технологии: ИКТ, проектная.
План урока.
- Организационный момент, формирование мотивации работы учащихся.
- Формулирование темы, цели урока.
- Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала.
- Этап усвоения новых знаний и способов действий.
- Этап активной релаксации и активизации.
- Этап первичной проверки понимания изученного.
- Этап рефлексии и оценивания. Подведение итогов урока.
- Этап информирования учащихся о домашнем задании, инструктаж по его выполнению.
Подготовительная работа
Учащихся класса необходимо заранее поделить на
группы. Принцип деления учащихся на группы
учитель вправе выбрать самостоятельно.
Один из вариантов – группы, в которые вошли бы
учащиеся с разным уровнем математической
подготовки: от «базового» до «продвинутого».
Каждая группа предварительно получает задание
изучить алгоритм решения одного из типов
тригонометрических уравнений (используются
предложенные учителем источники информации и
самостоятельно найденные). Результаты своей
работы члены каждой группы представляют на одном
из уроков по теме «Тригонометрические
уравнения». В зависимости от объёма
предлагаемого материала и его сложности одном
уроке могут успеть выступить 1-2 группы,
представив результаты своей работы.
Предлагаем вашему вниманию урок, на котором
рассматривается решение тригонометрических
уравнений, сводящихся к квадратным.
Из дома реальности легко забрести в лес математики, но лишь немногие способны вернуться обратно.
Х. Штейнхаус
Чем больше человек будет становиться человеком, тем меньше он согласится на что-либо иное, кроме бесконечного и неистребимого движения к новому.
Пьер Шарден
ХОД УРОКА
1. Организационный момент, формирование мотивации работы учащихся (3 мин.)
Приветствие. Фиксация отсутствующих, проверка
готовности учащихся к уроку. Далее каждому
ученику выдаётся оценочный лист. Учитель
кратко комментирует правила заполнения
оценочного листа и предлагает заполнить 1-3
строки. Приложение 1
.
Организация внимания учащихся: учитель цитирует
учащимся Пьера Шардена, предлагает пояснить, как
они поняли смысл слов (можно выслушать 2-3
человека), предлагает сделать слова девизом
урока и интересуется, знают ли они, кто является
их автором. Краткая историческая справка
(Слайд 3).
*Инструкция по использованию Презентации – Приложение 2 .
2. Формулирование темы, цели урока (2-3 мин.).
Учитель просит сформулировать тему
предыдущего урока (Решение простейших
тригонометрических уравнений). Интересуется у
учащихся, как они думают, существуют ли другие
типы тригонометрических уравнений? (Да. Если есть
«простейшие», то значит, есть более сложные,
иначе нет необходимости вводить термин
«простейшие», если это единственный тип
тригонометрических уравнений). Исходя из выше
сказанного, предлагает сформулировать тему
сегодняшнего урока (Решение
сложных/других/различных типов
тригонометрических уравнений).
После корректировки темы, предлагает учащимся
записать в их тетрадях: дату проведения урока,
фразу «Классная работа» и тему урока «Решение
различных типов тригонометрических уравнений:
уравнения, сводящиеся к квадратным».
На столе у каждого из учащихся находятся шаблоны
яблок и фломастеры. Предлагается написать на
«яблоках» свои ожидания от предстоящего урока,
тему которого уже сформулировали. После этого
все шаблоны яблок прикрепляются, например, с
помощью скотча на заранее приготовленный плакат
с изображением дерева. Получается «Дерево
ожиданий».
По мере достижения того или иного ожидания соответствующее яблоко можно считать созревшим и собирать в корзину. Использование этого активного метода обучения – наглядный способ отслеживания продвижения учащихся на уроке.
Возможен другой вариант: учитель ставит песочные часы перед учениками класса и предлагает ответить на вопрос о том, чему они хотят научиться на уроке, тема которого уже сформулирована (достаточно 1-2 варианта).
3. Актуализация знаний и подготовка учащихся к активному и сознательному усвоению нового материала (10 мин.).
Учитель. Герберт Спенсер говорил, что если знания человека в беспорядочном состоянии, то чем больше их у него, тем сильнее расстраивается его мышление. Последуем совету этого известного британского философа (информация для общего развития личности – краткая историческая справка. (Слайд 5) Прежде чем перейти к изучению нового материала, давайте вспомним, что мы знаем из раздела «Тригонометрия».
Фронтальная работа (устно)
– Дайте определение тригонометрического
уравнения.
– Сколько корней может иметь тригонометрическое
уравнение?
– Что такое простейшие тригонометрические
уравнения?
– Что значит решить простейшее
тригонометрическое уравнение?
– Какие способы решения тригонометрических
уравнений вы знаете? (2 варианта: формулы;
единичная окружность).
а)Заполните таблицу:
б) Поставьте в соответствие уравнениям их решения, представленные на единичных окружностях (с комментарием)
Самостоятельная работа (Приложение 3 )
С последующей взаимопроверкой/самопроверкой (правильность ответов проверяется с помощью презентации) на умение решать простейшие тригонометрические уравнения. Демонстрируется (Слайд 12). При необходимости решения некоторых уравнений коротко комментируются.
4. Этап усвоения новых знаний и способов действий (15 мин.).
Учащиеся класса предварительно были поделены
на группы, каждая из которых самостоятельно
рассмотрела, используя материал рекомендуемый
учителем и найденный самостоятельно, один из
типов тригонометрических уравнений.
Результаты работы оформляются в виде некой
рекомендации/алгоритма/схемы решения в формате
презентации Power Point. Учитель в случае
необходимости консультирует учащихся групп и
предварительно проверяет итоговый продукт их
работы.
Для презентации результатов того или иного
способа решения на уроке выбирается один из
представителей группы, остальные на уроке
помогают отвечать на возникающие вопросы по
решению данного типа тригонометрического
уравнения. Учащиеся заранее знакомятся с
критериями оценивания своей работы в группе.
Мне приходится делить время
между политикой и уравнениями.
Однако уравнения, по-моему, гораздо важней.
Политика существует только для данного момента,
а уравнения будут существовать вечно.
Возможные варианты выполнения задания группой. (Слайды 14-18)
1 группа . Решение тригонометрических уравнений, сводящихся к квадратным.
Отличительные признаки уравнений, сводящихся к квадратным:
1. В уравнении присутствуют тригонометрические
функции от одного аргумента или они легко
сводятся к одному аргументу.
2. В уравнении присутствует только одна
тригонометрическая функция или все функции
можно свести к одной.
Алгоритм решения:
– Используются ниже приведённые тождества; с их помощью необходимо выразить одну тригонометрическую функцию через другую:
– Выполняется подстановка.
– Выполняется преобразование выражения.
– Вводится обозначение (например, sinx
= y
).
– Решается квадратное уравнение.
– Подставляется значение обозначенной величины,
и решается тригонометрическое уравнение.
Пример 1
6cos 2 x + 5 sin x – 7 = 0.
Решение .
Пример 2
Пример 3
5. Этап активной релаксации и активизации (2 мин.).
6. Этап первичной проверки понимания изученного (8 мин.)
Самостоятельная работа (Приложение 5 )
Работа дифференцированная, каждый уровень
сложности заданий представлен в двух вариантах.
I уровень – «3», II уровень – «4», III уровень – «5» в
случае полного правильного решения. Работа будет
проверена учителем к следующему уроку, отметки
будут выставлены за урок.
7. Этап рефлексии и оценивания. Подведение итогов урока (2 мин.).
Заполнить пункт №6,7 листа самооценки – Приложение 1 .
8. Этап информирования учащихся о домашнем задании , инструктаж по его выполнению (2 мин.).
Дифференцированное (раздаётся каждому ученику на отдельных листах) – Приложение 6
Список литературы:
- Корнилов С.В., Корнилова Л.Э. Методический ларец. – Петрозаводск: ПетроПресс, 2002. – 12 с.