» » Что такое число пи простыми. Чему равно число ПИ и что оно означает? Придумать образы для комбинаций цифр

Что такое число пи простыми. Чему равно число ПИ и что оно означает? Придумать образы для комбинаций цифр

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

1. Актуальность работы.

В бесконечном множестве чисел, так же как среди звезд Вселенной, выделяются отдельные числа и целые их «созвездия» удивительной красоты, числа с необыкновенными свойствами и своеобразной, только им присущей гармонией. Надо только уметь увидеть эти числа, заметить их свойства. Всмотритесь в натуральный ряд чисел - и вы найдете в нем много удивительного и диковинного, забавного и серьезного, неожиданного и курьезного. Видит тот, кто смотрит. Ведь люди и в летнюю звездную ночь не заметят… сияние. Полярной звезды, если не направят свой взор в безоблачную высь.

Переходя из класса в класс я познакомился с натуральными, дробными, десятичными, отрицательными, рациональными. В этом году я изучил иррациональные. Среди иррациональных чисел есть особое число, точными вычислениями которого занимаются ученые уже много веков. Оно встретилось мне ещё в 6 классе при изучении темы «Длина окружности и площадь круга». Было акцентировано внимание на то, что довольно часто будем встречаться с ним на уроках в старших классах. Интересны были практические задания на нахождение числового значения числа π. Число π является одним из интереснейших чисел, встречающихся при изучении математики. Оно встречается в разных школьных дисциплинах. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению.

Услышав об этом числе много интересного, я сам решил путём изучения дополнительной литературы и поиска в Интернете узнать как можно больше информации о нём и ответить на проблемные вопросы:

Как давно люди знали о числе пи?

Для чего необходимо его изучение?

Какие интересные факты с ним связаны

Верно ли, что значение пи равно приближённо 3,14

Поэтому, перед собой я поставил цель: исследовать историю числа π и значимость числа π на современном этапе развития математики.

Задачи:

Изучить литературу с целью получения информации об истории числа π;

Установить некоторые факты из «современной биографии» числа π;

Практическое вычисление приближенного значения отношения длины окружности к диаметру.

Объект исследования:

Объект исследования: Число ПИ.

Предмет исследования: Интересные факты, связанные с числом ПИ.

2. Основная часть. Удивительное число π.

Никакое другое число не является таким загадочным, как "Пи" с его знаменитым никогда не кончающимся числовым рядом. Во многих областях математики и физики ученые используют это число и его законы.

Мало какому числу из всех чисел, которые используются в математике, в естественных науках, в инженерном деле и в повседневной жизни, уделяется столько внимания, сколько уделяется числу пи. В одной книге говорится: «Число пи захватывает умы гениев науки и математиков-любителей во всем мире» («Fractals for the Classroom»).

Его можно встретить в теории вероятностей, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.

Некоторые даже считают его одним из пяти важнейших чисел в математике. Но, как отмечается в книге «Fractals for the Classroom», при всей важности числа пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков пи».

3. Понятие числа пи

Число π — математическая константа, выражающая отношение длины окружности к длине ее диаметра . Число π (произносится «пи» ) —математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».

В цифровом выражении π начинается как 3,141592 и имеет бесконечную математическую продолжительность.

4. История числа "пи"

Как считают специалисты, это число было открыто вавилонскими магами . Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона.

История числа пи, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. π = 3,160...

В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным, что даёт дробь 3,162... Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.

Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:

    Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;

    Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ;

    Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .

По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, что π = 3,1419... Истинное значение этого отношения 3,1415922653... В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...

В первой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил пи с 16 десятичными знаками. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1" . Эти таблицы сыграли важную роль в астрономии.

Спустя полтора столетия в Европе Ф.Виет нашёл число пи только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что пи можно отыскать, используя пределы некоторых рядов. Это открытие имело большое

значение, так как позволило вычислить пи с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.

День рождения числа “” .

Неофициальный праздник «День числа ПИ» отмечается 14 марта, которое в американском формате (день/ число) записывается как 3/14, что соответствует приближенному значению числа ПИ.

Существует и альтернативный вариант праздника - 22 июля. Он называется "День приближенного числа Пи". Дело в том, что представление этой даты в виде дроби (22/7) также дает в виде результата число Пи. Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, дата и время совпадают с первыми разрядами числа π.

Интересные факты, связанные с числом “”

Ученые Токийского университета под руководством профессора Ясумаса Канада сумели поставить мировой рекорд в вычислениях числа Пи до 12411-триллионного знака. Для этого группе программистов и математиков понадобилась специальная программа, суперкомпьютер и 400 часов машинного времени. (Книга рекордов Гиннеса).

Германский король Фридрих Второй был настолько очарован эти числом, что посвятил ему …целый дворец Кастель дель Монте, в пропорциях которого можно вычислить ПИ. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Как запомнить первые цифры числа “ ”.

Три первые цифры числа  = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:

Нужно только постараться

И запомнить всё как есть:

Девяносто два и шесть.

С.Бобров. ”Волшебный двурог”

Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа :

В следующих фразах знаки числа  можно определить по количеству букв в каждом слове:

Что я знаю о кругах?” (3,1416);

Вот и знаю я число, именуемое Пи. - Молодец!”

(3,1415927);

Учи и знай в числе известном за цифрой цифру, как удачу примечать”

(3,14159265359)

5. Обозначение числа пи

Первым ввёл обозначение отношения длины окружности к диаметру современным символом пи английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало общеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г.

В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число пи иррационально. Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Поиски точного выражения пи продолжались и после работ Ф.Виета . В начале XVII в. голландский математик из КёльнаЛудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа .

6. Как запомнить число "Пи" с точностью до одиннадцати знаков

Число "Пи" - это отношение длины окружности к ее диаметру, оно выражается бесконечной десятичной дробью. В обиходе нам достаточно знать три знака (3,14). Однако в некоторых расчетах нужна большая точность.

У наших предков не было компьютеров, калькуляторов и справочников, но со времен Петра I они занимались геометрическими расчетами в астрономии, в машиностроении, в корабельном деле. Впоследствии сюда добавилась электротехника - там есть понятие "круговой частоты переменного тока". Для запоминания числа "Пи" было придумано двустишие (к сожалению, мы не знаем автора и места первой публикации его; но еще в конце 40-х годов двадцатого века московские школьники занимались по учебнику геометрии Киселева, где оно приводилось).

Двустишие написано по правилам старой русской орфографии, по которой послесогласной в конце слова обязательно ставился "мягкий" или "твердый" знак. Вот оно, это замечательное историческое двустишие:

Кто и шутя, и скоро пожелаетъ

"Пи" узнать число - ужъ знаетъ.

Тому, кто собирается в будущем заниматься точными расчетами, имеет смысл это запомнить. Так чему же равно число "Пи" с точностью до одиннадцати знаков? Сосчитай количество букв в каждом слове и напиши эти цифры подряд (первую цифру отдели запятой).

Такой точности уже вполне достаточно для инженерных расчетов. Кроме старинного существует и современный способ запоминания, на который указал в читатель, назвавшийся Георгием:

Чтобы нам не ошибаться,

Надо правильно прочесть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Надо только постараться

И запомнить всё как есть:

Три, четырнадцать, пятнадцать,

Девяносто два и шесть.

Три, четырнадцать, пятнадцать,

Девять, два, шесть, пять, три, пять.

Чтоб наукой заниматься,

Это каждый должен знать.

Можно просто постараться

И почаще повторять:

«Три, четырнадцать, пятнадцать,

Девять, двадцать шесть и пять.»

Ну а математики с помощью современных компьютеров могут вычислить практически любое количество знаков числа "Пи".

7. Рекорд запоминания числа пи

Запомнить знаки пи человечество пытается уже давно. Но как уложить в память бесконечность? Любимый вопрос мнемонистов-профессионалов. Разработано множество уникальных теорий и приёмов освоения огромного количества информации. Многие из них опробованы на пи.

Мировой рекорд, установленный в прошлом столетии в Германии - 40 000 знаков. Российский рекорд значений числа пи 1 декабря 2003 года в Челябинске установил Александр Беляев. За полтора часа с небольшими перерывами на школьной доске Александр написал 2500 цифр числа пи.

До этого рекордным в России считалось перечислить 2000 знаков, что удалось сделать в 1999 году в Екатеринбурге. По словам Александра Беляева - руководителя центра развития образной памяти, такой эксперимент со своей памятью может провести любой из нас. Важно лишь знать специальные техники запоминания и периодически тренироваться.

Заключение.

Число пи появляется в формулах, используемых во многих сферах. Физика, электротехника, электроника, теория вероятностей, строительство и навигация - это лишь некоторые из них. И кажется, что подобно тому как нет конца знакам числа пи, так нет конца и возможностям практического применения этого полезного, неуловимого числа пи.

В современной математике число пи - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул.

Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа пи.

Точное значение числа π в современном мире представляет собой не только собственную научную ценность, но и используется для очень точных вычислений (например, орбиты спутника, строительства гигантских мостов), а также оценки быстродействия и мощности современных компьютеров.

В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.

Проведенная работа мне была интересной. Я хотел узнать об истории числа π, практическом применении и думаю, что достиг поставленной цели. Подводя итог работы, я прихожу к выводу, что данная тема актуальна. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению. В своей работе я подробнее познакомился с числом - одной из вечных ценностей, которой человечество пользуется уже много веков. Узнал некоторые аспекты его богатейшей истории. Выяснил, почему древний мир не знал правильного отношения длины окружности к диаметру. Посмотрел наглядно, какими способами можно получить число. На основе экспериментов вычислил приближенное значение числа различными способами. Провел обработку и анализ результатов эксперимента.

Любой школьник сегодня должен знать, что обозначает и чему приближенно равно число. Ведь у всех первое знакомство с числом, использование его при вычислении длины окружности, площади круга происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными и уже через год - два мало кто помнит не только то, что отношение длины окружности к её диаметру одно и то же для всех окружностей, но даже с трудом вспоминают численное значение числа, равное 3,14.

Я попробовал приподнять завесу богатейшей истории числа, которым человечество пользуется уже много веков. Самостоятельно составил презентацию к своей работе.

История чисел увлекательна и загадочна. Я хотел бы продолжить исследования других удивительных чисел в математике. Это станет объектом моих следующих исследовательских изучений.

Список литературы.

1. Глейзер Г.И. История математики в школе IV- VI классы. - М.: Просвещение, 1982.

2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики - М.: Просвещение, 1989.

3. Жуков А.В.Вездесущее число «пи». - М.: Едиториал УРСС, 2004.

4. Кымпан Ф. История числа «пи». - М.: Наука, 1971.

5. Свечников А.А. путешествие в историю математики - М.: Педагогика - Пресс, 1995.

6. Энциклопедия для детей. Т.11.Математика - М.: Аванта +, 1998.

Интернетресурсы:

- http:// crow.academy.ru/ materials_/pi/history.htm

Http://hab/kp.ru// daily/24123/344634/


Что такое "пи" известно абсолютно всем. Но знакомое всем со школы число возникает во многих ситуациях, не имеющим никакого отношения к окружностям. Его можно встретить в теории вероятностей, в формуле Стирлинга для вычисления факториала, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”.

Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.


  • Несколько занимательных фактов о числе Пи

  • 1. А знаете ли Вы, что первым, кто использовал для числа 3,14 символ «пи», был Вильям Джонс из Уэльса, и произошло это в 1706 году.

  • 2. А знаете ли Вы, что мировой рекорд по запоминанию числа Пи установил 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук, удержавший в памяти 30 млн. его знаков (20 томов текста).

  • 3. А знаете ли Вы, что в 1996 году Майк Кейт написал короткий рассказ, который называется «Ритмическая каденция» («Cadeic Cadenze»), в его тексте длина слов соответствовала первым 3834 цифрам числа Пи.

Символ Пи впервые употребил в 1706 году Уильям Джонс, однако настоящую популярность он приобрел после того, как его начал использовать в своих работах математик Леонард Эйлер в 1737 году.

Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта (в американском написании - 3.14) ровно в 01:59 дата и время совпадут с первыми разрядами числа Пи = 3,14159.

14 марта 1879 года также родился создатель теории относительности Альберт Эйнштейн, что делает этот день еще более привлекательным для всех любителей математики.

Кроме того, математики отмечают и день приближенного значения Пи, который приходится на 22 июля (22/7 в европейском формате записи даты).

"В это время читают хвалебные речи в честь числа Пи и его роли в жизни человечества, рисуют антиутопические картины мира без Пи, едят пироги с изображением греческой буквы Пи или с первыми цифрами самого числа, решают математические головоломки и загадки, а также водят хороводы", - пишет Википедия.

В цифровом выражении Пи начинается как 3,141592 и имеет бесконечную математическую продолжительность.

Французский ученый Фабрис Беллар вычислил число Пи с рекордной точностью. Об этом сообщается на его официальном сайте. Свежий рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков. Предыдущее достижение принадлежит японцам, которые посчитали константу с точностью до 2,6 триллиона десятичных знаков.

На вычисления у Беллара ушло около 103 дней. Все расчеты проводились на домашнем компьютере, стоимость которого лежит в пределах 2000 евро. Для сравнения, предыдущий рекорд был установлен на суперкомпьютере T2K Tsukuba System, у которого ушло на работу около 73 часов.

Изначально число Пи появилось как отношение длины окружности к ее диаметру, поэтому его приближенное значение вычислялось как отношение периметра вписанного в окружность многоугольника к диаметру этой окружности. Позже появились более совершенные методы. В настоящее время Пи вычисляется при помощи быстро сходящихся рядов, наподобие тех, которые были предложены Сринивасом Рамануджаном в начале 20 века.

Сначала Пи рассчитывалось в двоичной системе, после чего переводилось в десятичную. Это проделали за 13 дней. В общей сложности для хранения всех цифр требуется 1,1 терабайта дискового пространства.

Подобные вычисления имеют не только прикладное значение. Так, сейчас с Пи связано множество нерешенных задач. Не решен вопрос о нормальности этого числа. Например, известно, что Пи и e (основание экспоненты) трансцендентные числа, то есть не являются корнями никакого многочлена с целыми коэффициентами. При этом, однако, является ли сумма этих двух фундаментальных констант трансцендентным числом или нет - неизвестно до сих пор.

Более того, до сих пор не известно, все ли цифры от 0 до 9 встречаются в десятичной записи числа Пи бесконечное число раз.

В данном случае сверхточное вычисление числа является удобным экспериментом, результаты которого позволяют сформулировать гипотезы относительно тех или иных особенностей числа.

Число вычисляется по определенным правилам, причем при любом вычислении, в любом месте и в любое время, на определенном месте в записи числа стоит одна и та же цифра. Значит существует некий закон, по которому в числе в определенном месте ставится определенная цифра. Конечно, это закон не простой, но закон всё таки есть. И, значит, цифры в записи числа не случайны, а закономерны.

Считают число Пи: PI = 4 — 4/3 + 4/5 — 4/7 + 4/9 — … — 4/n + 4/(n+2)

Поиск Pi или деление столбиком:

Пары целых чисел, дающих при делении большое приближение к числу Pi. Деление производилось "столбиком", чтобы обойти ограничения по длине чисел с плавающей точкой Visual Basic 6.

Pi = 3.14159265358979323846264>33832795028841 971...

К экзотическим методам вычисления пи вроде использования теории вероятности или простых чисел принадлежит и метод, придуманный Г.А. Гальпериным, и называемый Пи-биллиардом, который основан на оригинальной модели. При столкновении двух шаров, меньший из которых находится между большим и стенкой, и больший движется к стенке, число соударений шаров позволяет вычислить Пи со сколь угодно большой наперед заданной точностью. Надо только запустить процесс (можно и на компьютере) и посчитать число ударов шаров. Программная реализация этой модели пока не известна

В каждой книге по занимательной математике вы непременно найдете историю вычисления и уточнения значения числа "пи". Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и Эпоху Возрождения европейские, индийские и арабские математики уточнили значение "пи" до 40 знаков после десятичной точки, а к началу Эпохи Компьютеров усилиями многих энтузиастов количество знаков было доведено до 500. Такая точность имеет чисто научный интерес (об этом ниже), для практики, в пределах Земли достаточно 11 знаков после точки.

Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру "пи" после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать "пи" с четырнадцатью знаками после точки. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца.

Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков "пи". Да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XXVII веке были получены 34 знака "пи", избыточные для таких расстояний.

В чем же сложность вычисления значения "пи"? Дело в том, что оно не только иррациональное (то есть его нельзя выразить в видедроби P/Q, где P и Q целые числа), но оно еще не может быть корнем алгебраического уравнения. Число, например, иррациональное, не может быть представлено отношением целых чисел, но оно является корнем уравнения Х2-2=0, а для чисел "пи" и е (постоянная Эйлера), нельзя указать такое алгебраическое (не дифференциальное) уравнение. Такие числа (трансцендентные) вычисляются рассмотрением какого-либо процесса и уточняются за счет увеличения шагов рассматриваемого процесса. Самый “простой” путь - вписывать в окружность правильный многоугольник и вычислять отношение периметра многоугольника к его “радиусу”...pages marsu

Число объясняет мир

Кажется, двум американским математикам удалось приблизиться к разгадке тайны числа пи, представляющего в сугубо математическом плане соотношение длины окружности круга к его диаметру, сообщает Der Spiegel.

Как иррациональная величина оно не может быть представлено в виде завершенной дроби, поэтому после запятой следует бесконечный ряд цифр. Это свойство всегда привлекало математиков, стремившихся найти, с одной стороны, более точное значение пи, а с другой — его обобщенную формулу.

Однако математики Дэвид Бейли из лаборатории Lawrence Berkeley National Laboratory в Калифорнии и Ричард Грендел из колледжа Reed College в Портланде, рассматривали число с другой стороны — они попытались найти какой-то смысл в кажущемся хаотичном ряду цифр после запятой. В результате установили, что регулярно повторяются комбинации следующих цифр — 59345 и 78952.

Но пока что не могут ответить на вопрос, является ли повторение случайным или закономерным. Вопрос закономерности повторения определенных комбинаций цифр, и не только в числе пи,— один из самых трудных в математике. Но теперь можно сказать что-то более определенное об этом числе. Открытие прокладывает путь к разгадке числа пи и в целом к определению его сути — является ли оно нормальным для нашего мира или нет.

Оба математика интересуются числом пи с 1996 года, и с этого времени им пришлось отказаться от так называемой «теории чисел» и обратить внимание на «теорию хаоса», являющуюся ныне их главным оружием. Исследователи конструируют на основе отображения числа пи — самой распространенной его формой является при этом 3,14159... — ряды чисел между нулем и единицей — 0,314, 0,141, 0,415, 0,159 и так далее. Поэтому, если число пи действительно является хаотичным, то хаотичным должны быть и ряды чисел, начинающихся с нуля. Но ответа на этот вопрос пока нет. Разгадать секрет пи, как и его старшего брата — числа 42, с помощью которого многие исследователи пытаются объяснить тайну мироздания, еще предстоит."

Интересные данные о распределении цифр Пи.

(Программирование — величайшее из достижений человечества. Благодаря ему мы регулярно узнаем то, что нам знать совсем не нужно, но уж очень интересно)

Посчитано (для миллиона цифр после запятой):

нулей = 99959,

единиц = 99758,

двоек = 100026,

троек = 100229,

четвёрок = 100230,

пятёрок = 100359,

шестёрок = 99548,

семёрок = 99800,

восьмёрок = 99985,

девяток = 100106.

В первых 200,000,000,000 десятичных знаках Пи цифры встречались с такой частотой:

"0" : 20000030841;

"1" : 19999914711;

"2" : 20000136978;

"3" : 20000069393

"4" : 19999921691;

"5" : 19999917053;

"6" : 19999881515;

"7" : 19999967594

"8" : 20000291044;

"9" : 19999869180;

То есть цифры распределены почти равномерно. Почему?Потому что по современным математическим представлениям при бесконечном количестве цифр их будет точно поровну, кроме того единичек будет столько же, сколько двоек и троек вместе взятых и даже столько же, сколько и всех остальных девяти цифр вместе взятых. Но тут знать, где остановиться, ловить момент, так сказать, где их действительно поровну.

И еще - в цифрах числа Пи можно ожидать появление любой наперед заданной последовательности цифр. Например, самыераспространенные расстановки встретились в следующих по счету цифрах:

01234567891: с 26,852,899,245

01234567891: с 41,952,536,161

01234567891: с 99,972,955,571

01234567891: с 102,081,851,717

01234567891: с 171,257,652,369

01234567890: с 53,217,681,704

27182818284: с 45,111,908,393 - это цифры числа е. (

Была такая шутка: ученые нашли последнее число в записи Пи - им оказалось число е, почти попали)

Можно поискать в первых десяти тысячах знаков Пи свой телефон или дату рождения, если не получится, то ищите в 100.000 знаков.

В числе 1/Пи начиная с 55,172,085,586 знака идут 3333333333333, не правда ли удивительно?

В философии обычно противопоставляют случайное и необходимое. Так знаки числа пи случайны? Или они необходимы? Скажем, третий знак числа пи равен "4". И вне зависимости от того, кто-бы это пи вычислял, в каком месте и в какое время он бы это не делал, третий знак с необходимостью всегда будет равен "4".

Связь числа Пи, числом Фи и рядом Фибоначии . Связь числа 3,1415916 и числа 1,61803 и последовательности Пизанского.


  • Еще интересное:

  • 1. В десятичных позициях числа Пи 7, 22, 113, 355 — цифра 2. Дроби 22/7 и 355/113 - хорошие приближения к числу Пи.

  • 2. Коханский нашел, что Пи является приблизительным корнем уравнения: 9х^4-240х^2+1492=0

  • 3. Если записать заглавные буквы английского алфавита по часовой стрелке в круг и вычеркнуть буквы имеющие симметрию слева - направо: A,H,I,M,O,T,U,V,W,X,Y, то оставшиеся буквы образуют группы по 3,1,4,1,6 букв.

  • (A) BCDEFG (HI) JKL (M) N (O) PQRS (TUVWXY) Z

  • 6 3 1 4 1

  • Так что английский алфавит должен начинаться с буквы Н, I или J, а не с буквы А:)

Поскольку в последовательности знаков числа пи нет повторений - это значит, что последовательность знаков пи подчиняется теории хаоса, точнее, число пи - это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен. В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых! Позже он сгенерировал на основе этого рисунка цветовую картину с помощью специального алгоритма. Что изображено на этой картине - засекречено.

А нам-то что с того? А следует из этого то, что в десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Ваш телефон? Пожалуйста, и не раз (проверить можно тут, но имейте в виду, что эта страничка весит около 300 мегабайт, так что загрузки придется подождать. Можно скачать жалкий миллион знаков тут или поверить на слово: любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Для более возвышенных читателей можно предложить и другой пример: если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Я не шучу, это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то все. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны.

Получается, что это число (единственное разумное число во вселенной!) и управляет нашим миром.

Вопрос в том, как их там отыскать...

А еще в этот день родился Альберт Эйнштейн, который предсказал... да чего он только не предсказал! ... даже темную энергию.

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

Но Сатана не долго ждал реванша.

Пришел Эйнштейн - и стало все, как раньше.

Они хорошо коррелируются - пи и Альберт...

Теории возникают, развиваются и...

Суть: число Пи не равно 3,14159265358979....

Это заблуждение, основанное на ошибочном постулате отождествления плоского Евклидового пространства с реальным пространством Вселенной.

Краткое объяснение почему в общем случае Пи не равно 3,14159265358979...

Этот феномен связан с кривизной пространства. Силовые линии во Вселенной на значительных расстояниях не идеальные прямые, а слегка изогнутые линии. Мы уже доросли до момента констатации факта, что в реальном мире не существует идеально прямых линий, идеально плоских кругов, идеального Евклидового пространства. Следовательно, мы должны представлять себе любой круг одного радиуса на сфере гораздо большего радиуса.

Мы заблуждаемся, думая что пространство плоско, «кубично». Вселенная не кубична, не цилиндрична и тем более не пирамидальна. Вселенная сферична. Единственный случай, когда плоскость может быть идеальной (в смысле «неизогнутой») является случай, когда такая плоскость проходит через центр Вселенной.

Конечно, кривизной CD-ROMа можно пренебречь, поскольку диаметр компакт-диска значительно меньше диаметра Земли, тем более диаметра Вселенной. Но пренебрегать кривизной в орбитах комет и астероидов не следует. Неистребимое Птолемеевское убеждение, что мы всё ещё находимся в центре Вселенной может нам дорого стоить.

Ниже приводятся аксиомы плоского Евклидова («кубичного» Декартова) пространства и сформулированная мной дополнительная аксиома для сферического пространства.

Аксиомы плоского сознания:

через 1 точку можно провести бесконечное количество прямых и бесконечное количество плоскостей.

через 2 точки можно провести 1 и только 1 прямую, через которую можно провести бесконечное количество плоскостей.

через 3 точки в общем случае нельзя провести ни одной прямой и одну, и только одну, плоскость. Дополнительная аксиома для сферического сознания:

через 4 точки в общем случае нельзя провести ни одной прямой, ни одной плоскости и одну и только одну сферу.Арсентьев Алексей Иванович

Немного мистики. Число ПИ Разумно?

Через число Пи может быть определена любая другая константа, включая постоянную тонкой структуры (альфа), константу золотой пропорции (f=1,618...), не говоря уж о числе e - именно поэтому число пи встречается не только в геометрии, но и в теории относительности, квантовой механике, ядерной физике и т.д. Более того - недавно учёные установили, что именно через Пи можно определить местоположение элементарных частиц в Таблице элементарных частиц (ранее это пытались сделать через Таблицу Вуди), а сообщение о том, что в недавно расшифрованном ДНК человека число Пи отвечает за саму структуру ДНК (достаточно сложную, надо отметить), произвело эффект разорвавшейся бомбы!

Как считает доктор Чарльз Кэнтор, под руководством которого ДНК и было расшифровано: "Такое впечатление, что мы подошли к разгадке некоей фундаментальной задачки, которую нам подкинуло мироздание. Число Пи - повсюду, оно контролирует все известные нам процессы, оставаясь при этом неизменным! Кто же контролирует само число Пи? Ответа пока нет."

На самом деле, Кэнтор лукавит, ответ есть, просто он настолько невероятен, что учёные предпочитают не выносить его на широкую публику, опасаясь за собственную жизнь (об этом чуть позже): число Пи само себя контролирует, оно разумно! Вздор? Не спешите. Ведь ещё Фонвизин говорил, что "в человеческом невежестве весьма утешительно считать всё то за вздор, чего не знаешь."

Во-первых, догадки о разумности чисел вообще давно посещали многих известных математиков современности. Норвежский математик Нильс Хенрик Абель в феврале 1829-го писал своей матери: "Я получил подтверждения того, что одно из чисел - разумно. Я говорил с ним! Но меня пугает, что я не могу определить, что это за число. Но может быть это и к лучшему. Число предупредило меня, что я буду наказан, если Оно будет раскрыто." Кто знает, раскрыл бы Нильс значение числа, с ним говорившего, но 6 марта 1829-го года его не стало.

1955 год, японец Ютака Танияма выдвигает гипотезу о том, что "каждой эллиптической кривой соответствует определенная модулярная форма" (как известно, на основе этой гипотезы была доказана теорема Ферма). 15 сентября 1955-го, на международном математическом симпозиуме в Токио, где Танияма объявил о своей гипотезе, на вопрос журналиста: "Как вы до этого додумались?" - Танияма отвечает: "Я не додумался, число мне об этом сообщило по телефону". Журналист, думая, что это шутка, решил её "поддержать": "А номер-то телефона оно вам сообщило?". На что Танияма серьёзно ответил: "Такое впечатление, что этот номер мне давно был известен, но я могу теперь сообщить его только через три года, 51 день, 15 часов и 30 минут." В ноябре 1958 года Танияма покончил с собой. Три года, 51 день, 15 часов и 30 минут - это и есть 3,1415. Совпадение? Может быть. Но - вот ещё одно, ещё более странное. Итальянский математик Селла Квитино тоже несколько лет, как он сам туманно выражался, "поддерживал связь с одной милой цифрой". Цифра, по словам Квитино, который уже тогда лежал в психиатрической лечебнице, "обещала сказать своё имя в день своего рождения". Мог ли Квитино настолько лишиться разума, чтобы называть число Пи цифрой, или он так специально запутывал врачей? Не ясно, но 14 марта 1827-го года Квитино не стало.

А самая загадочная история связана с "великим Харди" (как вы все знаете, так современники называли великого английского математика Годфри Харолда Харди), который вместе со своим приятелем Джоном Литлвудом знаменит работами в теории чисел (особенно в области диофантовых приближений) и теории функций (где друзья прославились исследованием неравенств). Как известно, Харди был официально неженат, хотя не раз заявлял, что "обручён с царицей мира нашего". Коллеги-учёные не раз слышали, как он разговаривает с кем-то в своём кабинете, его собеседника никто никогда не видел, хотя его голос - металлический и чуть скрипучий - долгое время был притчей во языцех в Оксфордском университете, где он работал в последние годы. В ноябре 1947 года эти беседы прекращаются, а 1 декабря 1947 года Харди находят на городской свалке, с пулей в желудке. Версию о самоубийстве подтвердила и записка, где рукой Харди было написано: "Джон, ты увёл у меня царицу, я тебя не виню, но жить без неё я более не могу".

Связана ли эта история с числом Пи? Пока неясно, но не правда ли, любопытно?

Вообще говоря, подобных историй можно накопать очень много, и, разумеется, не все они трагичны.

Но, перейдём к "во-вторых": каким образом число вообще может быть разумным? Да очень просто. Человеческий мозг содержит 100 млрд. нейронов, число знаков Пи после запятой вообще стремится к бесконечности, в общем, по формальным признакам оно может быть разумным. Но ведь если верить работе американского физика Дэвида Бейли и канадских математиков Питера Борвина и Саймона Плофе, последовательность десятичных знаков в Пи подчиняется теории хаоса, грубо говоря, число Пи это и есть хаос в его первозданном виде. Может ли хаос быть разумным? Конечно! Точно так же, как и вакуум, при его кажущейся пустоте, как известно, отнюдь не пуст.

Более того, при желании, можно этот хаос представить графически - чтобы убедиться, что он может быть разумным. В 1965-ом году американский математик польского происхождения Станислав М. Улам (именно ему принадлежит ключевая идея конструкции термоядерной бомбы), присутствуя на одном очень длинном и очень скучном (по его словам) собрании, чтобы как-то развлечься начал писать на клетчатой бумаге цифры, входящие в число Пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Без всякой задней мысли он попутно обводил все простые числа чёрными кружками. Вскоре, к его удивлению, кружки с поразительным упорством стали выстраиваться вдоль прямых - то, что получилось, очень было похоже на нечто разумное. Особенно, после того, как Улам сгенерировал на основе этого рисунка цветовую картину, с помощью специального алгоритма.

Собственно, эту картинку, которую можно сравнить и с мозгом, и со звёздной туманностью, можно смело называть "мозгом числа Пи". Примерно с помощью такой структуры это число (единственное разумное число во вселенной) и управляет нашим миром. Но - каким образом происходит это управление? Как правило, с помощью неписанных законов физики, химии, физиологии, астрономии, которые контролируются и корректируются разумным числом. Приведённые выше примеры показывают, что разумное число так же нарочно персонифицируется, общаясь с учёными как некая сверхличность. Но если так, приходило ли число Пи в наш мир, в облике обычного человека?

Сложный вопрос. Может быть приходило, может быть нет, надёжной методки определения этого нет и быть не может, но, если это число во всех случаях определено само собой, то можно предположить, что оно приходило в наш мир как персона в день, соответствующий его значению. Разумеется, идеальной датой рождения Пи является 14 марта 1592-го года (3,141592), однако, надёжной статистики по этому году, увы, нет - известно только, что именно в этом году 14 марта родился Джордж Вильерс Бэкингем - герцог Бэкингем из "Трёх мушкетёров". Он великолепно фехтовал, знал толк в лошадях и соколиной охоте - но был ли он числом Пи? Вряд ли. На роль человеческого воплощения числа Пи мог бы идеально претендовать Дункан МакЛауд, родившийся 14-го марта 1592-го года, в горах Шотландии - если б был реальной личностью.

Но ведь год (1592) может определяться по собственному, более логичному для Пи летоисчислению. Если принять это предположение, то претендентов на роль числа Пи становится много больше.

Самый очевидный из них - Альберт Эйнштейн, родившийся 14 марта 1879-го. Но 1879 год это и есть 1592 год относительно 287 года до нашей эры! А почему именно 287? Да потому что именно в этом году родился Архимед, впервые в мире вычисливший число Пи как отношение длины окружности к диаметру и доказавший, что оно одинаково для любого круга! Совпадение? Но не много ли совпадений, как думаете?

В какой личности Пи персонифицировано сегодня, не ясно, но для того, что бы увидеть значение этого числа для нашего мира, не нужно быть математиком: Пи проявляется во всём, что нас окружает. И это, кстати, очень свойственно для любого разумного существа, каковым, без сомнения, является Пи!

Что такое ПИН-код?

Пер-СОНальный ИДЕН-тифи-КА-ЦИ-онный номер.

Что такое число ПИ?

Расшифровка числа ПИ (3, 14...) (пин-код), сделать это может любой и без меня, через Глаголицу. Подставляем вместо цифр буквы (числовые значения букв приведены в Глаголице) и получаем вот такую фразу: Глаголи (глаголю, говорю, делаю) Аз (я, ас, мастер, творец) Добро. А если взять следующие цифры, то там получается примерно следующее: "Делаю я добро, я есть Фита (скрытое, внебрачный ребенок, непорочное зачатие, непроявленное, 9), ведаю (познаю) искажение (зло) это есть говорение(действие) воля (желание) Земля делаю познаю делаю воля добро зло (искажение) познаю зло добро делаю"..... и так до бесконечности, там много цифр, но полагаю, что всё об одном и том же...

Музыка числа ПИ


Для вычисления сколько-нибудь большого количества знаков пи предыдущий способ уже не годится. Но существует большое количество последовательностей, сходящихся к Пи гораздо быстрее. Воспользуемся, например, формулой Гаусса:

p = 12arctan 1 + 8arctan 1 - 5arctan 1
4 18 57 239

Доказательство этой формулы несложное, поэтому мы его опустим.

Исходник программы, включающий в себя "длинную арифметику"

Программа вычисляет NbDigits первых цифр числа Пи. Функция вычисления arctan названа arccot, так как arctan(1/p) = arccot(p), но расчет происходит по формуле Тейлора именно для арктангенса, а именно arctan(x) = x - x 3 /3 + x 5 /5 - ... x=1/p, значит arccot(x) = 1/p - 1 / p 3 / 3 + ... Вычисления происходят рекурсивно: предыдущий элемент суммы делится и дает следующий.

/* ** Pascal Sebah: September 1999 ** ** Subject: ** ** A very easy program to compute Pi with many digits. ** No optimisations, no tricks, just a basic program to learn how ** to compute in multiprecision. ** ** Formulae: ** ** Pi/4 = arctan(1/2)+arctan(1/3) (Hutton 1) ** Pi/4 = 2*arctan(1/3)+arctan(1/7) (Hutton 2) ** Pi/4 = 4*arctan(1/5)-arctan(1/239) (Machin) ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) ** ** with arctan(x) = x - x^3/3 + x^5/5 - ... ** ** The Lehmer"s measure is the sum of the inverse of the decimal ** logarithm of the pk in the arctan(1/pk). The more the measure ** is small, the more the formula is efficient. ** For example, with Machin"s formula: ** ** E = 1/log10(5)+1/log10(239) = 1.852 ** ** Data: ** ** A big real (or multiprecision real) is defined in base B as: ** X = x(0) + x(1)/B^1 + ... + x(n-1)/B^(n-1) ** where 0<=x(i) Work with double instead of long and the base B can ** be choosen as 10^8 ** => During the iterations the numbers you add are smaller ** and smaller, take this in account in the +, *, / ** => In the division of y=x/d, you may precompute 1/d and ** avoid multiplications in the loop (only with doubles) ** => MaxDiv may be increased to more than 3000 with doubles ** => ... */ #include #include #include #include long B=10000; /* Working base */ long LB=4; /* Log10(base) */ long MaxDiv=450; /* about sqrt(2^31/B) */ /* ** Set the big real x to the small integer Integer */ void SetToInteger (long n, long *x, long Integer) { long i; for (i=1; i/* ** Is the big real x equal to zero ? */ long IsZero (long n, long *x) { long i; for (i=0; i/* ** Addition of big reals: x += y ** Like school addition with carry management */ void Add (long n, long *x, long *y) { long carry=0, i; for (i=n-1; i>=0; i--) { x[i] += y[i]+carry; if (x[i]/* ** Substraction of big reals: x -= y ** Like school substraction with carry management ** x must be greater than y */ void Sub (long n, long *x, long *y) { long i; for (i=n-1; i>=0; i--) { x[i] -= y[i]; if (x[i]<0) { if (i) { x[i] += B; x--; } } } } /* ** Multiplication of the big real x by the integer q ** x = x*q. ** Like school multiplication with carry management */ void Mul (long n, long *x, long q) { long carry=0, xi, i; for (i=n-1; i>=0; i--) { xi = x[i]*q; xi += carry; if (xi>=B) { carry = xi/B; xi -= (carry*B); } else carry = 0; x[i] = xi; } } /* ** Division of the big real x by the integer d ** The result is y=x/d. ** Like school division with carry management ** d is limited to MaxDiv*MaxDiv. */ void Div (long n, long *x, long d, long *y) { long carry=0, xi, q, i; for (i=0; i/* ** Find the arc cotangent of the integer p (that is arctan (1/p)) ** Result in the big real x (size n) ** buf1 and buf2 are two buffers of size n */ void arccot (long p, long n, long *x, long *buf1, long *buf2) { long p2=p*p, k=3, sign=0; long *uk=buf1, *vk=buf2; SetToInteger (n, x, 0); SetToInteger (n, uk, 1); /* uk = 1/p */ Div (n, uk, p, uk); Add (n, x, uk); /* x = uk */ while (!IsZero(n, uk)) { if (p/* Two steps for large p (see division) */ Div (n, uk, p, uk); } /* uk = u(k-1)/(p^2) */ Div (n, uk, k, vk); /* vk = uk/k */ if (sign) Add (n, x, vk); /* x = x+vk */ else Sub (n, x, vk); /* x = x-vk */ k+=2; sign = 1-sign; } } /* ** Print the big real x */ void Print (long n, long *x) { long i; printf ("%d.", x); for (i=1; i/* ** Computation of the constant Pi with arctan relations */ void main () { clock_t endclock, startclock; long NbDigits=10000, NbArctan; long p, m; long size=1+NbDigits/LB, i; long *Pi = (long *)malloc(size*sizeof(long)); long *arctan = (long *)malloc(size*sizeof(long)); long *buffer1 = (long *)malloc(size*sizeof(long)); long *buffer2 = (long *)malloc(size*sizeof(long)); startclock = clock(); /* ** Formula used: ** ** Pi/4 = 12*arctan(1/18)+8*arctan(1/57)-5*arctan(1/239) (Gauss) */ NbArctan = 3; m = 12; m = 8; m = -5; p = 18; p = 57; p = 239; SetToInteger (size, Pi, 0); /* ** Computation of Pi/4 = Sum(i) *arctan(1/p[i])] */ for (i=0; i0) Add (size, Pi, arctan); else Sub (size, Pi, arctan); } Mul (size, Pi, 4); endclock = clock (); Print (size, Pi); /* Print out of Pi */ printf ("Computation time is: %9.2f seconds\n", (float)(endclock-startclock)/(float)CLOCKS_PER_SEC); free (Pi); free (arctan); free (buffer1); free (buffer2); }

Конечно, это не самые эффективные способы вычисления числа пи. Существует еще громадное количество формул. Например, формула Чудновского (Chudnovsky), разновидности которой используются в Maple. Однако в обычной практике программирования формулы Гаусса вполне хватает, поэтому эти методы не будут описываться в статье. Вряд ли кто-то хочет вычислять миллиарды знаков пи, для которых сложная формула дает большое увеличение скорости.

Недавно на Хабре в одной статье упомянули про вопрос «Что было бы с миром, если бы число Пи равнялось 4?» Я решил слегка поразмышлять на эту тему, используя некоторые (пусть и не самые обширные) знания в соответствующих областях математики. Кому интересно – прошу под кат.

Чтобы представить такой мир, нужно математически реализовать пространство с иным соотношением длины окружности к ее диаметру. Это я и попытался сделать.

Попытка №1.
Оговорим сразу, что рассматривать я буду только двумерные пространства. Почему? Потому что окружность, собственно, определена в двумерном пространстве (если рассмотреть размерность n>2, то отношение меры (n-1)-мерной окружности к ее радиусу даже не будет константой).
Так что для начала я попытался придумать хоть какое-то пространство, где Пи не равно 3.1415… Для этого я взял метрическое пространство с метрикой, в которой расстояние между двумя точками равно максимуму среди модулей разности координат (т.е. расстояние Чебышева).

Какой же вид будет иметь единичная окружность в этом пространстве? Возьмем точку с координатами (0,0) за центр этой окружности. Тогда множество точек, расстояние (в смысле заданной метрики) от которых до центра равно 1, есть 4 отрезка, параллельных осям координат, образующих квадрат со стороной 2 и с центром в нуле.

Да, в некоторой метрике это - окружность!

Посчитаем здесь Пи. Радиус равен 1, тогда диаметр, соответственно, равен 2. Можно также рассмотреть определение диаметра как наибольшего расстояния между двумя точками, но даже так оно равно 2. Осталось найти длину нашей «окружности» в данной метрике. Это сумма длин всех четырех отрезков, которые в данной метрике имеют длину max(0,2)=2. Значит, длина окружности равна 4*2=8. Ну а тогда Пи здесь равно 8/2=4. Получилось! Но нужно ли сильно радоваться? Результат этот практически бесполезен, ведь рассматриваемое пространство абсолютно абстрактно, в нем даже не определены углы и повороты. Вы можете представить себе мир, где по факту не определен поворот, и где окружностью является квадрат? Я пытался, честно, но у меня не хватило воображения.

Радиус равен 1, а вот с нахождением длины этой «окружности» есть некоторые сложности. После некоторых поисков информации в интернете, я пришел к выводу, что в псевдоевклидовом пространстве такое понятие как «число Пи» вообще не может быть определено, что, безусловно, плохо.

Если кто-нибудь в комментариях расскажет мне, как формально считать длину кривой в псевдоевклидовом пространстве, я буду очень рад, ибо моих познаний в дифференциальной геометрии, топологии (а также усердного гугления) для этого не хватило.

Выводы:
Не знаю, можно ли писать о выводах после таких не сильно продолжительных исследований, но кое-что сказать можно. Во-первых, попытавшись представить пространство с иным числом Пи, я понял, что оно будет слишком абстрактно, чтобы быть моделью реального мира. Во-вторых, когда если попытаться придумать более удачную модель (похожую на наш, реальный мир), выходит, что число Пи останется неизменным. Если принять за данность возможность отрицательного квадрата расстояния (что для обычного человека - просто абсурд), то Пи не будет определено вовсе! Все это и наводит на мысль, что, возможно, мира с другим числом Пи и вовсе быть не могло? Ведь не зря же Вселенная именно такая, какая она есть. А может быть, это и реально, только обычной математики, физики и человеческого воображения для этого недостаточно. А вы как считаете?

Upd. Узнал точно. Длина кривой в псевдоевклидовом пространстве может быть определена только на каком-либо его евклидовом подпространстве. То есть, в частности, для получившейся в попытке N3 «окружности» вовсе не определено такое понятие как «длина». Соответственно, Пи там тоже посчитать нельзя.

Пи («π») представляет из себя математическую константу, полученную довольно интересным путем. Допустим, что диаметр окружность равен 1 условной единице. Тогда число π - это длина данной окружности, которая приблизительно равна 3,14 условных единиц. Говоря другими словами, число «пи» выражает соотношение между длиной окружности и ее диаметром. Это соотношение будет всегда .

Пи обладает рядом свойств.

Во-первых, число π иррационально, это означает, что его нельзя представить в виде правильной дроби. Значение 3,14 является достаточно приблизительным, доподлинно не известно, же знаков после запятой у этой константы.

Во-вторых, число π - трансцендентное. Это означает, что оно никогда не может быть степенью -либо корня из другого числа. Говоря иначе, число π не является алгебраическим. Более того, если какое-либо число возвести в степень π, то опять же получится трансцендентное число.

Стоит отметить, что древние математики Египта, Греции, Рима, Сирии и Ирана уже знали, что соотношение между диаметром окружности и ее длиной является постоянной величиной. К примеру, в Вавилоне это соотношение оценивалось как 25/8, а в Египте как 256/81. Но наибольших успехов в вычислении значения числа π добился Архимед, который путем многократного описывания и вписывания в нее правильных добился довольно точных результатов. Периметр Архимед принял за минимальное значение числа π, а - за максимальное. Таким образом, Архимед вывел значение константы π, равное 3.142857142857143.

Забавно отметить, что существует «День числа π», который празднуется 14 . Это происходит потому, что если записать числами день и дату , то получится 3.14 - приблизительное значение данной константы. По другой версии, этот праздник надо отмечать 22 июля, так как 22/7 тоже является одним из первых соотношений, приблизительно равным 3.14

Число пи является математической константой, которая представляет собой отношение длины окружности к длине ее диаметра. Это число в математике принято обозначать греческой буквой π.

До сих пор не известно окончательное значение числа пи. В процессе его вычисления было открыто множество научных методов счета. Сейчас ученым известно более 500 миллиардов знаков после запятой, отделяющей десятичную дробь от целого числа. В десятичной части константы пи отсутствуют повторения, как в простой периодической дроби, и число знаков после запятой, скорее всего, бесконечно. Бесконечность этой константы и отсутствие периодически повторяющихся цифр после запятой не позволяют окружности сомкнуться, если, действуя в обратном порядке, умножить число пи на диаметр окружности.

Математики называют число пи записанным цифрами хаосом. В десятичной дроби этой константы можно найти любую задуманную последовательность цифр: любой телефонный номер, пин-код кредитной карты или историческую дату. Более того, если все книги перевести на язык десятичного цифрового кода, их также можно будет найти в числе пи. Там же находятся и еще ненаписанные книги. Поскольку число пи бесконечно, и последовательность цифр после запятой не повторяется, в нем потенциально можно найти абсолютно любую информацию о Вселенной. Этот факт позволяет назвать константу пи «божественной» и «разумной».

В школьной обычно используют минимально точное значение пи с двумя знаками после запятой – 3,14. Для практики на Земле достаточно числа пи с 11 знаками после запятой. Для расчета длины орбиты нашей планеты необходимо использовать число с 14 знаками после запятой. Точные вычисления в пределах нашей галактики возможны с применением числа пи с 34 знаками после запятой.

Нерешенные проблемы числа пи

Неизвестно является ли число пи алгебраически независимым. Также не вычислена точная мера иррациональности этой константы, хотя известно, что она не может быть больше 7,6063. Неизвестно является ли пи в степени n целым числом, если n представляет собой какое-либо положительное число.

Нет подтверждения тому, принадлежит ли пи к кольцу периодов. Кроме того, остается нерешенным вопрос о этого числа. Нормальным называют любое число, при записи которого в n-ричной системе исчисления образуются группы последовательных цифр, встречающиеся с одной и той же асимптотической частотой. Неизвестно даже, какие цифры от 0 до 9 встречаются бесконечное количество раз в десятичном представлении числа пи.