Подготовка к профильному уровню единого государственного экзамена по математике. Полезные материалы по тригонометрии, большие теоретические видеолекции, видеоразборы задач и подборка заданий прошлых лет.
Полезные материалы
Подборки видео и онлайн-курсы
Тригонометрические формулы
Геометрическая иллюстрация тригонометрических формул
Арк-функции. Простейшие тригонометрические уравнения
Тригонометрические уравнения
- Необходимая теория для решения задач.
- а) Решите уравнение $7\cos^2 x - \cos x - 8 = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -\dfrac{7\pi}{2}; -\dfrac{3\pi}{2} \right]$. - а) Решите уравнение $\dfrac{6}{\cos^2 x} - \dfrac{7}{\cos x} + 1 = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -3\pi; -\pi \right]$. - Решите уравнение $\sin\sqrt{16 - x^2} = \dfrac12$.
- а) Решите уравнение $2\cos 2x - 12\cos x + 7 = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -\pi; \dfrac{5\pi}{2} \right]$. - а) Решите уравнение $\dfrac{5}{\mathrm{tg}^2 x} - \dfrac{19}{\sin x} + 17 = 0$.
- Решите уравнение $\dfrac{2\cos^3 x + 3 \cos^2 x + \cos x}{\sqrt{\mathrm{ctg}x}} = 0$.
- Решите уравнение $\dfrac{\mathrm{tg}^3x - \mathrm{tg}x}{\sqrt{-\sin x}} = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -\dfrac{5\pi}{2}; -\pi \right)$.- а) Решите уравнение $\cos 2x = \sin\left(\dfrac{3\pi}{2} - x\right)$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ \dfrac{3\pi}{2}; \dfrac{5\pi}{2} \right]$. - а) Решите уравнение $2\sin^2\left(\dfrac{3\pi}{2} + x\right) = \sqrt3\cos x$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -\dfrac{7\pi}{2}; -2\pi \right]$.
Видеоразборы задач
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \sqrt{3}; \sqrt{20} \right]$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{9\pi}{2}; -3\pi \right]$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\sqrt{3}; \sqrt{30} \right]$.
а) Решите уравнение $\cos 2x = 1 - \cos\left(\dfrac{\pi}{2} - x\right)$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -\dfrac{5\pi}{2}; -\pi \right)$.
а) Решите уравнение $\cos^2 (\pi - x) - \sin \left(x + \dfrac{3\pi}{2} \right) = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\dfrac{5\pi}{2}; 4\pi \right]$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\log_5 2; \log_5 20 \right]$.
а) Решите уравнение $8 \sin^2 x + 2\sqrt{3} \cos \left(\dfrac{3\pi}{2} - x\right) = 9$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[- \dfrac{5\pi}{2}; -\pi \right]$.
а) Решите уравнение $2\log_3^2 (2 \cos x) - 5\log_3 (2 \cos x) + 2 = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\pi; \dfrac{5\pi}{2} \right]$.
а) Решите уравнение $\left(\dfrac{1}{49} \right)^{\sin x} = 7^{2 \sin 2x}$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\dfrac{3\pi}{2}; 3\pi \right]$.
а) Решите уравнение $\sin x + \left(\cos \dfrac{x}{2} - \sin \dfrac{x}{2}\right)\left(\cos \dfrac{x}{2} + \sin \dfrac{x}{2}\right) = 0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[\pi; \dfrac{5\pi}{2}\right]$.
а) Решите уравнение $\log_4 (\sin x + \sin 2x + 16) = 2$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $\left[ -4\pi; -\dfrac{5\pi}{2} \right]$.
Подборка заданий прошлых лет
- а) Решите уравнение $\dfrac{\sin x}{\sin^2\dfrac{x}{2}} = 4\cos^2\dfrac{x}{2}$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{9\pi}{2}; -3\pi \right]$. (ЕГЭ-2018. Досрочная волна) - а) Решите уравнение $\sqrt{x^3 - 4x^2 - 10x + 29} = 3 - x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\sqrt{3}; \sqrt{30} \right]$. (ЕГЭ-2018. Досрочная волна, резервный день) - а) Решите уравнение $2 \sin^2 x + \sqrt2 \sin \left(x + \dfrac{\pi}{4}\right) = \cos x $.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -2\pi; -\dfrac{\pi}{2} \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $\sqrt6 \sin^2 x + \cos x = 2\sin\left(x + \dfrac{\pi}{6} \right)$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ 3\pi; \dfrac{9\pi}{2} \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $\sin x + 2\sin\left(2x + \dfrac{\pi}{6} \right) = \sqrt3 \sin 2x + 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{7\pi}{2}; -2\pi \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $\cos^2 x + \sin x = \sqrt2 \sin\left(x + \dfrac{\pi}{4} \right)$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -4\pi; -\dfrac{5\pi}{2} \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $2 \sin\left(2x + \dfrac{\pi}{3} \right) - \sqrt{3} \sin x = \sin 2x + \sqrt3$.
- а) Решите уравнение $2\sqrt3 \sin\left(x + \dfrac{\pi}{3} \right) - \cos 2x = 3\cos x - 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ 2\pi; \dfrac{7\pi}{2} \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $2\sin\left(2x + \dfrac{\pi}{6} \right) - \cos x = \sqrt3\sin 2x - 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{5\pi}{2}; 4\pi \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $\sqrt2\sin\left(\dfrac{\pi}{4} + x \right) + \cos 2x = \sin x - 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{7\pi}{2}; 5\pi \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $\sqrt2\sin\left(2x + \dfrac{\pi}{4} \right) + \sqrt2\cos x = \sin 2x - 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{5\pi}{2}; -\pi \right]$. (ЕГЭ-2018. Основная волна) - а) Решите уравнение $2\sin\left(x + \dfrac{\pi}{3} \right) + \cos 2x = \sqrt3\cos x + 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -3\pi; -\dfrac{3\pi}{2} \right]$. (ЕГЭ-2018. Основная волна)
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \pi; \dfrac{5\pi}{2} \right]$. (ЕГЭ-2018. Основная волна)- а) Решите уравнение $2\sin\left(x + \dfrac{\pi}{4} \right) + \cos 2x = \sqrt2\cos x + 1$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \pi; \dfrac{5\pi}{2} \right]$. (ЕГЭ-2018. Основная волна, резервный день) - а) Решите уравнение $2\cos x - \sqrt3 \sin^2 x = 2\cos^3 x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{7\pi}{2}; -2\pi \right]$. (ЕГЭ-2018. Основная волна, резервный день) - а) Решите уравнение $2\cos x + \sin^2 x = 2\cos^3 x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{9\pi}{2}; -3\pi \right]$. (ЕГЭ-2018. Основная волна, резервный день) - а) Решите уравнение $2\sqrt2\sin \left(x + \dfrac{\pi}{3}\right) + 2\cos^2 x = 2 + \sqrt6 \cos x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ -3\pi; -\dfrac{3\pi}{2} \right]$. (ЕГЭ-2018. Основная волна, резервный день) - а) Решите уравнение $x - 3\sqrt{x - 1} + 1 = 0$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[ \sqrt{3}; \sqrt{20} \right]$. (ЕГЭ-2018. Основная волна, резервный день) - а) Решите уравнение $2x \cos x - 8\cos x + x - 4 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{\pi}{2};\ \pi \right]$. (ЕГЭ-2017, основная волна, резервный день) - а) Решите уравнение $\log_3 (x^2 - 2x) = 1$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \log_2 0{,}2;\ \log_2 5 \right]$. (ЕГЭ-2017, основная волна, резервный день) - а) Решите уравнение $\log_3 (x^2 - 24x) = 4$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \log_2 0{,}1;\ 12\sqrt{5} \right]$. (ЕГЭ-2017, основная волна, резервный день) - а) Решите уравнение $0{,}4^{\sin x} + 2{,}5^{\sin x} = 2$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ 2\pi;\ \dfrac{7\pi}{2} \right]$. (ЕГЭ-2017, основная волна) - а) Решите уравнение $\log_8 \left(7\sqrt{3} \sin x - \cos 2x - 10\right) = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{3\pi}{2};\ 3\pi \right]$. (ЕГЭ-2017, основная волна) - а) Решите уравнение $\log_4 \left(2^{2x} - \sqrt{3} \cos x - 6\sin^2 x\right) = x$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{5\pi}{2};\ 4\pi \right]$. (ЕГЭ-2017, основная волна) - а) Решите уравнение $2\log_2^2 \left(\sin x\right) - 5 \log_2 \left(\sin x\right) - 3 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ - 3\pi;\ - \dfrac{3\pi}{2} \right]$. (ЕГЭ-2017, основная волна) - а) Решите уравнение $81^{\cos x} - 12\cdot 9^{\cos x} + 27 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ - 4\pi;\ - \dfrac{5\pi}{2} \right]$. (ЕГЭ-2017, основная волна) - а) Решите уравнение $8^x - 9 \cdot 2^{x + 1} + 2^{5 - x} = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \log_5 2;\ \log_5 20 \right]$. (ЕГЭ-2017, досрочная волна) - а) Решите уравнение $2\log^2_9 x - 3 \log_9 x + 1 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \sqrt{10};\ \sqrt{99} \right]$. (ЕГЭ-2016, основная волна, резервный день) - а) Решите уравнение $6\log^2_8 x - 5 \log_8 x + 1 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ 2;\ 2{,}5 \right]$. (ЕГЭ-2016, основная волна, резервный день) - а) Решите уравнение $\sin 2x = 2\sin x + \sin \left(x + \dfrac{3\pi}{2} \right) + 1$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -4\pi;\ -\dfrac{5\pi}{2} \right]$. (ЕГЭ-2016, основная волна, резервный день) - а) Решите уравнение $2\cos^2 x + 1 = 2\sqrt{2} \cos \left(\dfrac{3\pi}{2} - x \right)$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{3\pi}{2};\ 3\pi \right]$. (ЕГЭ-2016, основная волна) - а) Решите уравнение $2\log^2_2 (2\cos x) - 9 \log_2 (2\cos x) + 4 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -2\pi;\ -\dfrac{\pi}{2} \right]$. (ЕГЭ-2016, основная волна) - а) Решите уравнение $8^x - 7 \cdot 4^x - 2^{x + 4} + 112 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \log_2 5;\ \log_2 11 \right]$. (ЕГЭ-2016, досрочная волна) - а) Решите уравнение $\cos 2x + \cos^2 \left(\dfrac{3\pi}{2} - x \right) = 0,25$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -4\pi;\ -\dfrac{5\pi}{2} \right]$. (ЕГЭ-2016, досрочная волна) - а) Решите уравнение $\dfrac{13\sin^2 x - 5\sin x}{13\cos x + 12} = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -3\pi;\ -\dfrac{3\pi}{2} \right]$. (ЕГЭ-2016, досрочная волна) - а) Решите уравнение $\dfrac{\sin2x}{\sin\left(\dfrac{7\pi}{2} - x \right)} = \sqrt{2}$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left$. (ЕГЭ-2015, основная волна) - а) Решите уравнение $4 \sin^2 x = \mathrm{tg} x$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ - \pi;\ 0\right]$. (ЕГЭ-2015, основная волна) - а) Решите уравнение $3\cos 2x - 5\sin x + 1 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \pi;\ \dfrac{5\pi}{2}\right]$. (ЕГЭ-2015, основная волна) - а) Решите уравнение $\cos 2x - 5\sqrt{2}\cos x - 5 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -3\pi;\ -\dfrac{3\pi}{2}\right]$. (ЕГЭ-2015, основная волна) - а) Решите уравнение $\sin 2x + \sqrt{2} \sin x = 2\cos x + \sqrt{2}$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \pi;\ \dfrac{5\pi}{2}\right]$. (ЕГЭ-2015, досрочная волна) - а) Решите уравнение $2\cos^3 x - \cos^2 x + 2\cos x - 1 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ 2\pi;\ \dfrac{7\pi}{2}\right]$. (ЕГЭ-2015, досрочная волна) - а) Решите уравнение $\mathrm{tg}^2 x + (1 + \sqrt{3}) \mathrm{tg} x + \sqrt{3} = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{5\pi}{2}; \ 4\pi\right]$. (ЕГЭ-2014, основная волна) - а) Решите уравнение $2\sqrt{3} \cos^2\left(\dfrac{3\pi}{2} + x\right) - \sin 2x = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{3\pi}{2}; \ 3\pi\right]$. (ЕГЭ-2014, основная волна) - а) Решите уравнение $\cos 2x + \sqrt{2} \sin\left(\dfrac{\pi}{2} + x\right) + 1 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -3\pi; \ -\dfrac{3\pi}{2}\right]$. (ЕГЭ-2014, основная волна) - а) Решите уравнение $-\sqrt{2} \sin\left(-\dfrac{5\pi}{2} + x\right) \cdot \sin x = \cos x$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ \dfrac{9\pi}{2}; \ 6\pi\right]$. (ЕГЭ-2014, досрочная волна) - а) Решите уравнение $\sin 2x = \sin\left(\dfrac{\pi}{2} + x\right)$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -\dfrac{7\pi}{2}; \ -\dfrac{5\pi}{2}\right]$. (ЕГЭ-2013, основная волна) - а) Решите уравнение $6 \sin^2 x + 5\sin\left(\dfrac{\pi}{2} - x\right) - 2 = 0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $\left[ -5\pi; \ - \dfrac{7\pi}{2}\right]$. (ЕГЭ-2012, вторая волна)
Вы можете заказать подробное решение вашей задачи !!!
Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
1. Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| \leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`
2. Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| \leq 1` имеет бесконечное множество решений.
Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`
Частные случаи для синуса и косинуса в графиках.
3. Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + \pi n, n \in Z`
4. Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + \pi n, n \in Z`
Формулы корней тригонометрических уравнений в таблице
Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`
`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,
делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.
2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.
Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:
`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
- `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.
Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:
`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:
`cos \varphi sin x + sin \varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:
`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos \varphi sin x+sin \varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`sin (x+\varphi)=2/5`,
`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`
`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`
`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`
`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`
`\frac {sin x-sin^2 x}{1+cos x}=0`
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=\pi n`, `n \in Z`
- `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.
Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.
Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
а) Решите уравнение 2(\sin x-\cos x)=tgx-1.
б) \left[ \frac{3\pi }2;\,3\pi \right].
Показать решениеРешение
а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 \sin x-2 \cos x-tg x=0. Учитывая, что \cos x \neq 0, слагаемое 2 \sin x можно заменить на 2 tg x \cos x, получим уравнение 1+2 tg x \cos x-2 \cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 \cos x)=0.
1) 1-tg x=0, tg x=1, x=\frac\pi 4+\pi n, n \in \mathbb Z;
2) 1-2 \cos x=0, \cos x=\frac12, x=\pm \frac\pi 3+2\pi n, n \in \mathbb Z.
б) С помощью числовой окружности отберём корни, принадлежащие промежутку \left[ \frac{3\pi }2;\, 3\pi \right].
x_1=\frac\pi 4+2\pi =\frac{9\pi }4,
x_2=\frac\pi 3+2\pi =\frac{7\pi }3,
x_3=-\frac\pi 3+2\pi =\frac{5\pi }3.
Ответ
а) \frac\pi 4+\pi n, \pm\frac\pi 3+2\pi n, n \in \mathbb Z;
б) \frac{5\pi }3, \frac{7\pi }3, \frac{9\pi }4.
Условие
а) Решите уравнение (2\sin ^24x-3\cos 4x)\cdot \sqrt {tgx}=0.
б) Укажите корни этого уравнения, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right] ;
Показать решениеРешение
а) ОДЗ: \begin{cases} tgx\geqslant 0\\x\neq \frac\pi 2+\pi k,k \in \mathbb Z. \end{cases}
Исходное уравнение на ОДЗ равносильно совокупности уравнений
\left[\!\!\begin{array}{l} 2 \sin ^2 4x-3 \cos 4x=0,\\tg x=0. \end{array}\right.
Решим первое уравнение. Для этого сделаем замену \cos 4x=t, t \in [-1; 1]. Тогда \sin^24x=1-t^2. Получим:
2(1-t^2)-3t=0,
2t^2+3t-2=0,
t_1=\frac12, t_2=-2, t_2\notin [-1; 1].
\cos 4x=\frac12,
4x=\pm \frac\pi 3+2\pi n,
x=\pm \frac\pi {12}+\frac{\pi n}2, n \in \mathbb Z.
Решим второе уравнение.
tg x=0,\, x=\pi k, k \in \mathbb Z.
При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.
Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.
Получим: x=\pi k, k \in \mathbb Z; x=\frac\pi {12}+\pi n, n \in \mathbb Z; x=\frac{5\pi }{12}+\pi m, m \in \mathbb Z.
б) Найдём корни, принадлежащие промежутку \left(0;\,\frac{3\pi }2\right].
x=\frac\pi {12}, x=\frac{5\pi }{12}; x=\pi ; x=\frac{13\pi }{12}; x=\frac{17\pi }{12}.
Ответ
а) \pi k, k \in \mathbb Z; \frac\pi {12}+\pi n, n \in \mathbb Z; \frac{5\pi }{12}+\pi m, m \in \mathbb Z.
б) \pi; \frac\pi {12}; \frac{5\pi }{12}; \frac{13\pi }{12}; \frac{17\pi }{12}.
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
а) Решите уравнение: \cos ^2x+\cos ^2\frac\pi 6=\cos ^22x+\sin ^2\frac\pi 3;
б) Укажите все корни, принадлежащие промежутку \left(\frac{7\pi }2;\,\frac{9\pi }2\right].
Показать решениеРешение
а) Так как \sin \frac\pi 3=\cos \frac\pi 6, то \sin ^2\frac\pi 3=\cos ^2\frac\pi 6, значит, заданное уравнение равносильно уравнению \cos^2x=\cos ^22x, которое, в свою очередь, равносильно уравнению \cos^2x-\cos ^2 2x=0.
Но \cos ^2x-\cos ^22x= (\cos x-\cos 2x)\cdot (\cos x+\cos 2x) и
\cos 2x=2 \cos ^2 x-1, поэтому уравнение примет вид
(\cos x-(2 \cos ^2 x-1))\,\cdot (\cos x+(2 \cos ^2 x-1))=0,
(2 \cos ^2 x-\cos x-1)\,\cdot (2 \cos ^2 x+\cos x-1)=0.
Тогда либо 2 \cos ^2 x-\cos x-1=0, либо 2 \cos ^2 x+\cos x-1=0.
Решая первое уравнение как квадратное уравнение относительно \cos x, получаем:
(\cos x)_{1,2}=\frac{1\pm\sqrt 9}4=\frac{1\pm3}4. Поэтому либо \cos x=1, либо \cos x=-\frac12. Если \cos x=1, то x=2k\pi , k \in \mathbb Z. Если \cos x=-\frac12, то x=\pm \frac{2\pi }3+2s\pi , s \in \mathbb Z.
Аналогично, решая второе уравнение, получаем либо \cos x=-1, либо \cos x=\frac12. Если \cos x=-1, то корни x=\pi +2m\pi , m \in \mathbb Z. Если \cos x=\frac12, то x=\pm \frac\pi 3+2n\pi , n \in \mathbb Z.
Объединим полученные решения:
x=m\pi , m \in \mathbb Z; x=\pm \frac\pi 3 +s\pi , s \in \mathbb Z.
б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.
Получим: x_1 =\frac{11\pi }3, x_2=4\pi , x_3 =\frac{13\pi }3.
Ответ
а) m\pi, m \in \mathbb Z; \pm \frac\pi 3 +s\pi , s \in \mathbb Z;
б) \frac{11\pi }3, 4\pi , \frac{13\pi }3.
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
а) Решите уравнение 10\cos ^2\frac x2=\frac{11+5ctg\left(\dfrac{3\pi }2-x\right) }{1+tgx}.
б) Укажите корни этого уравнения, принадлежащие интервалу \left(-2\pi ; -\frac{3\pi }2\right).
Показать решениеРешение
а) 1. Согласно формуле приведения, ctg\left(\frac{3\pi }2-x\right) =tgx. Областью определения уравнения будут такие значения x , что \cos x \neq 0 и tg x \neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 \cos ^2 \frac x2=1+\cos x. Получим уравнение: 5(1+\cos x) =\frac{11+5tgx}{1+tgx}.
Заметим, что \frac{11+5tgx}{1+tgx}= \frac{5(1+tgx)+6}{1+tgx}= 5+\frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 \cos x=5 +\frac{6}{1+tgx}. Отсюда \cos x =\frac{\dfrac65}{1+tgx}, \cos x+\sin x =\frac65.
2. Преобразуем \sin x+\cos x по формуле приведения и формуле суммы косинусов: \sin x=\cos \left(\frac\pi 2-x\right), \cos x+\sin x= \cos x+\cos \left(\frac\pi 2-x\right)= 2\cos \frac\pi 4\cos \left(x-\frac\pi 4\right)= \sqrt 2\cos \left(x-\frac\pi 4\right) = \frac65.
Отсюда \cos \left(x-\frac\pi 4\right) =\frac{3\sqrt 2}5. Значит, x-\frac\pi 4= arc\cos \frac{3\sqrt 2}5+2\pi k, k \in \mathbb Z,
или x-\frac\pi 4= -arc\cos \frac{3\sqrt 2}5+2\pi t, t \in \mathbb Z.
Поэтому x=\frac\pi 4+arc\cos \frac{3\sqrt 2}5+2\pi k,k \in \mathbb Z,
или x =\frac\pi 4-arc\cos \frac{3\sqrt 2}5+2\pi t,t \in \mathbb Z.
Найденные значения x принадлежат области определения.
б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=\frac\pi 4+arccos \frac{3\sqrt 2}5 и b=\frac\pi 4-arccos \frac{3\sqrt 2}5.
1. Докажем вспомогательное неравенство:
\frac{\sqrt 2}{2}<\frac{3\sqrt 2}2<1.
Действительно, \frac{\sqrt 2}{2}=\frac{5\sqrt 2}{10}<\frac{6\sqrt2}{10}=\frac{3\sqrt2}{5}.
Заметим также, что \left(\frac{3\sqrt 2}5\right) ^2=\frac{18}{25}<1^2=1, значит \frac{3\sqrt 2}5<1.
2. Из неравенств (1) по свойству арккосинуса получаем: