» » Что называется электрическим. Электрический ток и электрическая цепь. Какие силы называются сторонними силами

Что называется электрическим. Электрический ток и электрическая цепь. Какие силы называются сторонними силами

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале - в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

Электрический ток образуется в веществе только при условии наличия свободных заряженных частиц. Заряд может находиться в среде изначально или же формироваться при условии содействия внешних факторов (температуры, электромагнитного поля, ионизаторов). Движение заряженных частиц хаотичны при условии отсутствия электромагнитного поля, а при подключении к двум точкам вещества, разности потенциалов превращаются в направленные - от одного вещества к другому.

Понятие, сущность и проявления электрического тока

Определение 1

Электрический ток – это упорядоченное и направленное движение заряженных частиц.

Такими частицами могут быть:

  • в газах – ионы и электроны,
  • в металлах – электроны,
  • в электролитах – анионы и катионы,
  • в вакууме – электроны (при определенных условиях),
  • в полупроводниках – дырки и электроны (электронно-дырочная проводимость).

Замечание 1

Часто используют такое определение. Электрический ток – это ток смещения, который возникает в результате изменения электрического поля во времени.

Электрический ток может выражаться в следующих проявлениях:

  1. Нагрев проводников. Выделение теплоты не происходит в сверхпроводниках.
  2. Изменение химического состава некоторых проводников. Данное проявление преимущественно можно наблюдать в электролитах.
  3. Формирование электрического поля. Проявляется у всех проводников без исключения.

Рисунок 1. Электрический ток - упорядоченное движение заряженных частиц. Автор24 - интернет-биржа студенческих работ

Классификация электрического тока

Определение 2

Электрический ток проводимости – это явление, при котором заряженные частицы движутся внутри макроскопических элементов той или иной среды.

Конвекционный ток – явление, при котором движутся макроскопические заряженные тела (к примеру, заряженные капли осадков).

Различают постоянный, переменный и пульсирующий электрические токи и их всевозможные комбинации. Однако в таких комбинациях часто опускают термин «электрический».

Существует несколько разновидностей электрического тока:

  1. Постоянный ток – это ток, величина и направление которого слабо изменяются во времени.
  2. Переменный ток – это ток, направление и величина которого прогрессивно меняются во времени. Под переменным током понимается ток, который не является постоянным. Среди всех разновидностей переменного тока основным является тот, величина которого может изменяться только по синусоидальному закону. Потенциал каждого конца проводника в данном случае изменяется по отношению к другому концу попеременно с отрицательного на положительный, и наоборот. При этом он проходит через все промежуточные потенциалы. В результате формируется ток, который непрерывно изменяет направление. Двигаясь в одном направлении, ток возрастает, достигая своего максимума, который именуется амплитудным значением. После чего он идет на спад, на какой-то период приравнивается к нулю, после чего цикл возобновляется.
  3. Квазистационарный ток – это переменный ток, который изменяется относительно медленно, для его мгновенных значений выполняются законы постоянных токов с достаточной точностью. Подобными законами являются правила Кирхгофа и закон Ома. Квазистационарный то во всех сечениях неразветвленной сети имеет одинаковую силу. При расчете цепей данного тока учитываются сосредоточенные параметры. Квазистационарные промышленные токи – это те, в которых условие квазистационарности вдоль линии не выполняется (кроме токов в линиях дальних передач).
  4. Переменный ток высокой частотности – это электрический ток, в котором уже не выполняется условие квазистационарности. Он проходит по поверхности проводника и обтекает его со всех сторон. Такой эффект получил название скин-эффект.
  5. Пульсирующий ток – это электрический ток, у которого направление остается постоянным, а изменяется только величина.
  6. Вихревые токи или токи Фуко – это замкнутые электрические токи, которые расположены в массивном проводнике и возникают при изменении магнитного потока. Исход из этого, вихревые токи являются индукционными. Чем скорее магнитный поток изменяется, тем сильнее становятся вихревые токи. По проводам они не текут по определенным путям, а замыкаются в проводнике и образуют вихреобразные контуры.

Благодаря существованию вихревых токов, осуществляется скин-эффект, когда магнитный поток и переменный электрический ток распространяются по поверхностному слою проводника. Из-за нагрева вихревыми токами происходит потеря энергии, особенно в сердечниках катушек переменного тока. Чтобы уменьшить потерю энергии для вихревых потоков применяется деление магнитных проводов переменного тока на отдельные пластины, которые изолированы друг от друга и располагаются перпендикулярно по направлению вихревых токов. Из-за этого ограничиваются возможные контуры их путей, и стремительно уменьшается величина этих токов.

Характеристики электрического тока

Исторически так сложилось, что направление движения положительных зарядов в проводнике совпадает с направлением тока. Если естественными носителями электрического тока являются отрицательно заряженные электроны, то направление тока будет противоположно по направлению положительно заряженных частиц.

Скорость заряженных частиц напрямую зависит от заряда и массы частиц, материала проводника, температуры внешней среды и приложенной разности потенциалов. Скорость целенаправленного движения составляет величину, которая значительно меньше скорости света. Электроны за одну секунду перемещаются в проводнике за счет упорядоченного движения меньше, чем на одну десятую миллиметра. Но, несмотря на это, скорость распространения тока приравнивается скорости света и скорости распространения фронта электромагнитных волн.

То место, где меняется скорость перемещения электронов после изменения напряжения, перемещается со скоростью распространение электромагнитного колебания.

Основные типы проводников

В проводниках в отличие от диэлектриков есть свободные носители некомпенсированных зарядов. Они под воздействием силы электрических потенциалов приходят в движение и формируют электрический ток.

Вольтамперная характеристика или, иными словами, зависимость силы тока от напряжения является главной характеристикой проводника. Для электролитов и металлических проводников она принимает простейший вид: сила тока прямо пропорциональна напряжения. Это закон Ома.

В металлах носителями тока являются электроны проводимости, которые рассматриваются как электронный газ. В них отчетливо проявляются квантовые свойства вырожденного газа.

Плазма – это ионизированный газ. В данном случае при помощи ионов и свободных электронов переносится электрический заряд. Свободные электроны образуются под воздействием ультрафиолетового и рентгеновского излучения или нагревания.

Электролиты – это твердые или жидкие системы и вещества, в которых присутствует заметная концентрация ионов, что обуславливает прохождение электрического тока. В процессе электролитической диссоциации образуются ионы. Сопротивление электролитов при нагревании падает из-за роста числа молекул, которые разложились на ионы. В результате прохождения электрического тока сквозь электролит, ионы приближаются к электродам и нейтрализуются, оседая на них.

Физические законы электролиза Фарадея определяют массу вещества, который выделился на электродах. Также существует электрический ток электронов в вакууме, применяемый в электронно-лучевых приборах.

Электрический ток — направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах - электроны, в электролитах - ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках - электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников).

Классификация:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционный ток.

Различают переменный (англ. alternating current, AC), постоянный (англ. direct current, DC) и пульсирующий электрические токи, а также их всевозможные комбинации. В таких понятиях часто слово «электрический» опускают.

Постоянный ток - ток, направление и величина которого слабо меняются во времени.

Переменный ток - ток, величина и направление которого меняются во времени. В широком смысле под переменным током понимают любой ток, не являющийся постоянным. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.

Квазистационарный ток - «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ). Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.

Переменный ток высокой частоты - ток, в котором условие квазистационарности уже не выполняется, ток проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Пульсирующий ток - ток, у которого изменяется только величина, а направление остаётся постоянным.

Вихревые токи (токи Фуко) - «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока», поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики:

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Основные типы проводников:

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы - здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма - ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты - «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Статическое электричество. Если желтый янтарь потереть шерстью или мехом, то янтарь приобретает свойство длительное время притягивать,к себе волосы, листья, соломинки. Способность янтаря,притягивать к себе другие вещества вызывается его зарядом. Под зарядом тел подразумевают электрический заряд. При определенных условиях заряд сохраняется на заряженных телах, поэтому его называют статическим электричеством.

Величины количества электричества заряженных тел и расстояния между ними оказывают влияние на их взаимодействие. Правила, которым подчиняются тела при взаимодействии, называют законом Кулона. Он формулируется так: сила, действующая между двумя заряженными телами, прямо пропорциональна количеству электричества на каждом из тел и обратно пропорциональна квадрату расстояния между зарядами.

Электрически заряженные тела, находясь на расстоянии друг от друга, испытывают действие определенной силы. Пространство, в котором действуют эти силы, называют электрическим силовым полем. Внутри электрического поля силы действуют в определенном направлении. Линии, по которым действуют электрические силы поля, называют силовыми. За их направление в любой точке поля принято направление, в котором будет двигаться в этом поле положительный заряд. Следовательно, электрическое поле изолированного отрицательного заряда направлено к заряду (рис. 1), а линии сил, действующих между положительным и отрицательным зарядами, направлены в сторону отрицательного заряда. Силовые линии одноименных зарядов отталкиваются друг от друга (рис. 2).

Рис. 1
Рис. 2

Электрический ток и направление движения электронов. При изучении законов электрического тока сначала было предположено, что электрический ток направлен от положительно к отрицательно заряженным телам. С помощью более поздних исследований было установлено, что электроны переходят от отрицательно заряженных к положительно заряженным или нейтральным телам.

Однако укоренилось первое положение, которое легло в основу всех электрических измерений и в электротехническую практику. Но, несмотря на это, в современных условиях действует правило, которое определяет электрический ток как поток электронов, направленный от минуса к плюсу.

Электрический потенциал. Действующие на тела силы стремятся привести их в такое положение, в котором потенциальная энергия тел будет наименьшей (например, пролитая вода стекает в самые низкие места, пар движется в трубе из точки с меньшей к точке с большей потенциальной энергией). Для сообщения потенциальной энергии воде ее можно поднять на некоторую высоту. Эти положения распространяются и на электрический ток.

Электрический потенциал можно создать, отняв или добавив к нейтральному телу электроны. В первом случае тело приобретает положительный заряд, т. е. потенциал тела возрастает (совершена работа по удалению электрона), во втором - отрицательный заряд и потенциал его будет отрицательным. Электричество перетекает от более высокого к более низкому потенциалу.

Разрядить тело от электрического заряда можно путем соединения его с землей, т. е. заземления тела. Электрические заряды тела вследствие их взаимного отталкивания стремятся равномерно распределиться на заряженном теле и земле. Однако вследствие того что земля несравнимо больше заряженного тела, все заряды с него уйдут в землю и тело станет нейтральным, т. е. электрически безопасным.

Электрическая цепь постоянного тока. Электрический ток, значение которого не изменяется во времени, называют постоянным. Источник электрического тока с присоединенными к нему линейными проводами и потребителем тока образуют замкнутую электрическую цепь, по которой протекает электрический ток. Простейшая электрическая цепь имеет источник и потребитель электрического тока и два соединяющих их линейных провода (рис. 3). В качестве источников постоянного электрического тока применяют аккумуляторы, генераторы - электрические машины, приводимые в движение механическими двигателями, гальванические элементы и ряд других устройств. Потребителями электрического тока могут быть электронагревательные приборы, сварочная дуга, осветительные лампочки и т.д.

Рис. 3

Конденсаторы. При одном и том же давлении в сосуде большего объема можно вместить большее количество газа. Некоторую аналогию можно пронести и с электрическим зарядом. Чем больше размеры проводника, тем больше его вместимость для электрических зарядов, т. е. больше его электрическая емкость.

Одиночные проводники обладают малой емкостью. Поэтому для образования запаса электрических зарядов применяют конденсаторы. Конденсатором называют устройство, которое при сравнительно малых размерах способно накапливать большие электрические заряды. В простейшем виде конденсатор состоит из двух металлических пластин, разделенных диэлектриком (воздухом, слюдой, парафинированной бумагой и т.п.). В зависимости от вида диэлектрика конденсатор называют воздушным, бумажным, слюдяным и т.п. Одна пластина конденсатора заряжается положительными зарядами, а другая - отрицательными. Сильное взаимное притяжение удерживает заряды, позволяя накопить в конденсаторе большое количество зарядов.

Емкость конденсатора зависит от площади его пластин. Конденсатор, у которого пластины имеют большую площадь, может вместить большее количество зарядов.

Основной единицей измерения электрической емкости служит фарада (ф). На практике применяют более мелкие единицы: микрофарада (1 мкф = 0,000 001 ф ), пикофарада (1 пф = 0,000 001 мкф ).

В технике конденсаторы используют в различных электрических и радиосхемах.

Электродвижущая сила источника тока. Напряжение. Если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить в сосуд с меньшим уровнем. Наливая воду в один из сосудов, можно добиться того, чтобы вода по трубке текла непрерывно. Аналогичная картина наблюдается в электрической цепи. На время прохождения электрического тока в цепи на полюсах источника тока необходимо поддерживать разность потенциалов.

Силу, которая поддерживает разность потенциалов, обеспечивая прохождение тока по электрической цепи, называют электродвижущей силой и условно обозначают э. д.с. Разность потенциалов, затрачиваемую на проведение тока через электрическую цепь, называют напряжением между концами электрической цели.

Напряжение создается источником тока. При разомкнутой цепи напряжение существует на полюсах или клеммах источника тока. Когда источник тока включен в цепь, напряжение появляется и на отдельных участках цепи, что и обусловливает ток в цепи. Нет напряжения, нет и тока в цепи.

Электрическое сопротивление. При возникновении в цепи электрического тока свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. Движению электронов препятствуют атомы и молекулы проводников, встречающихся на пути, т. е. электрическая цепь оказывает сопротивление прохождению электрического тока. Электрическим сопротивлением проводника называют свойство тела или среды превратить электрическую энергию в тепловую при прохождении по нему электрического тока.

Различные вещества имеют разное количество электронов и разное расположение атомов. Поэтому сопротивление проводника зависит от материала, из которого он изготовлен. Хорошими проводниками является серебро , медь , . Большим сопротивлением обладают , железо , уголь . Наряду с этим сопротивление зависит от длины и площади поперечного сечения проводника. Чем длиннее проводник при одном и том же поперечном сечении, тем большим обладает он сопротивлением, и наоборот: чем больше сечение проводника при одной и той же длине, тем меньше его сопротивление.

Нагрев увеличивает сопротивление большинства металлов и сплавов. Для чистых металлов это увеличение составляет около 4% на каждые 10° повышения температуры. Только некоторые специальные металлические сплавы (манганин , константан и др.) почти не меняют своего сопротивления с увеличением температуры.

Реостаты. Приборы, при помощи которых, меняя сопротивление, можно регулировать силу тока в цепи, называют реостатами. Реостаты бывают нескольких видов, например: реостат со скользящим контактом, рычажный реостат, ламповый и др.

Рис. 4

Реостат со скользящим контактом устроен следующим образом (рис. 4). Проволока из металла с высоким удельным сопротивлением намотана на цилиндр, сделанный из изолятора, к концам проволоки прикреплены клеммы для включения реостата в цепь. Сверху цилиндра на металлическом стержне прикреплен ползун, плотно касающийся витков проволоки. Реостат включают в цепь при помощи одной из клемм на проволоке реостата и клеммы на металлическом стержне ползуна. Передвигая ползун в ту или другую сторону, увеличивают или уменьшают длину включенной проволоки и тем самым изменяют сопротивление цепи.

Реостат рычажного типа, состоит из ряда проволочных спиралей, укрепленных на раме из изолятора. На одной стороне рамы концы спиралей соединены с рядом металлических контактов. Металлическая ручка, вращаясь вокруг оси, может плотно прижиматься к тому или другому контакту. В зависимости от положения ручки в цепь может включаться различное количество спиралей.

Измерение тока, напряжения и сопротивления. Опыты показывают, чем большее количество электричества протекает по проводнику в одно и то же время, тем сильнее действие тока. Поэтому электрический ток определяется количеством электричества, протекающего через поперечное сечение проводника в единицу времени. Количество электричества, протекающего через поперечное сечение проводника в 1 сек , называют силой электрического тока. За единицу силы тока принят 1 а , т. е. сила такого тока, при котором в 1 сек через поперечное сечение проводника проходит 1 кулон электричества. Ампер обозначается буквой а . Единица силы тока ампер названа так в честь французского ученого Ампера.

Английский физик Фарадей, изучая явление прохождения тока через жидкие проводники, установил, что весовое количество выделяющихся при этом веществ на электродах прямо пропорционально количеству прошедшего через раствор электричества. На основании этого была установлена единица количества электричества.

За единицу количества электричества принято такое количество электричества, при прохождении которого через раствор серебряной соли выделяется на электроде 1,118 мг серебра . Эта единица называется куланом.

Исходя из определения электрического тока можно определить его силу по формуле

I - сила тока в цепи;

Q - количество электричества, протекающего >в цени, в кулонах;

Т - время прохождения электричества в цепи в сек.

В технике имеется еще и такое понятие, как плотность тока.

Плотностью тока называют отношение величины тока к площади поперечного сечения проводника. Обычно площадь сечения проводников приводится в квадратных миллиметрах, поэтому плотность тока измеряют в а/мм 2 .

Рассмотрим электрическую цепь, состоящую из источника тока, проводников и электрической лампочки, соединенных последовательно. Сила тока на всех участках этой цепи одинакова, а значит и количество электричества, протекающего по проводам и волоску лампочки в одно и то же время, одинаковое. Однако количество энергии, выделяющейся на отдельных участках цепи, различно. В этом легко убедиться, если притронуться рукой к проводам, подводящим ток к ламлпочке,- они холодные, в то время как волосок лампочки раскален. Выделение различных количеств энергии на различных участках цепи вызывается тем, что на этих участках цепи существует различное напряжение.

Напряжение на данном участке цепи показывает, какое количество энергии будет выделиться на данном участке при прохождении по нему единицы количества электричества.

За единицу напряжения принимают такое напряжение, при котором на участке цепи выделяется 1 джоуль энергии (1 кг м=9,8 джоуля ), если по этому участку протекает 1 кулон электричества. Единицу напряжения называют вольт ом и сокращенно обозначают буквой в . Единица напряжения «вольт» названа так в честь итальянского ученого Вольта.

Если на каком-либо участке цепи напряжение равно 1 в , это значит, что при прохождении каждого кулона электричества по этому участку выделяется 1 джоуль энергии.

При измерении высоких напряжений применяют единицу, называемую киловольтом и обозначаемую сокращенно кв . Киловольт в тысячу раз больше вольта: 1 кв=1000 в . Для измерения небольших напряжений применяют милливольт (мв ) -единицу, в тысячу раз меньшую, чем вольт: 1 мв = 0,001 в .

Источник электрического тока, включенный в электрическую цель, расходует энергию на преодоление сопротивления цепи. Единицей сопротивления называют ом в честь немецкого ученого Ома, открывшего законы электрического тока; ом - электрическое сопротивление между двумя точками линейного проводника, в котором разность потенциалов в 1 в производит ток в 1 а . Электрическое сопротивление обозначается двумя буквами ом .

При измерении больших сопротивлений пользуются значительно большими единицами, чем ом : килоом (ком ) и мегом (мгом ). 1 ком =1000 ом , 1 мгом= 1 000 000 ом .

Свойства проводников в отношении их электрического сопротивления оценивают по удельному сопротивлению. Удельным сопротивлением называют сопротивление проводника длиной 1 м с поперечным сечением в 1 мм 2 . Удельное сопротивление измеряется тоже в омах.

Если в электрическую цепь, состоящую из лампочки и амперметра, включить один большой гальванический элемент, можно заметить, что по цепи идет очень слабый ток и нить лампочки не накаливается. Как только гальванический элемент заменим свежей батарейкой от карманного фонаря, ток в цепи увеличивается и нить лампочки ярко накаливается. Измерив напряжение на концах цепи при включении элемента и батарейки, увидим, что при включении батарейки напряжение значительно больше.

Отсюда следует, что сила тока в проводнике увеличивается с увеличением напряжения на концах проводника. Включив в цепь вместо одной две лампочки последовательно, увеличиваем сопротивление цепи в два раза. Теперь мы видим, что сила тока в цепи уменьшилась. Изучая зависимость силы тока от сопротивления и напряжения, немецкий ученый Ом установил, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна сопротивлению проводника. Эта зависимость между силой тока, напряжением и сопротивлением носит название закона Ома, который является одним из основных законов электрического тока.

Закон Ома выражается следующей формулой:

Где I - ток в а ;

V — напряжение в в ;

R - сопротивление в ом .

Закон Ома распространяется не только на dc. цепь, но и на любой ее участок. Ток на любом участке электрической цепи равен напряжению на концах этого участка, деленному на его сопротивление.

Последовательное соединение в электрической цепи. В большинстве случаев электрическая цепь состоит из нескольких потребителей тока (рис. 5). Соединение потребителей тока, при котором конец одного проводника соединен с началом другого, конец другого - с началом третьего и т.д., называют последовательным.

Рис. 5

Так как сопротивление прямо пропорционально длине проводника, сопротивление цепи равно сумме сопротивлений отдельных проводников, поскольку включение нескольких проводников увеличивает длину пути тока. Ток на отдельных участках цепи будет одинаковым. Поэтому падение напряжения на каждом участке будет пропорционально сопротивлению данного участка.

Параллельным соединением в электрической цепи называют такое соединение, когда начала всех проводников соединены в одной, а их концы - в другой точке (рис. 6). При параллельном соединении для прохождения электрического тока имеется несколько путей (рис. 6). Ток между параллельно соединенными потребителями распределяется обратно пропорционально сопротивлениям потребителей. Если отдельные потребители обладают одинаковым сопротивлением, ток у них будет одинаковый. Чем меньше сопротивление отдельного потребителя, тем больший ток пройдет через него.

Рис.6

Сумма токов отдельных участков в параллельной цепи равна полному току в точке разветвления цепи.

Если в последавательно соединенной цепи присоединение новых потребителей электрического тока увеличивает сопротивление цепи, при параллельном соединении оно уменьшается: подключенное новое сопротивление увеличивает общее сечение проводника, состоящее из суммы сечений проводников всех потребителей. А как известно, чем больше сечение проводника при постоянной его длине, тем меньше сопротивление.

Пренебрегая сопротивлением соединительных проводов, можно считать, что напряжение источника тока приложено к каждому потребителю параллельной цепи. Поэтому достоинством параллельного соединения является независимость работы каждого потребителя тока. Можно отключить любой потребитель, не прерывая прохождения тока по остальным. Изменив сопротивление одного из потребителей, изменим в его цепи ток. У остальных потребителей ток не изменится.

Рис. 7

Смешанное соединение в электрической цепи. Очень часто в электрических цепях встречается смешанное соединение. Смешанным соединением называют такое соединение, в котором имеется как последовательное, так и параллельное соединение потребителей электрического тока (рис. 7). Для определения сопротивления нескольких проводников, соединенных по смешанной схеме, находят сначала сопротивление параллельно или последовательно соединенных проводников, а затем заменяют их одним проводником с сопротивлением, равным найденному. Таким способом упрощают схему, приводя ее к одному проводнику, сопротивление которого равно общему сопротивлению сложной цепи.

Работа и мощность электрического тока. Электрический ток может производить работу. Способность тела производить работу называют энергией этого тела. Посредством электрических моторов ток приводит в движение электропоезда, станки. За счет энергии электрического тока совершается механическая работа. Если проводник, по которому проходит ток, нагревается, энергия тока превращается в теплоту. При различных проявлениях тока наблюдается превращение электрической энергии в другие виды энергии.

В замкнутой электрической цепи протекает ток, который представляет движение электрических зарядов. Для переноса зарядов в электрической цепи источник электрической энергии затрачивает определенное количество энергии или совершает работу, равную произведению напряжения цепи на перенесенное через цепь количество электричества.

Если по участку электрической цепи протекло Q кулонов электричества, а напряжение на нем равно V , то совершенная на данном участке цепи работа А будет равна:

А = QV дж.

При токе Ia в течение Т секунд через сечение проводника проходит IT = Q кулонов электричества. Следовательно, работа тока в при напряжении V в течение Т секунд будет равна:

A = IVT.

Работу тока принято оценивать по его мощности. Мощность тока численно равна работе, которую производит ток в 1 сек . Следовательно, мощность тока будет равна:

джоулей в 1 сек.

Единицей измерения мощности служит ватт (вт ). Один ватт - мощность тока в 1 а при напряжении в 1 в . Следовательно, с увеличением тока и напряжения мощность увеличивается. Для определения мощности электрического тока необходимо напряжение в вольтах умножить на ток в амперах.

Наряду с ваттом для измерения мощности часто применяют киловатт (1 квт =1000 вт ), гектоватт (1 гвт=100 вт ), милливатт (1 мвт=0,001 вт ) и микроватт (1 мквт= 0,000 001 вт ).

Работу электрического тока можно определить, если его мощность умножить на время прохождения тока: мощность -это работа в 1 сек . За основную единицу работы принята ватт-секунда (вт сек ), т. е. работа тока мощностью 1 вт в течение 1 сек . Более крупными единицами являются ватт-час (1 вт ч=3600 вт сек ), гектоватт-час (1 гвт ч =100 вт ч ), киловатт-час (1 квт ч= 1000 вт ч ).

Закон Ленца-Джоуля. Русский академик Ленц и английский физик Джоуль, независимо друг от друга, установили, что в процессе прохождения электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. Эту закономерность называют закомом Ленца - Джоуля и выражают формулой

Q = 0,24I 2 Rt ,

де Q - количество теплоты в кал ;

0,24 - коэффициент пропорциональности, обусловливающий, чтобы ток был выражен в а , напряжение в в , а сопротивление - в ом ;

I - ток в а ;

R - сопротивление проводника в ом ;

t - время, в течение которого ток протекал по проводнику, в сек .

Электрическая дуга. Если сблизить концы двух проводников, присоединенных к источнику электрического тока, между ними образуется искра. Разведя концы, вместо искры получим электрическую дугу, создающую сильный и ослепительный свет. Если к концам проводников присоединить угольные стержни, между ними также возникнет электрическая дуга. Возникновение дуги объясняется следующим образом.

С повышением температуры угольных стержней увеличивается скорость движения электронов, находящихся в угле. При сильном нагреве скорость движения свободных электронов возрастает настолько, что при раздвижении углей электроны из стержней вылетают в межэлектродное пространство. В результате действия вылетевших электронов на нейтральные атомы и интенсивного излучения света нагретыми концами электродов воздух между электродами перестает быть электрически нейтральным, т. е. между концами раздвинутых электродов создается газовый промежуток, хорошо проводящий электрический ток, и возникает электрический разряд.

Способность тока создавать электрическую дугу с успехом используют при сварке. Заменив один из угольных электродов свариваемым изделием, получим электрическую дугу, горящую между этим изделием и вторым угольным электродом. Однако в настоящее время наибольшее применение получил способ сварки металлическим электродом. В этом случае вместо угольного электрода применяют металлический. Сварочная дуга горит между свариваемым изделием и металлическим электродом. После расплавления металлического электрода он заменяется новым.

Короткое замыкание. Аварийный режим работы электрической цепи, когда вследствие уменьшения ее сопротивления ток в ней резко увеличивается против нормального, называют коротким замыканием. Короткое замыкание получается, если в электрическую цепь включается проводник или прибор и т.п. с очень небольшим сопротивлением по сравнению с сопротивлением цепи. Вследствие небольшого сопротивления по цепи пойдет ток, намного превышающий тот, на который рассчитана цепь. Такой ток вызовет выделение большого количества тепла, что приведет к обугливанию и сгоранию изоляции проводов, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактов выключателей, ножей рубильников и т.п. Может быть поврежден даже источник электрического тока. Поэтому (ввиду опасных разрушительных последствий короткого замыкания необходимо соблюдать определенные условия при монтаже и эксплуатации электрических установок.

Для того чтобы избежать внезапного и опасного увеличения тока в электрической цепи при коротком замыкании, цепь защищают плавкими предохранителями. Предохранитель представляет собой легкоплавкую проволоку, включенную в цепь последовательно. При увеличении тока сверх определенной величины проволочка предохранителя нагревается и плавится, электрическая цепь автоматически разрывается и ток в ней прекращается. Плавкие вставки для разных сечений защищаемых проводов и для разных потребителей энергии берутся различные. Плавкие предохранители могут выполнить свою задачу при условии, что они правильно выбраны.

Рис. 8

По своей конструкции предохранители делят на пробочные (рис. 8,а), пластинчатые (рис. 8,б) и трубчатые (рис. 8,в), В пробочных предохранителях плавкая проволока помещается внутри фарфоровой пробки и укрепляется в ее основании, к которому подведены провода размыкаемой цепи. В пластинчатых предохранителях плавкая вставка с помощью наконечников и винтов укреплена на изолирующем основании. Провода размыкаемой цепи подводят к винтам. В трубчатых предохранителях плавкая часть помещена внутри легко-съемных фарфоровых трубок.

В цепях с большим током и напряжением плавкие предохранители применяют редко. В этих случаях устраивают другую автоматическую защиту.

Электрический ток


Что называется электрическим током?

Упорядоченное (направленное) движение заряженных частиц называется электрическим током. Причем электрический ток, сила которого со временем не меняется, называется постоянным. Если же направление движения тока меняется и изменения. по величине и направлению повторяются в одной и той же последовательности, то такой ток называется переменным.

Что вызывает и поддерживает упорядоченное движение заряженных частиц?

Вызывает и поддерживает упорядоченное движение заряженных частиц электрическое поле. Имеет ли электрический ток определенное направление?
Имеет. За направление электрического тока принимают движение положительно заряженных частиц.

Можно ли непосредственно наблюдать движение заряженных частиц в проводнике?

Нет. Но о наличии электрического тока можно судить по тем действиям и явлениям, которыми он сопровождается. Например, проводник, по которому движутся заряженные частицы, нагревается, а в пространстве, окружающем проводник, образуется магнитное поле и магнитная стрелка вблизи проводника с электрическим током поворачивается. Кроме того, ток, проходящий через газы, вызывает их свечение, а проходя через растворы солей, щелочей и кислот, разлагает их на соетавнйе части.

Чем определяется сила электрического тока?

Сила электрического тока определяется количеством электричества, проходящим через поперечное сечение проводника в единицу времени.
Чтобы определить силу тока в цепи, надо количество протекающего электричества разделить на время, за которое оно протекло.

Что принято за единицу силы тока?

За единицу силы тока принята сила неизменяющегося тока, который, проходя по двум параллельны прямолинейным проводникам бесконечной длины ни тожно малого сечения, расположенным на рассто нии 1 м один от другого в вакууме, вызвал бы межд этими проводниками силу, равную 2 Ньютона н каждый метр. Эту единицу назвали Ампером в чест французского ученого Ампера.

Что принято за единицу количества электричества?

За единицу количества электричества принят Кулон (Ку), который проходит в одну секунду при силе тока в 1 Ампер (А).

Какими приборами измеряют силу электрического тока?

Силу электрического тока измеряют приборами, называемыми амперметрами. Шкалу амперметра градуируют в амперах и долях ампера по показаниям точных образцовых приборов. Силу тока отсчитывают по показаниям стрелки, которая перемещается вдоль шкалы от нулевого деления. Амперметр в электрическую цепь включают последовательно, с помощью двух клемм или зажимов, имеющихся на приборе. Что такое напряжение электрического тока?
Напряжение электрического тока есть разность потенциалов между двумя точками электрического поля. Оно равно работе, совершаемой-силами электрического поля при перемещении положительного заряда, равного единице, из одной точки поля в другую.

Основной единицей измерения напряжения является Вольт (В).

Каким прибором измеряют напряжение электрического тока?

Напряжение электрического тока измеряют прибо; ром, который называется вольтметром. В цепь электрического тока вольтметр включают параллельно. Сформулируйте закон Ома на участке цепи.

Что такое сопротивление проводника?

Сопротивление проводника есть физическая величина, характеризующая свойства проводника. Единицей сопротивления является Ом. Причем сопротивление в 1 Ом имеет провод, в котором устанавливается ток 1 А при напряжении на его концах 1 В.

Зависит ли сопротивление в проводниках от величины протекающего по ним электрического тока?

Сопротивление однородного металлического проводника определенной длины и сечения не зависит от величины протекающего по нему тока.

От чего зависит сопротивление в проводниках электрического тока?

Сопротивление в проводниках электрического тока зависит от длины проводника, площади его поперечного сечения и рода материала проводника (удельного сопротивления материала).

Причем сопротивление прямо пропорционально длине проводника, обратно пропорционально площади поперечного сечения и зависит, как было сказано выше, от материала проводника.

Зависит ли сопротивление в проводниках от температуры?

Да, зависит. Повышение температуры металлического проводника вызывает увеличение скорости теплового движения частиц. Это приводит к увеличению числа столкновений свободных электронов и, следовательно, к уменьшению времени свободного пробега, вследствие чего уменьшается удельная проводимость и увеличивается удельное сопротивление материала.

Температурный коэффициент сопротивления чистых металлов равен приблизительно 0,004 °С, что означает увеличение их сопротивления на 4% при повышении температуры на 10 °С.

При повышении температуры в электролита угле время свободного пробега тоже уменьшается, при этом увеличивается концентрация носителей з дов, вследствие чего удельное сопротивление их повышении температуры уменьшается.

Сформулируйте закон Ома для замкнутой цепи.

Сила тока в замкнутой цепи равна отноше электродвижущей силы цепи к ее полному сопроти нию.

Эта формула показывает, что сила тока зависит трех величин: электродвижущей силы Е, внешнег сопротивления R и внутреннего сопротивления г Внутреннее сопротивление не оказывает заметног влияния на силу тока, если оно мало по сравнению внешним сопротивлением. При этом напряже ние на зажимах источника тока приблизительно равн электродвижущей силе (ЭДС).

Что представляет собой электродвижущая сила (ЭДС)?

Электродвижущая сила представляет собой отношение работы сторонних сил по перемещению заряда вдоль цепи к заряду. Как и разность потенциалов, электродвижущую силу измеряют в вольтах.

Какие силы называются сторонними силами?

Любые силы, действующие на электрически заряженные частицы, за исключением потенциальных сил электростатического происхождения (т. е. кулонов- ских), называются сторонними силами. Именно за счет работы этих сил заряженные частицы приобретают энергию и отдают ее затем при движении в проводниках электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри источника тока, генератора, аккумулятора и т. д.

В результате на клеммах источника тока появляются заряды противоположного знака, а между клеммами-определенная разность потенциалов. Далее при замыкании цепи начинает действовать образование поверхностных зарядов, создающих электрическое поле по всей цепи, которое появляется в результате того, что при замыкании цепи почти сразу же на всей поверхности проводника возникает поверхностный заряд. Внутри источника заряды движутся под действием сторонних сил против сил электростатического поля (положительные от минуса, к плюсу), а по всей остальной цепи их приводит в движение электрическое поле.

Рис. 1. Электрическая цепь: 1- источник, электроэнергии (аккумулятор); 2 - амперметр; 3 - преемник энергии (лай па накаливания); 4 - электрические провода; 5 - однополюсные руСидьник; 6 - плавкие предохранители

К атегория: - Крановщикам и стропальщикам