» » Дыхательные субстраты клетки. Основные реакции клеточного дыхания. Дыхание растений Физиологическая роль элементов минерального питания

Дыхательные субстраты клетки. Основные реакции клеточного дыхания. Дыхание растений Физиологическая роль элементов минерального питания

Дыхательным коэффициентом называется отно­шение выделенной при дыхании углекислоты к количеству погло­щенного кислорода (СО2/О2). В случае классического дыхания, когда окисляются углеводы СбН^О^ и в качестве конечных про­дуктов образуются только СО2 и Н2О, дыхательный коэффициент равен единице. Однако так бывает далеко не всегда, в ряде случаев он изменяется в сторону увеличения или уменьшения, почему и считают, что он является показателем продуктивности дыхания. Изменчивость величины дыхательного коэффициента зависит от субстрата дыхания (окисляемого вещества) и от продук­тов дыхания (полного или неполного окисления).

При использовании в процессе дыхания вместо углеводов жи­ров, которые менее окислены, чем углеводы, на их окисление будет использоваться больше кислорода - в таком случае дыха­тельный коэффициент будет уменьшаться (до величины 0,6 - 0,7). Этим объясняется большая калорийность жиров по сравнению с углеводами.

Если же при дыхании будут окисляться органические кислоты (вещества более окисленные по сравнению с углеводами), то кис­лорода будет использоваться меньше, чем выделяться углекислоты, и дыхательный коэффициент возрастает до величины больше еди­ницы. Самым высоким (равным 4) он будет при дыхании за счет.щавелевой кислоты, которая окисляется по уравнению

2 С2Н2О4 + 02 4С02 + 2Н20.

Выше было упомянуто, что при полном окислении субстрата (углевода) до углекислого газа и воды дыхательный коэффициент равен единице. Но при неполном окислении и частичном образо­вании продуктов полураспада часть углерода будет оставаться в растении, не образуя углекислого газа; кислорода будет поглощать­ся больше, и дыхательный коэффициент опустится до величины меньше единицы.

Таким образом, определяя дыхательный коэффициент, можно получить представление о качественной направленности дыхания, о субстратах и продуктах этого процесса.

Зависимость дыхания от экологических факторов.

Дыхание и температура

Как и другие физиологические процессы, интенсивность дыха­ния зависит от ряда экологических факторов, причем сильнее и

определеннее всего выражена температурная зависимость. Это обусловлено тем, что из всех физиологических процессов дыхание является наиболее "химическим", ферментативным. Связь же ак- , тивности ферментов с уровнем температуры неоспорима. Дыхание подчиняется правилу Вант-Гоффа и имеет температурный коэф­фициент (2ю 1,9 - 2,5.

Температурная зависимость дыхания выражается одновершин­ной кривой (биологической) с тремя кардинальными точками. Точ­ка (зона) минимума различна у разных растений. У холодоустойчивых она определяется температурой замерзания рас­тительной ткани, так что у незамерзающих частей хвойных ды­хание обнаруживается при температуре до -25 °С. У теплолюбивых растений точка минимума лежит выше нуля и оп­ределяется температурой отмирания растений. Точка (зона) опти­мума дыхания лежит в интервале от 25 до 35 °С, т. е. несколько выше, чем оптимум для фотосинтеза. У различных по степени теплолюбивости растений ее положение также несколько изменя­ется: она лежит выше у теплолюбивых и ниже у холодоустойчивых. Максимальная температура дыхания находится в интервале от 45 до 53 °С.> Эта точка определяется отмиранием клеток и разруше­нием цитоплазмы, ибо клетка дышит, пока жива. Таким образом, температурная кривая дыхания подобна кривой фотосинтеза, но не повторяет ее. Различие между ними заключается в том, что- кривая дыхания охватывает более широкий температурный диапа­зон, чем кривая фотосинтеза, а оптимум ее несколько смещен в сторону повышенйой температуры.

Сильное действие на интенсивность дыхания оказывают коле­бания температуры. Резкие переходы ее от высокой к низкой и обратно значительно усиливают дыхание, что было, установлено* еще В. И. Палладиным в 1899 г.

При колебаниях температуры происходят не только количест­венные, но и качественные изменения дыхания, т. е. изменение путей окисления органического вещества, однако в настоящее вре­мя они исследованьг слабо, поэтому здесь не излагаются.

У растений выделяют два пути окисления дыхательного субстрата: гликолиз и пентозофосфатный путь.

Гликолиз – это анаэробный процесс, происходящий в цитоплазме. С биологической оценки гликолиз весьма примитивный процесс, возникший до появления кислорода в атмосфере Земли и формирования клеточных органелл.

В сложной цепи гликолитического распада углеводов можно выделить два звена (9 реакций):

В первом звене – потребляется энергия АТФ; во втором – происходит разрыв шестиуглеродных соединений (фруктоза-1.6 дифосфат) с образованием триоз; в третьем, происходит запасание (выделение) энергии. Гидролизу подвергается не свободная молекула гликолиза, а активированная за счет АТФ. Такая активация именуется фосфорилированием.

В результате фосфорилирования образуется глюкозо-6-фосфат. Дальнейшее активирование гексозы достигается путем превращения глюкозо-6 фосфата во фруктозо-6 фосфат. На следующем этапе происходит присоединение к фруктозо-6 фосфату еще одного остатка фосфорной кислоты. Донором фосфорной кислоты и энергии необходимой для образования эфира служит молекула АТФ. Реакции переноса катализируются ферментом фосфогексокеназой. Результатом этой реакции является образование фруктозо-1.6-дифосфат.

Во втором звене: образовавшаяся молекула фруктозо-1.6-дифосфата разрывается на 3-фосфоглицериновый альдегид и *. Реакция разрыва катализируется ферментом альдолазой.

Дальнейшее участие в процессах гликолитического распада принимают только фосфоглицериновый альдегид. Фосфодиоксиацетон полностью преобразуется в фосфоглицериновый альдегид. Фосфоглицериновый альдегид окисляется с образованием 1.3дифосфоглицериновой кислоты.

В третьем звене: образовавшаяся 1.3дифосфоглицериновая кислота вступает в ферментативную реакцию с АДФ. В результате одна из её фосфорных групп переносится на АДФ с образованием АТФ и 3-фосфоглицериновой кислоты.

Образование АТФ в цитоплазме в ходе ферментативных реакций называется субстратным фосфорилированием. 3ФГК превращается с помощью фермента * в 2ФГК. 2ФГК с помощью фермента энолазы превращается в 2 фосфоэнолпировиноградную кислоту.

При отнятии фосфорного остатка от ФСПВК образуется енолПВК, который в силу своей неустойчивости спонтанно превращается в кетокислоту ПВК.

Образование ПВК подвергается дальнейшему расщеплению как анаэробному так и аэробному в цикле ди- и трикарбоновых кислот. Анаэробное расщепление, т.е. без участия О 2 , ПВК может происходить по типу спиртового брожения или по типу молочнокислого брожения. При спиртовом брожении образуется этиловый спирт и СО 2 . Для мясистых сочных плодов спиртовое брожение является нормальным физиологическим процессом. Для целого растения или же для коневой системы длительное пребывание в условиях недостаточной аэрации, спиртовое брожение оказывает вредное действие, приводя к гибели.


Почему? Потому, что брожение сопровождается выделением небольшого количества энергии, которой недостаточно, чтобы длительно поддерживать жизнь, а накопление спирта приводит к отравлению организма. Анаэробное дыхание по типу брожения проявляется в условиях затопления.

В аэробных условиях ПВК в митохондриях окисляется полностью до СО 2 и Н 2 О. Это окисление как установлено английским биохимиком Кребсом, проходит последовательно ступенчато с образованием ди- и трикарбоновых кислот. Цикл Кребса можно разделить на три части.

В первой части происходит окисление ПВК до уксксной кислоты с образованием Ацетил КоА и ыделением СО 2 .

Вторая часть цикла начинается с реакции между ЩУК и Ацетил КоА, которая приводит к синтезу лимонной кислоты. Лимонная кислота в дальнейшем через ряд промежуточных соединений (изолимонную) превращается в щавелево-янтарную. Щавелево-янтарная подвергается декарбоксилированию в результате выделяется СО 2 и образуется Х-кетоглутаровая кислота. Х-кетоглутаровая вновь декарбоксилируется – выделяется СО 2 и образуется янтарная кислота. В этой части цикла уксусная кислота окисляется полностью (по выделению СО2) и на этом заканчивается окисление ПВК.

Третья часть цикла представляет собой взаимное превращение двуосновных кислот с 4 атомами углерода - янтарная → фумаровая → яблочная → и заканчивается регенерацией ЩУК.

Непосредственно в цикле Кребса АТФ не синтезируется, исключая субстратное фосфорилирование Х-кетоглутаровой кислоты, но в цикле возникают пять молекул восстановленных нуклеотидов:

1. при лкислительном декарбоксилировании ПВК;

2. при дегидрировании изолимонной кислоты;

3. при окислении кетоглутаровой кислоты;

4. при окислении янтарной кислоты;

5. при окислении яблочной кислоты.

Каждая пара водородных атомов (Н + , е -) после отщепления проходит путь от субстрата к кислороду через ряд переносчиков, локализованных во внутренней мембране митохондрий. С переносом электронов по ЭТЦ сопряж6ен и синтез АТФ. Процесс образования АТФ, сопряженный с переносом электронов по ЭТЦ митохондрий получил название окислительного фосфорилирования. В конце цепи электроны захватываются кислородом и объединяются с протонами (ионом воздуха) с образованием молекулы воды.

Каков энергетический выход при окислении глюкозы? В процессе дыхания при функционировании гликолиза (субстратное фосфорилирование: 8 молекул АТФ) и цикла Кребса (окислительное фосфорилирование дает 30 молекул АТФ) образуется 38 молекул АТФ. Эффективность использования энергии через гликолиз и цикл Кребса составляет КПД=1596/2721*100%=58,6%.

В клетках растений наряду с гликолизом и циклом Кребса существует и другой путь окисления углеводов – пентозофосфатный. Окисление глюкозы в этом цикле связано с отщеплением первого (альдегидного) атома углерода в виде СО 2 . Исходным продуктом в пентозофосфатном цикле является глюкозо-6фосфат, который далее окисляется в 6-фосфоглюконовую кислоту.

В пентозофосфатном цикле АТФ используется для образования исходного продукта: для фосфорилирования глюкозо-6фосфата. Все реакции пентозофосфатного пути протекают в растворимой части цитоплазмы клеток, а также в протопластидах и хлоропластах. Ни в одной реакции этого цикла АТФ не образуется, но этот цикл является поставщиком водорода для ЭТЦ дыхания. Донором водорода для ЭТЦ дыхание служит НАДН. Энергетический выход ПФП составляет 36 молекул АТФ. Основное назначение ПФП состоит в участии не столько в энергетическом, сколько в пластическом обмене. Пентозофосфатный путь имеет большое значение как источник образования углеводов с различным числом углеродных атомов в цепи – от С 3 до С 7 . ПФП служит основным внехлоропластным и внемитохондриальным источником НАДФН, который необходим для синтеза жирных кислот.

Биологическая роль пентоз, необходимых для синтеза нуклеотидов, т.е. для синтеза рибозы и дезоксирибозы. Сдвиг в сторону пентозофосфатного пути происходит в тех случаях, когда клетке требуется большие количества пятиуглеродных сахаров и когда в качестве источника энергии для синтеза используется не НАДН, а НАДФН.

2. Из предложенных ниже ученых положение (теорию) о генетической

3. Наиболее традиционными субстратами дыхания у растений являются…

углеводы;

нуклеиновые кислоты.

4. Реакции гликолиза протекают в…

цитоплазме;

хлоропластах;

митохондриях;

рибосомах.

5. Синтез молекул АТФ протекает…

на плазмалемме;

в рибосомах;

на тонопласте;

в митохондриях.

6. Гликолизом называется…

совокупность всех процессов

кислородное расщепление глю-

энергетического обмена;

бескислородное расщепление

расщепление полисахаридов до

моносахаридов.

7. При гликолизе одна молекула глюкозы расщепляется до…

двух молекул пировиноградной

углекислого газа и воды;

молекулы этилового спирта;

молекулы масляной кислоты.

8. В процессе расщепления одной молекулы глюкозы до углекислого

9. Кислородное расщепление по сравнению с бескислородным в энергетическом плане…

так же эффективно;

примерно в 5 раз эффективнее;

примерно в 2 раза эффективнее;

почти в 20 раз эффективнее.

10. При расщеплении углеводов наибольшее количество АТФ синтезируется…

11. При расщеплении одной молекулы глюкозы до пировиноградной кислоты дополнительно образуется в клетке…

12. Фосфорилирование – это процесс переноса электронов по дыхательной цепи, идущий с образованием…

фосфатов;

13. Наибольшее количество энергии освобождается при окислении…

углеводов;

витаминов.

14. Процесс биологического окисления происходит в…

лизосомах;

пероксисомах;

митохондриях;

комплексе Гольджи.

15. В ходе гликолиза образуется…

ацетил-коэнзим А;

углекислый газ и вода;

Минеральное питание

Ван Гельмонт;

Ж.Б. Буссенго;

А.Т. Болотов.

2. Теория минерального питания сформулирована…

Н. Соссюром;

И. Кнопом;

Ю. Либихом;

Ю. Саксом.

3. Аммонификаторы – это…

ферменты, аминирующие орга-

микроорганизмы, фиксирующие

нические кислоты;

азот в аммонийной форме;

2) микроорганизмы, разлагающие 4) растения, предпочитающие пиорганические вещества почвы с тание аммонийным азотом. выделением аммиака;

4. Условная граница между макроэлементами и микроэлементами опре-

5. Восстановление нитритов до аммония в клетке осуществляется ферментом…

нитрогеназой;

нитритредуктазой;

нитрозаминотрансферазой;

нитратредуктазой.

6. Закон минимума Ю. Либиха определяет тем, что…

растениям достаточно мини-

3) в результате хозяйственной дея-

мального набора элементов пита-

минерального питания стремится к

минимуму;

урожай в первую очередь зави-

внесение

минимального коли-

сит от элемента питания, содержа-

максимальный

ние которого минимально в почве;

рост урожая.

7. Почвенный поглощающий комплекс – это…

сообщество микроорганизмов,

подземная часть растений, ак-

ассоциированных с корнями рас-

тивно поглощающая воду и эле-

менты питания;

частицы почвы, механические и

полимерные добавки к удобре-

физико-химически удерживающие

снижающие

подвижность

ионы элементов

минерального

элементов мембран.

8. Денитрификаторы – это…

микроорганизмы,

восстанавли-

растения, предпочитающие

вающие нитраты до молекулярно-

нитратный азот;

го азота;

ферменты, восстанавливающие

ферменты-переносчики, одно-

нитраты в растениях;

временно

восстанавливающие

нитраты и транспортирующие азот

10. При симбиотической азотофиксации источником энергии для расщепления молекул азота служит…

11. Восстановление нитратов до аммония в растениях осуществляется…

нитрогеназой;

биферментым комплексом нит-

ратредуктазы и нитритредуктазы;

нитритредуктазой;

нитратредуктазой.

12. Симптомом азотного голодания растений является…

бледная окраска всей поверхно-

отсутствие пазушных почек;

сти листа;

потемнение /ожог/ краев листо-

уродливое развитие генератив-

вой пластинки;

ных частей растений.

13. Симптомом фосфорного голодания растений является…

синевато-зеленая окраска всей

нарушение структуры проводя-

листовой пластинки;

щих пучков листьев;

упрощение

формы листьев

деструкция митохондрий.

/ювенилизация/;

14. Калий является…

абсолютно

незаменимым эле-

может частично заменяться од-

ментом питания;

новалентными катионами первой

группы элементов таблицы Мен-

частично может заменяться ор-

4) может заменяться только натри-

ганическими катионами;

ем у солончаковых растений.

15. Признаком недостатка калия является…

1) резкое уменьшение

размеров

опускание листьев;

молодых листьев;

2) пожелтение листьев

усыхание точек роста.

/ржавые пятна/;

16. Физиологическая роль магния обусловлена следующим…

1) входит в состав каротиноидов;

активирует ряд ферментов;

2) поддерживает структуру рибо-

инактивирует некоторые инги-

сом, вызывая ассоциацию их субе-

биторы ферментативных реакций.

17. В состав каталитических центров многих окислительновосстановительных ферментов (цитохромов, каталазы, пероксидазы) входит…

18. В состав каталитических центров полифенолоксидазы и аскорбаток-

19. Кобальт входит в состав витамина В12 , который необходим для осуществления процесса фиксации молекулярного азота. Наиболее чувствительным к недостатку кобальта является…

Рост и развитие

ИУК в концентрации больше,

4) только гиббереллины.

чем концентрация цитокининов;

2. Какие этапы включает в себя онтогенез высших растений?

эмбриональный,

ювенильный

3) эмбриональный этап, фазы по-

этапы и этап старости;

коя, этапы зрелости и старости;

эмбриональный,

ювенильный

4) фазу покоя, этап зрелости и ста-

этапы, этапы зрелости и старости;

На каком этапе развития растение обладает максимальной способно-

стью к вегетативному размножению?

на стадии покоя семян;

на репродуктивном этапе разви-

на ювенильном этапе развития;

на этапе старости и отмирания.

4. Каким способом проявляться апикальное доминирование?

полным подавлением апикаль-

изменением угла, под которым

ной меристемы развития боковых

боковые побеги отходят от основ-

меристем;

снижением скорости ростовых

подавлением боковыми мери-

процессов в боковых меристемах;

стемами развития апикальной ме-

5. Какой гормон обеспечивает рост и развитие растения?

цитокинин;

гиббереллин;

абсцизовая кислота.

6. Какой гормон обеспечивает старение и созревание плодов?

абсцизовая кислота;

гиббереллин;

7. Какой гормон является гормоном стресса у растений?

цитокинин;

гиббереллин;

абсцизовая кислота.

8. Как называются необратимые ростовые движения растений, вызванные односторонне действующим фактором?

настиями;

тропизмами;

нутациями;

таксисами.

9. Какое событие в зоне роста корня или стебля, согласно теории Хо- лодного-Вента, является первичным?

10. Как называются ритмы растений с периодом около суток, имеющие эндогенную природу?

11. Какие причины лежат в основе резкого ослабления темпов роста у растений при недостатке воды?

12. Какие из перечисленных признаков характерны для этиолированных

13. К какому типу тропизмов относится движение поднимающейся после полегания соломины пшеницы?

геотропизм;

хемотропизм;

фототропизм;

гидротропизм.

14. Какие факторы внешней среды являются основными при переходе

цветут в конце лета;

4) цветут в начале осени.

Устойчивость растений к неблагоприятным условиям среды

1. Какой признак характеризует холодоустойчивость растений?

способность переносить поло-

3) способность переносить низкие

жительные температуры;

отрицательные температуры;

способность переносить низкие

4) способность переносить

положительные температуры;

комплекс неблагоприятных

2. Какова причина гибели теплолюбивых растений при низких положительных температурах?

3. Каковы причины гибели растений при низких отрицательных темпе-

замерзающий клеточный сок

отрицательные

температуры

расширяется в объеме;

вызывают коагуляцию белков ци-

топлазмы;

разрываются сосуды и клетки

острые грани кристаллов льда

растений;

вызывают

механическое повре-

ждение цитоплазмы и ее гибель.

4. Какова физиологическая причина гибели растений от вымокания?

потеря большого

количества

отравление этиловым спиртом,

накапливающимся в

анаэробных

условиях;

истощение запасов

углеводов

в результате

вследствие интенсивного дыхания;

вспучивания почвы

образующи-

мися в ней кусками льда.

5. Какой тип засоления почв особенно опасен для растения?

сульфатное;

хлоридное;

смешанное.

6. Какие признаки отличают галофитов от гликофитов?

высокая продуктивность;

высокая интенсивность транс-

высокая интенсивность обмена;

низкая интенсивность транспи-

7. Каковы причины вредного влияния солей на растения?

в растениях накапливаются ядо-

ионы натрия не конкурируют с

витые продукты обмена;

другими ионами;

нарушается структура клеточ-

поступающие в клетку соли

ных органоидов и цитоплазмы;

понижают водный потенциал, что

вредно сказывается на ее жизнеде-

ятельности.

8. Какие культурные растения более солеустойчивые?

сахарная свекла;

9. Почему применение удобрений способствует более успешному пере-

10. Какие признаки характерны для растений, выросших из семян, обработанных в течение часа 3%-м раствором хлорида натрия?

9. КРАТКИЕ СВЕДЕНИЯ О СТАНОВЛЕНИИ ФИЗИОЛОГИИ РАСТЕНИЙ И ОБ УЧЕНЫХ ФИЗИОЛОГАХ

Физиология растений первоначально развивалась как составная часть ботаники. Начало экспериментальной физиологии растений было положено опытами голландского естествоиспытателя Яна Ван Гельмонта. В 1629 г. он провел первый физиологический эксперимент, изучая питание растений. В глиняный сосуд поместил почву весом 91 кг и посадил в него ветку ивы, вес которой составлял 2,25 кг и регулярно поливал ее дождевой водой. Через 5 лет отдельно взвесил почву и ветку. Оказалось, что ива весила 77 кг, а вес почвы уменьшился всего на 56,6 г. На основании данного опыта Гельмонт сделал вывод о том, что масса растения состоит из воды. Так возникла водная теория питания.

Этапы дальнейшего развития физиологии растений были связаны с открытием фотосинтеза. В 1771 г. Джозеф Пристли обнаружил, что растения мяты, помещенные в сосуд, исправляют в нем воздух, испорченный горением свечи.

Швейцарский ботаник Жан Сенебье в 1800 г. опубликовал трактат «Физиология растений», в котором впервые определил предмет и задачи физиологии растений как самостоятельной науки и дал название этой науке.

Также основные этапы развития физиологии растений связаны с изучением ростовых движений – тропизмов (Ч. Дарвин), разработкой теории минерального питания (Ю. Либих, Ж.Б. Буссенго).

В конце XIX – начале XX вв. началось интенсивное изучение механизмов дыхания растений (В.И. Палладин, А.Н. Бах).

Основателями отечественной физиологии растений являются Андрей Сергеевич Фаминцын и Климент Аркадьевич Тимирязев. Исследования А.С. Фаминцына посвящены обмену веществ и энергии у растений. Он является автором первого отечественного учебника по физиологии растений (1887 г.). Основные исследования К.А. Тимирязева по физиологии растений посвящены процессу фотосинтеза.

В 1934 г. в системе Академии наук СССР был создан Институт физиологии растений, которому в 1936 г. присвоено имя К.А. Тимирязева. Это учреждение сыграло большую роль в развитии отечественной физиологии растений. С ним связаны имена таких известных ученых, как Анатолий Александрович Ничипорович – основные труды по физиологии фотосинтеза, теории фотосинтетической продуктивности растений

и ее применение в сельском хозяйстве; Михаил Христофорович Чайлахян – автор гормональной теории развития растений (1937 г.); Раиса

Вопрос о веществах, используемых в процессе дыхания, издавна занимал фи­зиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсив­ность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении данного вопроса большое значение имеет определение дыхательного коэффи­циента. Дыхательный коэффициент (ДК) - это объемное или молярное отно­шение СО 2 , выделившегося в процессе дыхания, к поглощенному за этот же про­межуток времени О 2 . При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то про­цесс идет согласно уравнению С 6 Н 12 О 6 +6О 2 → 6СО 2 + 6Н 2 О. В этом случае ДК равен единице: 6СО 2 /6О 2 = 1. Однако если разложению в процессе дыхания под­вергаются более окисленные соединения, например органические кислоты, по­глощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше едини­цы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэф­фициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке угле­водов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного пита­тельного вещества содержатся жиры или белки. В этом случае дыхательный ко­эффициент становится меньше единицы. При использовании в качестве дыха­тельного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

Существуют две основные системы и два основных пути превращения дыхатель­ного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); 2) пентозофосфатный (апотомтеский). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Расти­тельный организм не имеет приспособлений к регуляции температуры, поэтому

В процесс дыхания осуществляется при температуре от -50 до +50°С. Нет при­способлений у растений и к поддержанию равномерного распределения кисло­рода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разно­образных путей дыхательного обмена и к еще большему разнообразию фер­ментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути ды­хательного обмена приводит к глубоким изменениям во всем метаболизме рас­тений.

Дыхание растений
План лекции

1. Общая характеристика процесса дыхания.

2. Строение и функции митохондрий.

3. Структура и функции аденилатной системы.

4. Субстраты дыхания и дыхательный коэффициент.

5. Пути дыхательного обмена

1. Общая характеристика процесса дыхания.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается, - это дыхание и брожение .

Дыхание – это окислительно-восстановительный процесс в результате которого углеводы окисляются до углекислого газа, кислород восстанавливается до воды, а выделившаяся энергия преобразуется в энергию связей АТФ.

Брожение – это анаэробный процесс распада сложных органических соединений на более простые органические вещества, также сопровождаемый выделением энергии. При брожении степень окисления соединений, принимающих в нем участие, не меняется. В случае дыхания акцептором электрона служит кислород, в случае брожения – органические соединения.

Чаще всего реакции дыхательного обмена рассматривают на примере окислительного распада углеводов.

Суммарное уравнение реакции окисления углеводов при дыхании можно представить следующим образом:

С6 Н12 О6 + 6О2 → 6СО2 + 6 Н2 О + ~ 2874 кДж

2. Строение и функции митохондрий.

Митохондрии – цитоплазматические органеллы, которые являются центрами внутриклеточного окисления (дыхания). Они содержат ферменты цикла Кребса, дыхательной цепи переноса электронов, окислительного фосфорилирования и многие другие.

Митохондрии на 2/3 состоят из белка и на 1/3 из липидов, среди которых половина приходится на фосфолипиды.

Функции митохондрий:

1. Осуществляют химические реакции, являющиеся источником электронов.

2. Переносят электроны по цепи компонентов, синтезирующих АТФ.

3. Катализируют синтетические реакции, идущие с использованием энергии АТФ.

4. Регулируют биохимические процессы в цитоплазме.

3. Структура и функции аденилатной системы.

Обмен веществ, происходящий в живых организмах, состоит из множества реакций, идущих как с потреблением энергии, так и с ее выделением. В некоторых случаях эти реакции взаимосвязаны. Однако чаще всего процессы, в которых энергия выделяется, отделены в пространстве и во времени от тех, в которых она потребляется. В связи с этим у всех живых организмов выработались механизмы хранения энергии в форме соединений, обладающих макроэргическими (богатыми энергией) связями. Центральное место в энергообмене клеток всех типов принадлежит аденилатной системе. Эта система включает аденозинтрифосфорную кислоту (АТФ), аденозиндифосфорную кислоту (АДФ), - 5-монофосфат аденозина (АМФ), неорганический фосфат (Р i ) и ионы магния.

4. Субстраты дыхания и дыхательный коэффициент

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении этого вопроса большое значение имеет определение дыхательного коэффициента.

Дыхательный коэффициент (ДК) – это объемное или молярное отношение углекислого газа (СО2), выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени кислороду (О2). Дыхательный коэффициент показывает, за счет каких продуктов осуществляется дыхание.

В качестве дыхательного материала в растениях, кроме углеводов, могут использоваться жиры, белки и аминокислоты, органические кислоты.

5. Пути дыхательного обмена

Необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена.

Существуют два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) Гликолиз + цикл Кребса (гликолитический)

2) пентозофосфатный (апотомический)

Гликолитический путь дыхательного обмена

Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз.

Первая фаза – анаэробная (гликолиз), локализована в цитоплазме.

Вторая фаза – аэробная , локализована в митохондриях.

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты (ПВК):

С6 Н12 О6 → 2 С3 Н4 О3 + 2Н2

Вторая фаза дыхания – аэробная - требует присутствия кислорода. В эту фазу вступает пировиноградная кислота. Общее уравнение этого процесса можно представить так:

2ПВК + 5 О2 + Н2 О → 6СО2 + 5Н2 О

Энергетический баланс процесса дыхания.

В результате гликолиза глюкоза распадается на две молекулы ПВК и накапливаются две молекулы АТФ, также образуются две молекулы НАДН2, вступая в ЭТЦ дыхания они высвобождают шесть молекул АТФ. В аэробной фазе дыхания образуется 30 молекул АТФ.

Таким образом: 2АТФ + 6 АТФ + 30 АТФ = 38 АТФ

Пентозофосфатный путь дыхательного обмена

Существует еще не менее распространенный путь окисления глюкозы – пентозофосфатный. Это анаэробное окисление глюкозы, которое сопровождается выделением углекислого газа СО2 и образованием молекул НАДФН2 .

Цикл состоит из 12 реакций, в которых участвуют только фосфорные эфиры сахаров.