» » Клеточный конвейер при синтезе белка. Структуры, формируемые плазмолеммой. Работает как «рибозим»

Клеточный конвейер при синтезе белка. Структуры, формируемые плазмолеммой. Работает как «рибозим»
  1. 1. ЦЕЛЬ ЗАНЯТИЯ: изучить строение интерфазного ядра в фиксированных препаратах. Рассмотреть особенности строения ядер клеток с различной функ- циональной активностью. Основными компонентами ядра являются: ядерная оболочка (кариолемма),хроматин, ядрышко, ядерный сок. При световой микроскопии ядерная оболочка представляет четкую, очер- ченную со стороны ядра и цитоплазмы линию. При рассмотрении схемы ультрамикроскопического строения ядра следует обратить внимание на особенности строения кариолеммы, на связь ее мембран с эндоплазма- тической сетью цитоплазмы. Разобраться в морфологической харак- теристике хроматина и его химическом составе. Хроматин в ядре может находиться в виде глыбок –конденсированный хроматин или быть рас- пыленным – дисперсный хроматин. Разное состояние хроматина явля- ется показателем биосинтетической активности клетки. Клетки, активно синтезирующие белок имеют ядро с дисперсным хроматином и хорошо развитым ядрышком. В ядрах клеток, не синтезирующих белок, хроматин конденсированный, ядрышки плохо заметны.
  2. 2. Контрольные вопросы: 1. Ядро. Понятие об интерфазном ядре. Структурные компоненты ядра по данным световой и электронной микроскопии: ядерная оболочка, хроматин, ядрышко, ядерный сок. Значение и функции ядра в жизнедеятельности клетки. 2. Ядерно-цитоплазматические соотношения в клетках с различным уровнем метаболизма. 3. Структура ядерной оболочки при СМ и ЭМ. Молекулярная организация и функциональное значение ядерной ламины. 4. Ядерная пора и ядерный поровый комплекс. Участие в ядерном импорте и экспорте веществ. 5. Хроматин интерфазного ядра. Эухроматин и гетерохроматин. Хроматин, как показатель биосинтетической активности клетки. 6. Молекулярная организация ДНК в хромосомах. Уровни укладки хроматина. Роль гистоновых белков в обеспечении структуры хроматина и реализации генетической информации. 7. Ядрышко. Структура ядрышка при СМ и ЭМ. Основные компоненты ядрышка. Роль ядрышка в синтезе рРНК и образовании рибосом. 8. Синтез и транспорт биополимеров в клетке. Клеточный конвейер при синтезе белка. Морфологическая характеристика клетки, синтезирующей белки. 9. Клеточный конвейер при синтезе углеводов и липидов. Морфологическая характеристика клетки, синтезирующей углеводы и липиды.
  3. 3. Препарат 1 . Структуры ядра. Яичник. Окраска гематоксилин- эозином. Под малым увеличением сделать общий обзор микропрепарата,найти рас- тущий фолликул с яйцеклеткой. Под большим увеличением найти крупную округлую клетку – яйцеклетку и рассмотреть структуру ядра. Обратить вни- мание на ядерную оболочку, ядрышко, состояние хроматина. Нарисовать яйцеклетку и обозначить структуры интерфазного ядра. Изучить электрон- нограмму ядра. Зарисовать строение кариолеммы и ядерного порового комплекса.
  4. 4. Препарат 1 . Структуры ядра. Яичник. Яйцеклетка. Окраска гематоксилин-эозином
  5. 5. Препарат 2. Поджелудочная железа. Окраска гематоксилин- эозином. Клетка, синтезирующая белок. Под малым увеличением сделать общий обзор микропрепарата и найти экзокринную часть поджелудочной железы. Под большим увеличением рассмотреть одну клетку, обратив внимание на наличие в ядре ядрышка и эухроматина, отметить базофилию цитоплазмы в базальной части клетки и оксифилию в апикальной.
  6. 6. Препарат 2. Поджелудочная железа. Окраска гематоксилин-эозином. Клетки, синтезирующие белки
  7. 7. Препарат 3. Печень. Гликоген в клетках печени. ШИК-реакция. Клетка, синтезирующая углеводы. Под малым увеличением сделать общий обзор микропрепарата и найти группу гепатоцитов. Под большим увеличением рассмотреть в цитоплазме гепатоцита глыбки гликогена красно-фиолетового цвета.
  8. 8. Препарат 3. Печень. Гликоген в клетках печени. ШИК-реакция. Клетка, синтезирующая углеводы.
  9. 9. Препарат 4. Липидные включения в клетках печени. Окраска осмиевой кислотой. Клетка, синтезирующая липиды. Под малым увеличением сделать общий обзор микропрепарата и найти группу гепатоцитов. Под большим увеличением рассмотреть цитоплазму гепатоцита, обратив внимание на капли липидов,окрашенные в черный цвет.
  10. 10. Препарат 4. Липидные включения в клетках печени. Окраска осмиевой кислотой. Клетки, синтезирующие липиды.

Механизм синтеза небелковых веществ

Ядрышко

Это плотная гранула диаметром 1-3 мкм, интенсивно окрашивающаяся основными красителями. Главным компонентом ядрышка является специализированный участок хромосом (петли), или организатор ядрышка. Такие участки имеются в пяти хромосомах: 13-й, 14-й, 15-й, 21-й и 22-й; именно здесь располагаются многочисленные копии генов, кодирующих рибосомальные РНК.

При ЭМ в ядрышке описывают 3 компонента :

1. Фибриллярный компонент - множество тонких (5-8 нм) нитей, с преимущественной локализацией во внутренней части ядрышка. Это первичные транскрипты р-РНК.

2. Гранулярный компонент – это скопление плотных частиц диаметром 10-20 нм, они соответствуют наиболее зрелым предшественникам субьединиц рибосом.

3. Аморфный компонент – это зона расположения ядрышковых организаторов, очень бледно окрашенная зона. Здесь крупные петли ДНК, участвующие в транскрипции рибосомальной РНК, а так же белки, специфически связывающиеся с РНК. Гранулы и фибриллы формируют ядрышковую нить (нуклеолонему) , толщиной 60-80 нм. Поскольку ядрышко окружено хроматином, то он получает название перинуклеарный хроматин , а его часть, проникающая внутрь ядрышка – этоинтрануклеолярный хроматин.

Клеточный конвейер – это сборка секреторного продукта на живой конвейерной ленте при участии различных клеточных органелл. При этом процесс сборки слагается из ряда этапов, происходящих в определенной последовательности на участках клетки, достаточно далеко удаленных от места непосредственного действия нуклеиновых кислот, осуществляющих генетический контроль.

Клеточный конвейер при синтезе белка предусматривает обычную последовательность процессов, изложенную в разделе описания гранулярной эндоплазматической сети. Здесь уместно представить механизм синтеза небелковых веществ.

1. Транскрипция ДНК с образованием м-РНК

2. Образование в зоне ядрышка рибосомальной РНК

3. Сборка в зоне ядра предшественника рибосом

4. Поступление большой и малой субьединиц рибосом в цитоплазму

5. Синтез на свободных рибосомах ферментов для биосинтеза небелковых веществ (углеводов и липидов)

6. Поступление ферментов в гиалоплазму или гладкую ЭПС, где происходит синтез углеводов или липидов

7. Поступление этих веществ в комплекс Гольджи, формирование секреторной гранулы с выделением из клетки или сохранением веществ внутри клетки

Таким образом, липиды и углеводы синтезируются в цитоплазме и гладкой ЭПС, упаковываются в КГ с эффектом (“ минус- мембрана”).

Ферменты, принимающие участие в биосинтезе этих липидов – это интегральные мембранные белки, каталитические участки которых обращены в цитозоль. Синтез происходит с помощью нескольких ферментативных реакций. Новые липиды свободно диффундируют в плоскости бислоя и быстро смешиваются с липидами наружного слоя мембраны. Кроме того, фермент флиппаза может перемещать вновь синтезированные липиды во внутренний слой мембраны. Так происходит быстрое смешивание глицерофосфолипидов.

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковые вещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белки обладают необычайно высокой реакционной способностью. Они наделены каталитическими функциями, т. е. являются ферментами, поэтому белки определяют направление, скорость и теснейшую согласованность, сопряженность всех реакций обмена веществ.

Рис. 13 А. Схема синтеза белка в эукариотной клетке.

Рис. 13 Б. Схема синтеза белка в прокариотной клетке.

Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химических функций, с исключительной способностью к различным превращениям и взаимодействиям с другими простыми и сложными веществами, входящими в состав цитоплазмы.

Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

Процесс синтеза белка является очень сложным многоступенчатым процессом. Совершаем ся он в специальных органеллах - рибосомах. В клетке содержится большое количество рибосом. Например, у кишечной палочки их около 20000.

Каким образом происходит синтез белка в рибосомах?

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов. Причем каждая аминокислота имеет свой, специфически настроенный на нее фермент.

Источником энергии для этого (как и для многих процессов в клетке) служит аденозинтрифосфат (АТФ).

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК.

Важным является то, что каждой аминокислоте соответствует строго специфическая т-РНК. Она находит «свою» аминокислоту и переносит ее в рибосому. Поэтому такая РНК и получила название транспортной.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот (рис. 13 Аи Б).

Возникает вопрос: от чего зависит порядок связывания между собой отдельных аминокислот? Ведь именно этот порядок и определяет, какой белок будет синтезирован в рибосоме, так как от порядка расположения аминокислот в белке зависит его специфика. В клетке содержится более 2000 различных по строению и свойствам специфических белков.

Оказывается, что одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок, тот или иной фермент (так как ферменты являются белками).

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника, той формы РНК, которая получила название матричной или информационной РНК (м-РНК или и-РНК).

Информационная РНК синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК.

Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула информационной РНК поступает в рибосому и как бы прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный ко доном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту. Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так далее, до тех пор пока не будет считана вся цепочка и-РНК и пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы. Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации: синтез на ДНК как на матрице и-РНК (транскрипция) и синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция), универсальны для всех живых существ. Однако временные и пространственные взаимоотношения этих процессов различаются у прои эукариотов.

У организмов, обладающих настоящим ядром (животные, растения), транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану (рис. 13 А). Затем в цитоплазме РНК транспортируются к месту синтеза белка - рибосомам. Лишь после этого наступает следующий этап - трансляция.

У бактерий, ядерное вещество которых не отделено от цитоплазмы мембраной, транскрипция и трансляция идут одновременно (рис. 13 Б).

Современные схемы, иллюстрирующие работу генов, построены на основании логического анализа экспериментальных данных, полученных с помощью биохимических и генетических методов. Применение тонких электронно-микроскопических методов позволяет в буквальном смысле слова увидеть работу наследственного аппарата клетки. В последнее время получены электронно-микроскопические снимки, на которых видно, как на матрице бактериальной ДНК, в тех участках, где к ДНК прикреплены молекулы РНК-полимеразы (фермента, катализирующего транскрипцию ДНК в РНК), происходит синтез молекул и-РНК. Нити и-РНК, расположенные перпендикулярно к линейной молекуле ДНК, продвигаются вдоль матрицы и увеличиваются в длине. По мере удлинения нитей РНК к ним присоединяются рибосомы, которые, продвигаясь, в свою очередь, вдоль нити РНК по направлению к ДНК, ведут синтез белка.

Из всего сказанного следует, что местом синтеза белков и всех ферментов в клетке являются рибосомы. Образно выражаясь, это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа же синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

4. Мембранные белки, связанные с углеводами.

Периферические белки – белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин

2. Фибронектин,

Белки –

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

Ионные каналы

аквопорины (эритроциты, почка, глаз).

Надмембранный компонент

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

(адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент

Структуры, формируемые плазмолеммой

Контуры клетки, даже на светооптическом уровне, не представляются ровными и гладкими, а электронная микроскопия позволила обнаружить и описать в клетке различные структуры, которые отражают характер ее функциональной специализации. Различают следующие структуры:

1. Микроворсинки – выпячивание цитоплазмы, покрытые плазмолеммой. Цитоскелет микроворсинки сформирован пучком актиновых микрофиламент, которые вплетаются в терминальную сеть апикальной части клеток (рис. 5). Единичные микроворсинки на светооптическом уровне не видны. При наличии значительного их числа (до 2000-3000) в апикальной части клетки уже при световой микроскопии различают “ щеточную каемку”.

2. Реснички – располагаются в апикальной зоне клетки и имеют две части (рис. 6) : а) наружную - аксонему

б) внутреннюю – безальное тельце

Аксонема состоит из комплекса микротрубочек (9 + 1 пары) и связанных с ними белков. Микротрубочки образованы белком тубулином, а ручки – белком динеином – эти белки в совокупности формируют тубулин-динеиновый хемомеханический преобразователь.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных у основания реснички и служит матрицей при организации аксонемы.

3. Базальный лабиринт – это глубокие инвагинации базальной плазмолеммы с лежащими между ними митохондриями. Это механизм активного всасывания воды, а так же ионов против градиента концентрации.

1. Транспорт низкомолекулярных соединений осуществляется тремя способами:

1. Простая диффузия

2. Облегченная диффузия

3. Активный транспорт

Простая диффузия – низкомолекулярные гидрофобные органические соединения (жирные кислоты, мочевина) и нейтральные молекулы (Н О, СО, О). С увеличением разности концентраций между отсеками, разделенными мембраной, растет и скорость диффузии.

Облегченная диффузия – вещество идет через мембрану также по направлению градиента концентрации, но с помощью транспортного белка – транслоказы. Это интегральные белки, обладающие специфичностью в отношении переносимых веществ. Это, например, анионные каналы (эритроцит), К - каналы (плазмолемма возбужденных клеток) и Са - каналы (саркоплазматический ретикулум). Транслоказа для Н О – это аквапорин.

Механизм действия транслоказы:

1. Наличие открытого гидрофильного канала для веществ определенного размера и заряда.

2. Канал открывается только при связывании специфического лиганда.

3. Канала нет как такового, а сама молекула транслоказы, связав лиганд, поворачивается в плоскости мембраны на 180 .

Активный транспорт – это транспорт с помощью такого же транспортного белка (транслоказы), но против градиента концентрации. Это перемещение требует затрат энергии.

Транспорт через мембраны высокомолекулярных соединений

Переход частиц через плазмолемму происходит всегда в составе мембранного пузырька: 1. Эндоцитоз : а. пиноцитоз, б. фагоцитоз, в. эндоцитоз, опосредованный рецепторами.

2. Экзоцитоз: а. секреция, б. экскреция, в. рекреция – это перенос твердых веществ через клетку, здесь сочетается фагоцитоз и экскреция.

Рецепторно-опосредованный эндоцитоз

1. Накопление лиганд-связывающих рецепторов в специфическом участке плазмалеммы – окаймленные ямки (один лиганд, один рецептор).

2. Поверхность ямки с цитозольной стороны покрыта аморфным плотным веществом –клатрином (этим путем попадают транспортные белки ЛНП, и белки, транспортирующие железо – трансферрин.

3. Образование окаймленного пузырька.

4. Слияние окаймленного пузырька с кислой эндосомой.

рис. Н эндосома

5. Судьба рецептора и лиганда определяется типом эндоцитоза.

а). Рецептор возвращается, лиганд разрушается.

рис. лизосома

б) Рецептор возвращается, лиганд возвращается.

рис. лизосома

в) Рецептор разрушается, лиганд разрушается.

рис. лизосома

г) Рецептор транспортируется, лиганд транспортируется.

рис. лизосома

Патология - Гиперхолестероломия

1. Повышение уровня ЛНП.

2. ЛНП не поглощаются клетками.

3. Уровень ЛНП в плазме.

4. Образуются атеросклеротические бляшки коронарных сосудов.

ЛЕКЦИЯ

ТЕМА “ ОРГАНЕЛЛЫ ОБЩЕГО ЗНАЧЕНИЯ “

Органеллы – это функциональные системы (аппараты) клетки. Выделяют следующие системы: 1 Синтетический аппарат

2. Энергетический аппарат

3. Аппарат внутриклеточного переваривания (эндосомальный – лизосомальный)

4. Цитоскелет

Гиалоплазма – это коллоидная система, которая составляет 55 % общего обьема клетки, в ней взвешены органеллы и включения, она содержит белки, полисахариды, нуклеиновые кислоты, ионы. Здесь происходит межуточный обмен.

Различают несколько видов эндоплазматической сети : 1. Шероховатая (гранулярная эндоплазматическая сеть) - ГЭС

2. Гладкая (агранулярная эндоплазматическая сеть) - АЭС

3. Промежуточная (система транспорта)

Гранулярная эндоплазматическая сеть – это система уплощенных цистерн, вакуолей и каналов, ограниченных мембранами, на поверхности которых располагаются рибосомы.

Рибосомы состоят из РНК и гистонов (1: 1), связаны с мембранами белком рибофорином. Значение: 1. Обьединяют в пространстве компоненты белка

2. Обеспечивают взаимное узнавание комплекса - рибосомальная РНК - тРНК

3. Предоставляют ферменты, катализирующие образование пептидных связей

Эндоплазматическая сеть – синтез белков, липидов и углеводов – посттрансляционные изменения.

Функции ГЭС : 1. Синтез мембранных белков

2. Синтез белков на экспорт

3. Начальные этапы гликозилирования

4. Посттрансляционные изменения

В процессе синтеза белка происходят изменения, обозначаемых следующими терминами:1. Инициация – это связывание м-РНК с рибосомами

2. Элонгация – удлинение пептидной цепи

3. Фолдинг – сворачивание пептидной цепи в правильную трехмерную структуру.

Светооптический аналог ГЭС – это феномен базофилии цитоплазмы, которая может проявляться в двух видах: а) диффузная окраска цитоплазмы,

б) наличие в клетке базофильно окрашенных глыбок и гранул.

При этом базофилия – это результат наличия на мембранах ГЭС рибосом, в состав которых входят остатки фосфорной кислоты (компонент триплета), который и инициирует отрицательный заряд, связывающий основный краситель (феномен базофилии).

Синтез белка : 1. Начинается синтезом на полисомах.

2. В результате взаимодействия и-РНК и рибосомы образуется сигнальный пептид (20-25 аминокислот).

3. Связывание сигнального пептида с рибонуклеопротеидным комплексом (СРЧ – сигнал-распознающая частица).

4. Это связывание прекращает синтез белка.

5. Связывание СРЧ со специфическим рецептором на мембране ЭПС (это так называемый причальный белок).

6. После связывания с рецептором мембраны СРЧ отделяется от полисом.

7. Происходит разблокирование синтеза белковой молекулы.

8. Интегральные белки-рецепторы – рибофорины- обеспечивают присоединение большой субьединицы рибосом.

9. В просвете ГЭПС сигнальный пептид отщепляется ферментом сигнальной пептидазой.

10. Внутри цистерны пептид подвергается посттрансляционной модификации:

гидроксилированию, фосфорилированию, сульфатированию и т.д.

Функции комплекса Гольджи

1. Синтез полисахаридов и гликопротеинов (гликокаликс, слизь).

2. Процессинг молекул:

а) терминальное гликозилирование

б) фосфорилирование

в) сульфатирование

г) протеолитическое расщепление (части белковых молекул)

3. Конденсация секреторного продукта.

4. Упаковка секреторного продукта

5. Сортировка белков в зоне сети транс- Гольджи (за счет специфических рецепторных мембранных белков, которые распознают сигнальные участки на макромолекулах и направляют их в соответствующие пузырьки). Транспорт из комплекса Гольджи идет в виде 3-х потоков:

1. Гидролазные пузырьки (или первичные лизосомы)

2. В плазмолемму (в составе окаймленных пузырьков)

3. В секреторные гранулы

Эндосомы - мембранные пузырьки с закисляющимся содержимым и обеспечивающие перенос молекул в клетку. Тип переноса веществ системой эндосом различный:

1. С перевариванием макромолекул (полным)

2. С частичным их расщеплением

3. Без изменения по ходу транспорта

Процесс транспорта и последующего расшепления веществ в клетке с помощью эндосом состоит из следующих последовательных компонентов:

1. Ранняя (периферическая) эндосома

2. Поздняя (перинуклеарная) эндосома прелизосомальный этап переваривания

3. Лизосома

Ранняя эндосома – лишенный клатрина пузырек на периферии клетки. рН среды 6,0, здесь происходит ограниченный и регулируемый процесс расщепления (лиганд отделяется от рецептора) --- возвращение рецепторов в мембрану клетки. Ранняя эндосома еще известна как Curl.

Поздняя (перинуклеарная) эндосома: а) более кислое содержимое рН 5,5

б) диаметр больший до 800 нм

в) более глубокий уровень переваривания

Это переваривание лиганд (периферическая эндосома + перинуклеарная эндосома) --- мультивезикулярное тельце.

Лизосомы

1. Фаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с фагосомой. Процесс разрушения этого материала называется гетерофагией.

2.Аутофаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с аутофагосомой.

3. Мультивезикулярное тельце – крупная вакуоль (800 нм) , состоящая из мелких 40-80 нм пузырьков, окруженных умеренно плотным матриксом. Оно образуется в результате слияния ранней и поздней эндосом.

4. Остаточные тельца - это непереваренный материал. Самым известным компонентом этого типа являются липофусциновые гранулы – пузырьки диам. 0,3 – 3 мкм, содержащие пигмент липофусцин.

Цитоскелет – это система микротрубочек, микрофиламентов (промежуточных, микротрабекул). Все они формируют трехмерную сеть, взаимодействуя с сетями из других компонентов.

1. Микротрубочки – полые цилиндры диам. 24-25 нм, стенка толщиной 5 нм, диам. просвета – 14-15 нм. Стенка состоит из спирально уложенных нитей (они называются протофиламенты) толщиной 5 нм. Эти нити образованы димерами и тубулина. Это лабильная система, у которой один конец (обозначаемый “__”) закреплен, а другой (“ + “) свободен и участвует в процессе деполимеризации.

Микротрубочки ассоциированы с рядом белков, имеющих общее название МАР – они связывают микротрубочки с другими элементами цитоскелета и органеллами. Кинезин –(шаг его перемещения по поверхности микротрубочки составляет 8 нм).

Органелла

рис. Микротрубочка

Микрофиламенты – это две переплетенные нити F-актина, составленные из g- актина. Диаметр их составляет 6 нм. Микрофиламенты полярны, присоединение g -актина происходит на (“+”) конце. Они образуют скопления

по периферии клетки и связаны с плазмолеммой посредством промежуточных белков (-актин, винкулин, талин).

Функция: 1. Изменение цитозоля (переход золя в гель и обратно).

2. Эндоцитоз и экзоцитоз.

3. Подвижность немышечных клеток.

4. Стабилизация локальных выпячиваний плазматической мембраны.

Промежуточные нити имеют d 8-11 нм, состоят из белков, характерных для определенных клеточных типов. Они формируют внутриклеточный каркас, обеспечивающий упругость клетки и упорядоченное расположение компонентов цитоплазмы. Промежуточные филаменты образованы нитевидными белковыми молекулами, сплетенными друг с другом наподобие каната.

Функции : 1. Структурная

2. Участие в образовании рогового вещества

3. Поддержание формы, отростков нервных клеток

4. Прикрепление миофибрилл к плазмолемме.

Микротрабекулы – ажурная сеть тонких нитей, существующая в комплексе с микротрубочками и может участвовать в транспорте органелл и влиять на вязкость цитозоля.

ЛЕКЦИЯ

ТЕМА:” ЯДРО. СТРУКТУРА ИНТЕРФАЗНОГО ЯДРА. ОСНОВЫ БИОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КЛЕТКИ”

Ядро является основной частью клетки, кодирующей информацию о структуре и функции органа. Эта информация заложена в генетическом материале, ДНК, представляющей собой в комплексе с основными белками (гистонами) ДНП. За некоторым исключением (митохондрии) ДНК локализуется исключительно в ядре. ДНК способна реплицироваться сама, обеспечивая тем самым передачу генетического кода дочерним клеткам в условиях клеточного деления.

Ядро играет центральную роль в синтезе белка и полипептидов, являясь носителем генетической информации. Все ядра клеток организма содержат те же самые гены, одни клетки различны по своей структуре, функции и характеру продуцируемых клеткой веществ. Ядерный контроль осуществляется путем

репрессии или депрессии (экспрессии) активности различных генов. Трансляция о характере синтеза белка связана с образованием м-РНК. Многие РНК – это комплекс белка и РНК, т.е. РНП. Интерфазное ядро в большинстве клеток – это образование округлой или овальной формы в несколько мм в диаметре. В лейкоцитах и клетках соединительной ткани ядро дольчатое и обозначается термином полиморфное.

Интерфазное ядро имеет несколько различных структур: ядерную оболочку, хроматин, кариолимфу и ядрышко.

Ядерная оболочка

1. Наружная ядерная мембрана – на поверхности расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны. Со стороны цитоплазмы она окружена рыхлой сетью промежуточных (виментиновых) филаментов.

2. Перинуклеарные цистерны – часть околоядерных цистерн связана с гранулярной эндоплазматической сетью (20-50 нм).

3. Внутренняя ядерная мембрана – отделена от содержимого ядра ядерной пластинкой.

4. Ядерная пластинка толщиной 80-300 нм, участвует в организации ядерной оболочки и перинуклеарного хроматина, содержит белки промежуточных филаментов – ламины А, В и С.

5. Ядерная пора – от 3-4 тысяч специализированных коммуникаций, осуществляют транспорт между ядром и цитоплазмой. Ядерная пора d 80 нм, имеет: а) канал поры – 9 нм

б) комплекс ядерной поры, последний содержит белок-рецептор, реагирующий на сигналы ядерного импорта (входной билет в ядро).Диаметр ядерной поры может увеличивать диаметр канала поры и обеспечивать перенос в ядро больших макромолекул (ДНК-РНК – полимераза).

Ядерная пора состоит из 2-х параллельных колец по одному с каждой поверхности кариолеммы. Кольцо диаметром 80 нм, образованы они 8 белковыми гранулами, от каждой гранулы к центру тянется нить (5 нм), которая формирует перегородку (диафрагму). В центре расположена центральная гранула. Совокупность этих структур называется комплекс ядерной поры. Здесь формируется канал диаметром 9 нм, такой канал называют водным, поскольку по нему движутся мелкие водорастворимые молекулы и ионы.

Функции ядерной поры: 1. Избирательный транспорт;

2. Активный перенос в ядро белков с последовательностью, характерной для белков ядерной локализации;

3. Перенос в цитоплазму субьединиц рибосом с изменением конформации порового комплекса.

Внутренняя ядерная мембрана - гладкая и связана с помощью интегральных белков с ядерной пластинкой, которая представляет собой слой, толщиной 80-300 нм. Эта пластинка или ламина – состоит из переплетенных промежуточных филаментов (10 нм), формирующих кариоскелет. Функции ее:

1. Сохранение структурной организации поровых комплексов;

2. Поддержание формы ядра;

3. Упорядоченная укладка хроматина.

Она формируется в результате спонтанной ассоциации 3-х главных полипептидов. Это структурный каркас ядерной оболочки с участками специфического связывания хроматина.

Хроматин

Насветовом микроскопе состоит из нерегулярно упакованной массы невысокой плотности, различается степенью плотности, количеством и размерами в клетках различного типа. Глыбки хроматина обозначают термином кариосомы, т.е. они обладают сродством к основным красителям. Хроматин интерфазного ядра – это ДНП хромосом. Хромосомы в интерфазном ядре очень тонкие, длинные, напоминающие собой нити в клубке.

Было время когда считали, что эта масса состоит из одной индивидуальной хромосомы, которую называли спирелла.

Плотный хроматин обозначается термином гетерохроматин в противовес не свернутому эухроматину. На светооптическом уровне видны элементы хромосом лишь при условии, что они образуют агрегаты, размером 0,2 мкм (гетерохроматин). Масса гетерохроматина является показателем клеточной активности клетки, содержащие большие блоки гетерохроматина характеризуются неактивной фазой в синтезе белка и, следовательно, в продукции м-РНК.

Ядрышко

Это плотная гранула диаметром 1-3 мкм, интенсивно окрашивающаяся основными красителями. Главным компонентом ядрышка является специализированный участок хромосом (петли), или организатор ядрышка. Такие участки имеются в пяти хромосомах: 13-й, 14-й, 15-й, 21-й и 22-й; именно здесь располагаются многочисленные копии генов, кодирующих рибосомальные РНК.

При ЭМ в ядрышке описывают 3 компонента :

1. Фибриллярный компонент - множество тонких (5-8 нм) нитей, с преимущественной локализацией во внутренней части ядрышка. Это первичные транскрипты р-РНК.

2. Гранулярный компонент – это скопление плотных частиц диаметром 10-20 нм, они соответствуют наиболее зрелым предшественникам субьединиц рибосом.

3. Аморфный компонент – это зона расположения ядрышковых организаторов, очень бледно окрашенная зона. Здесь крупные петли ДНК, участвующие в транскрипции рибосомальной РНК, а так же белки, специфически связывающиеся с РНК. Гранулы и фибриллы формируют ядрышковую нить (нуклеолонему) , толщиной 60-80 нм. Поскольку ядрышко окружено хроматином, то он получает название перинуклеарный хроматин , а его часть, проникающая внутрь ядрышка – этоинтрануклеолярный хроматин.

Клеточный конвейер – это сборка секреторного продукта на живой конвейерной ленте при участии различных клеточных органелл. При этом процесс сборки слагается из ряда этапов, происходящих в определенной последовательности на участках клетки, достаточно далеко удаленных от места непосредственного действия нуклеиновых кислот, осуществляющих генетический контроль.

Клеточный конвейер при синтезе белка предусматривает обычную последовательность процессов, изложенную в разделе описания гранулярной эндоплазматической сети. Здесь уместно представить механизм синтеза небелковых веществ.

Мембранные белки, связанные с липидами.

4. Мембранные белки, связанные с углеводами.

Периферические белки – не погружены в липидный бислой и не соединены с ним ковалентно. Они удерживаются за счет ионных взаимодействий. Периферические белки ассоциированы с интегральными белками в мембране за счет взаимодействия - белок-белковые взаимодействия.

Пример этих белков:

1. Спектрин , который расположен на внутренней поверхности клетки

2. Фибронектин, локализован на наружной поверхности мембраны

Белки – обычно составляют до 50% массы мембраны. При этом

интегральные белки выполняют следующие функции:

а) белки ионных каналов

б) рецепторные белки

2. Периферические мембранные белки (фибриллярные, глобулярные) выполняют функции:

а) наружные (рецепторные и адгезионные белки)

б) внутренние – белки цитоскелета (спектрин, анкирин), белки системы вторых посредников.

Ионные каналы – это сформированные интегральными белками каналы, они формируют небольшую пору, через которую по электрохимическому градиенту проходят ионы. Наиболее известные каналы – это каналы для Nа, К, Са 2 , Сl.

Существуют и водные каналы – это аквопорины (эритроциты, почка, глаз).

Надмембранный компонент – гликокаликс, толщина 50 нм. Это углеводные участки гликопротеинов и гликолипидов, обеспечивающие отрицательный заряд. Под ЭМ – это рыхлый слой умеренной плотности, покрывающий наружную поверхность плазмолеммы. В состав гликокаликса помимо углеводных компонентов входят периферические мембранные белки (полуинтегральные). Функциональные участки их находятся в надмембранной зоне- это иммуноглобулины (рис. 4) .

Функция гликокаликса: 1. Играют рольрецепторов .

2. Межклеточное узнавание .

3. Межклеточные взаимодействия (адгезивные взаимодействия).

4. Рецепторы гистосовместимости.

5. Зона адсорбции ферментов (пристеночное пищеварение).

6. Рецепторы гормонов .

Подмембранный компонент или самая наружная зона цитоплазмы, обычно обладает относительной жесткостью и эта зона особенно богата филаментами (d 5-10 нм). Предполагают, что интегральные белки, входящие в состав клеточной мембраны, прямо или косвенно связаны с актиновыми филаментами, лежащими в подмембранной зоне. При этом экспериментально доказано, что при агрегации интегральных белков, находящийся в этой зоне актин и миозин также агрегируют, что указывает на участие актиновых филамент в регуцляции формы клетки.

Синтез белка

Важнейшие функции организма: обмен веществ, развитие, рост, движение – осуществляются биохимическими реакциями с участием белков.
Поэтому в клетках непрерывно синтезируются белки: белки-ферменты, белки- гормоны, сократительные белки, защитные белки.

Первичная структура белка (порядок расположения аминокислот в белке) закодирована в молекулах ДНК. Каждый триплет (группа из трех соседних нуклеотидов) кодирует на нити ДНК одну определенную аминокислоту из двадцати.

Последовательность триплетов на нити ДНК представляет собой генетический код.

Зная последовательность триплетов на нити ДНК, то есть генетический код, можно установить последовательность соединения аминокислот в белке.

К настоящему времени расшифрованы триплеты для всех двадцати аминокислот.
Например

Аминокислоту лизин кодирует на нити ДНК триплет ТТТ.

Аминокислоту триптофан кодирует триплет АЦЦ и т.д.

В одной молекуле ДНК может быть закодированы несколько разных белков. Участок ДНК, на котором закодирован белок, называют геном.

Участки ДНК отделяются друг от друга специальными триплетами, которые являются знаками препинания. Они означают начало и окончание синтеза белка.

Поскольку ДНК,в которой хранится генетическая информация о белке не принимает непосредственного участия в синтезе белка, содержится в ядре, а синтез белка происходит в цитоплазме на рибосомах, существует посредник- иРНК. иРНК считывает генетическую информацию о белке с участка ДНК и передает эту информацию с нити ДНК на рибосому. иРНК синтезируется на участке ДНК по принципу комплементарности.
Напротив азотистого основания аденин (А) на нити ДНК располагается урацил
(У) на нити иРНК, напротив азотистого основания тимин (Т) на нити ДНК располагается аденин (А) на иРНК, напротив азотистого основания гуанин (Г) на нити ДНК располагается цитазин (Ц).

Процесс считывания иРНК генетической информации о белке с участка ДНК называется транскрипцией. Этот процесс протекает как матричный синтез, так как одна из нитей ДНК является матрицей.

Синтез белка происходит на рибосомах. На нити иРНК располагается обычно группа рибосом. Такую группу рибосом называют полисомой.

Рибосомы продвигаются на нити иРНК от триплета к триплету.
Каждый триплет на нити иРНК кодирует одну определенную аминокислоту из двадцати аминокислот.

Транспортные РНК присоединяют определенные аминокислоты (каждая тРНК присоединяет одну определенную аминокислоту) и приносит их к рибосомам.

При этом антикодон каждой тРНК должен быть комплементарен одному из триплетов (кодонов) на иРНК.
Например

Антикодон АГЦ на тРНК должен быть комплементарен кодону УГЦ на нити иРНК. рРНК вместе с белками –ферментами учавствует в соединении аминокислот друг с другом, в результате чего на рибосомах синтезируется определенный белок.

Этот процесс называется трансляцией.

Достигнув конечного участка на нити иРНК, рибосомы отделяются от нити РНК. Отсинтезированная молекула белка имеет первичную структуру. Затем она приобретает вторичную, третичную и четвертичную структуры.

В синтезе белка принимают участие большое кол-во ферментов. На синтез белка расходуется энергия АТФ.

Белок затем поступает в каналы эндоплазматической сети, в котором транспортируется к определенным участкам клетки.