Очистка коллоидных систем. Очистка коллоидных растворов. Б. Получение эмульсий
ОМСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ
УНИВЕРСИТЕТ
КАФЕДРА ХИМИИ
Коллоидные растворы (часть 1)
1. Основные понятия. Классификация дисперсных
систем.
2. .
3. .
4. Строение мицеллы гидрофобных систем.
5. .
.
Лектор: Ирина Петровна Степанова, доктор биологических
наук, профессор, зав. кафедрой химииКоллоидная химия («коллоид» – от
греческого κόλλα – клей) – наука,
изучающая физико-химические
свойства гетерогенных
высокодисперсных систем и ВМВ в
твердом состоянии и в растворах.
Коллоидный раствор золота
(экспонат музея Фарадея в
Королевском институте)
английский/шотладский химик
впервые использовал термин
«коллоид» для описания
растворов с необычными
свойствами.
В развитие этой науки
внесли вклад Т. Юнг,
П. Лаплас, Д. Гиббс,
Г. Гельмгольц, Д. Рэлей
И. Ленгмюр и др.
Т. Грэм (1805-1869)
коллоидной химии как науки о
поверхностных явлениях и
дисперсных системах.
Ввел понятие об агрегативной и
седиментационной
устойчивости дисперсных
систем.
Н. П. Песков (1880-1940)Медико-биологическое значение темыМедико-биологическое значение темыМедико-биологическое значение темы
«Человек – это ходячий
коллоид»
И.И. ЖуковМедико-биологическое значение темы
значение темы
.
раствора серебра
a – клетка E.Coli
b – клетка E.Coli, подвергнутая воздействию наночастиц
серебра
Бактерицидная активность коллоидного
раствора серебра
Популяции of Listeria
До обработки
После обработки
через 1.5 часа
Бионаноматериалы
Реагент
Продукт
Клетки костной ткани
на пористом кремнии
Сшитые ферменты
Наноматериалы
Быстрозастывающая наножидкость состоит из
шестимолекулярных колец, которые формируют
трубчатые структуры. Предполагается, что этой
жидкостью будут лечить переломы.
общих
признака дисперсных
систем: гетерогенность и дисперсность.
Дисперсной системой (ДС) называется
система, в которой одно вещество в более
или менее раздробленном (дисперсном)
состоянии равномерно распределено в
массе другого вещества.
дисперсионная среда (ДСр) - сплошная среда, в которой
находится раздробленая дисперсная фаза.
Степень дисперсности (D) определяется величиной,
обратной диаметру частиц (d): D = 1 / d.
фаза
Дисперсионная
среда
Поверхность
раздела фаз
Пример: система - глина в воде.
Глина - ДФ, вода - ДСр.
Коллоидный раствор серебраОсновные понятия. Классификация дисперсных систем
Поперечный размер частиц ДФ
Для сферических частиц это диаметр сферы d,
для кубических частиц - ребро куба L (м-1; см-1) или
дисперсность (D
= 1/d, м-1, см-1).
Формы дисперсной фазы n
Количественные характеристики ДФ
Удельная поверхность Syд - это межфазная
поверхность, приходящаяся на единицу объема
ДФ (V) или ее массы (т).
S уд
S
V
4 r 2 3 6
S уд
6D
4 3 r d
r
3
S уд
6l 2 6
3 6D
l
l
Удельная поверхность
Удельная поверхность
для сферической
частицы с радиусом r
Удельная поверхность
для кубической
частицы с ребром кубаОсновные понятия. Классификация дисперсных систем
Важным свойством ДС
является наличие большой
межфазной поверхности.
Характерными являются
процессы, протекающие на
поверхности, а не внутри
фазы.Основные понятия. Классификация дисперсных систем
По степени дисперсности дисперсные
системы классифицируют на:
1.Грубодисперсные (d ˃ 10-5 см).
2.Коллоидно-дисперсные (10-7 ˂ d ˂ 10-5
см).
3.Молекулярно-дисперсные (истинные
растворы) (d ˂ 10-7 см).Основные понятия. Классификация дисперсных систем
d ˂ 10-7 см
Истинный
раствор
d: 10-5 – 10-7 см
Коллоидный
раствор
d ˃ 10-5 см
СуспензияОсновные понятия. Классификация дисперсных систем
Грубодисперсные (d ˃ 10-5 см) – не проходят
через тонкие бумажные фильтры, быстро
оседают, видимы в обычный микроскоп.
Коллоидно-дисперсные (10-7 ˂ d ˂ 10-5 см) –
проходят через бумажные фильтры, но
задерживаются на ультрафильтрах, видимы в
ультрамикроскоп. Структурной единицей
является мицелла.
Молекулярно-дисперсные (истинные растворы)
(d ˂ 10-7 см) – дискретными единицами в них
являются молекулы или ионы. Образуются
самопроизвольно.
Название системы
Г
Г
Ж
Т
-----------Аэрозоли (Туман)
Аэрозоли (Пыль, дым)
Ж
Г
Ж
Т
Пены, газовые эмульсии
Эмульсии
Суспензии, лиозоли
Т
Г
Ж
Т
Твердые пены
------------Твердые золи
Суспензии
Эмульсии
Виды эмульсий
Масло в воде
Вода в масле
m
Вода
Масло
Диаметр частиц эмульсий
< 0.5 мм
0.5-1.5 мм
1.5-3 мм
>3 мм
Эмульсии
Текучая
жидкость
Вязкая
жидкость
Гелеобразная
жидкость
Эмульсии
Эмульсии
Пена
АэрозольОсновные понятия. Классификация дисперсных систем
Если ДСр является вода, то системы соответственно
называются гидрофобными и гидрофильными.
Золи и гели
Кровь
СухожилияОсновные понятия. Классификация дисперсных систем
Золь – бесструктурный коллоидный
раствор, в котором частицы ДФ слабо
взаимодействуют между собой и свободно
передвигаются друг относительно друга
(например, золь серебра – колларгол).
По внешнему виду золи напоминают
истинные растворы.Основные понятия. Классификация дисперсных систем
Гель – структурированный коллоидный
раствор, в котором частицы ДФ связаны
между собой в пространственные структуры
типа каркасов.
В них коллоидные частицы малоподвижны
и способны совершать только
колебательные движения.
По внешнему виду гели
желеобразны (например, зубная
паста Blend-a-med).Основные понятия. Классификация дисперсных систем
Золь
(раствор)
Гель
(лат. gelate замерзать)
коллоидной степени
дисперсности различают
диспергационные и
конденсационные методы
получения.
Вещество
Пересыщенный
истинный раствор
Конденсация
измельчать) – получение частиц ДФ путем
дробления крупных частиц на более
мелкие.
Применяют:
механическое дробление (с помощью
шаровых или коллоидных мельниц)
ультразвуковое (под действием
ультразвука)
электрическое (при использовании
электродов).Методы диспергирования
Коллоидная
мельница
пептизация (заключается в
химическом воздействии на осадок).
укрупнять) – получение частиц ДФ путем
объединения атомов, молекул, ионов.
Различают физическую и химическую
конденсацию.
замены растворителя.
Сначала готовят истинный раствор
вещества в летучем растворителе (например,
канифоль в спирте) и добавляют к жидкости,
в которой вещество нерастворимо (вода).
В результате происходит резкое понижение
растворимости и молекулы вещества
конденсируются в частицы коллоидных
размеров.
получения коллоидных растворов
используют любые реакции, в
результате которых образуются
малорастворимые соединения
(реакции обмена, гидролиза,
восстановления и др.).
коллоидный раствор, необходимо
соблюдение, по крайней мере, трех условий:
чтобы вещество ДФ было нерастворимо в
ДСр;
чтобы скорость образования зародышей
кристаллов ДФ была гораздо больше, чем
скорость роста кристаллов;
чтобы одно из исходных веществ было
взято в избытке, именно оно является
стабилизатором.
восстановления
Ag20 + Н2 → 2Ag↓ + Н20
Реакция
окисления
2H2S + S02 → 3S↓ + 2H20
Реакция
гидролиза
Реакция обмена
100°
FeCl3+ 3H20 → Fe(OH)3 ↓ +
ЗНСl
K4 + 2CuCl2 →
Cu2 ↓ + 4KCl
фильтруются через бумажный пористый фильтр, но,
в отличие от истинных, не проходят через
полупроницаемые мембраны.
На этом основана очистка
коллоидных растворов от
низкомолекулярных
веществ (диализ,
фильтрация,
ультрацентрифугирование).
Диализ
Диализ проводят с помощью прибора диализатора. Он состоит из 2 сосудов,
отделенных полупроницаемой мембраной,
способной пропускать молекулы и ионы
низкомолекулярных веществ.
Во внутренний сосуд наливается раствор
золя, во внешнем – циркулирует вода. Примеси
удаляются через мембрану из раствора золя в
растворитель.
ДиализЭлектродиализ
Для ускорения процесса применяют электродиализ.
Диализуемая
жидкость
Дистиллированная
вода
Дистиллированная
вода
Воронка
Раствор
примесей
Диализная
мембрана
применяют
для
обессоливания.
Например,
для
опреснения морской
воды.
работает аппарат «искусственная почка».
Аппарат подключают к системе
кровообращения больного, кровь под
давлением протекает между двумя
мембранами, омываемыми снаружи
физраствором.
При этом токсичные вещества крови
вымываются в физраствор, что способствует
очищению крови.Диализ
До диализа
В Момент
равновесия
грубодисперсных частиц проводят
фильтрование через обычные бумажные
фильтры. Грубодисперсные частицы
задерживаются на фильтре.
Для отделения ДФ от ДС, применяют
ультрафильтрацию. При этом используют
специальные фильтры, не пропускающие
коллоидные частицы или макромолекулы.
Как правило, ультрафильтрацию проводят
под давлением.
ультрафильтрации: 1
- воронка Бюхнера;
2 - мембрана;
3 - колба Бунзена;
4 - насос
различную массу, применяют
ультрацентрифугирование.
При этом разделение частиц
происходит в центробежном поле
больших ускорений в центрифугах. Так,
разделяют фракции белков.Строение мицеллы
гидрофобных систем
Строение коллоидных частиц и
возникновение на них заряда объясняет
мицеллярная теория коллоидных систем.
либо за счет ионизации молекул,
находящихся на поверхности твердой
фазы, либо в результате избирательной
адсорбции на твердой фазе.
образование мицеллы AgI в KI.
AgNO3 + KI (избыток) = AgI +
KNO3
Осадок AgI находится в избытке
раствора KI.
Избыток электролита выполняет
роль стабилизатора.
строение:
K
K
K
K
I
I
+
+
K
+
I
+
+
агрегат
K
I
+
I
AgI I
I
I I
K
+
ядро
адсорбционный
слой
гранула
мицелла
потенциалопределяющие ионы (п.о.и.)
K
+
K
плотный слой противоионов (п.и.)
+
K
+
диффузный слой противоионов
На твердой кристаллической поверхности
осадка в соответствии с правилом Панета-Фаянса
будут адсорбироваться ионы I-, достраивая
кристаллическую решетку и сообщая частицам
отрицательный заряд.
Ионы I- называются потенциалопределяющими.
составляют ядро мицеллы.
К отрицательному заряду будут
притягиваться противоионы K+, образуя
плотный слой противоионов.
Потенциалопределяющие ионы и
противоионы плотного слоя вместе
образуют адсорбционный слой.
составляют гранулу (или частицу). Гранула
заряжена, её заряд определятся знаком и
величиной заряда потенциалопределяющих
ионов.
Часть противоионов, не вошедших в
адсорбционный слой, образуют диффузный
слой.
Гранула и диффузный слой составляют
мицеллу.
Мицелла,
таким
образом,
электронейтральна.
x
ядро
] nI
n
x
K
xK
m}
УНИВЕРСИТЕТ
КАФЕДРА ХИМИИ
Коллоидные растворы (часть 1)
1. Основные понятия. Классификация дисперсных
систем.
2. .
3. .
4. Строение мицеллы гидрофобных систем.
5. .
.
Лектор: Ирина Петровна Степанова, доктор биологических
наук, профессор, зав. кафедрой химииКоллоидная химия («коллоид» – от
греческого κόλλα – клей) – наука,
изучающая физико-химические
свойства гетерогенных
высокодисперсных систем и ВМВ в
твердом состоянии и в растворах.
Коллоидный раствор золота
(экспонат музея Фарадея в
Королевском институте)
Томас Грэм (Грэхэм)
английский/шотладский химик
впервые использовал термин
«коллоид» для описания
растворов с необычными
свойствами.
В развитие этой науки
внесли вклад Т. Юнг,
П. Лаплас, Д. Гиббс,
Г. Гельмгольц, Д. Рэлей
И. Ленгмюр и др.
Т. Грэм (1805-1869)
История развития коллоидной химии
Николай Петрович Песков основатель современнойколлоидной химии как науки о
поверхностных явлениях и
дисперсных системах.
Ввел понятие об агрегативной и
седиментационной
устойчивости дисперсных
систем.
Н. П. Песков (1880-1940)Медико-биологическое значение темыМедико-биологическое значение темыМедико-биологическое значение темы
«Человек – это ходячий
коллоид»
И.И. ЖуковМедико-биологическое значение темы
.
Медико-биологическоезначение темы
.
Медико-биологическое значение темы
раствора серебра
a – клетка E.Coli
b – клетка E.Coli, подвергнутая воздействию наночастиц
серебра
Бактерицидная активность коллоидного раствора серебра
Медико-биологическое значение темыБактерицидная активность коллоидного
раствора серебра
Популяции of Listeria
До обработки
После обработки
через 1.5 часа
Бионаноматериалы
Медико-биологическое значение темыБионаноматериалы
Реагент
Продукт
Клетки костной ткани
на пористом кремнии
Сшитые ферменты
Наноматериалы
Медико-биологическое значение темыНаноматериалы
Быстрозастывающая наножидкость состоит из
шестимолекулярных колец, которые формируют
трубчатые структуры. Предполагается, что этой
жидкостью будут лечить переломы.
Основные понятия
Дваобщих
признака дисперсных
систем: гетерогенность и дисперсность.
Дисперсной системой (ДС) называется
система, в которой одно вещество в более
или менее раздробленном (дисперсном)
состоянии равномерно распределено в
массе другого вещества.
Классификация дисперсных систем
Дисперсная фаза (ДФ) представляет собой частицы, адисперсионная среда (ДСр) - сплошная среда, в которой
находится раздробленая дисперсная фаза.
Степень дисперсности (D) определяется величиной,
обратной диаметру частиц (d): D = 1 / d.
Дисперсные системы
Дисперснаяфаза
Дисперсионная
среда
Поверхность
раздела фаз
Пример: система - глина в воде.
Глина - ДФ, вода - ДСр.
Коллоидный раствор серебраОсновные понятия. Классификация дисперсных систем
Поперечный размер частиц ДФ
Для сферических частиц это диаметр сферы d,
для кубических частиц - ребро куба L (м-1; см-1) или
дисперсность (D
= 1/d, м-1, см-1).
Формы дисперсной фазы n
Основные понятия. Классификация дисперсных системФормы дисперсной фазы n
Количественные характеристики ДФ
Основные понятия. Классификация дисперсных системКоличественные характеристики ДФ
Удельная поверхность Syд - это межфазная
поверхность, приходящаяся на единицу объема
ДФ (V) или ее массы (т).
S уд
S
V
4 r 2 3 6
S уд
6D
4 3 r d
r
3
S уд
6l 2 6
3 6D
l
l
Удельная поверхность
Удельная поверхность
для сферической
частицы с радиусом r
Удельная поверхность
для кубической
частицы с ребром кубаОсновные понятия. Классификация дисперсных систем
Важным свойством ДС
является наличие большой
межфазной поверхности.
Характерными являются
процессы, протекающие на
поверхности, а не внутри
фазы.Основные понятия. Классификация дисперсных систем
По степени дисперсности дисперсные
системы классифицируют на:
1.Грубодисперсные (d ˃ 10-5 см).
2.Коллоидно-дисперсные (10-7 ˂ d ˂ 10-5
см).
3.Молекулярно-дисперсные (истинные
растворы) (d ˂ 10-7 см).Основные понятия. Классификация дисперсных систем
d ˂ 10-7 см
Истинный
раствор
d: 10-5 – 10-7 см
Коллоидный
раствор
d ˃ 10-5 см
СуспензияОсновные понятия. Классификация дисперсных систем
Грубодисперсные (d ˃ 10-5 см) – не проходят
через тонкие бумажные фильтры, быстро
оседают, видимы в обычный микроскоп.
Коллоидно-дисперсные (10-7 ˂ d ˂ 10-5 см) –
проходят через бумажные фильтры, но
задерживаются на ультрафильтрах, видимы в
ультрамикроскоп. Структурной единицей
является мицелла.
Молекулярно-дисперсные (истинные растворы)
(d ˂ 10-7 см) – дискретными единицами в них
являются молекулы или ионы. Образуются
самопроизвольно.
Классификация по агрегатному состоянию ДСр и ДФ
ДСр ДФНазвание системы
Г
Г
Ж
Т
-----------Аэрозоли (Туман)
Аэрозоли (Пыль, дым)
Ж
Г
Ж
Т
Пены, газовые эмульсии
Эмульсии
Суспензии, лиозоли
Т
Г
Ж
Т
Твердые пены
------------Твердые золи
Суспензии
Основные понятия. Классификация дисперсных системСуспензии
Эмульсии
Основные понятия. Классификация дисперсных системЭмульсии
Виды эмульсий
Основные понятия. Классификация дисперсных системВиды эмульсий
Масло в воде
Вода в масле
m
Вода
Масло
Диаметр частиц эмульсий
Основные понятия. Классификация дисперсных системДиаметр частиц эмульсий
< 0.5 мм
0.5-1.5 мм
1.5-3 мм
>3 мм
Эмульсии
Основные понятия. Классификация дисперсных системЭмульсии
Текучая
жидкость
Вязкая
жидкость
Гелеобразная
жидкость
Эмульсии
Основные понятия. Классификация дисперсных системЭмульсии
Эмульсии
Основные понятия. Классификация дисперсных системЭмульсии
Пена
Основные понятия. Классификация дисперсных системПена
Аэрозоль
Основные понятия. Классификация дисперсных системАэрозольОсновные понятия. Классификация дисперсных систем
Если ДСр является вода, то системы соответственно
называются гидрофобными и гидрофильными.
Золи и гели
Основные понятия. Классификация дисперсных системЗоли и гели
Кровь
СухожилияОсновные понятия. Классификация дисперсных систем
Золь – бесструктурный коллоидный
раствор, в котором частицы ДФ слабо
взаимодействуют между собой и свободно
передвигаются друг относительно друга
(например, золь серебра – колларгол).
По внешнему виду золи напоминают
истинные растворы.Основные понятия. Классификация дисперсных систем
Гель – структурированный коллоидный
раствор, в котором частицы ДФ связаны
между собой в пространственные структуры
типа каркасов.
В них коллоидные частицы малоподвижны
и способны совершать только
колебательные движения.
По внешнему виду гели
желеобразны (например, зубная
паста Blend-a-med).Основные понятия. Классификация дисперсных систем
Золь
(раствор)
Гель
(лат. gelate замерзать)
Методы получения коллоидных растворов
По способу достиженияколлоидной степени
дисперсности различают
диспергационные и
конденсационные методы
получения.
Получение лиофобных коллоидных систем
ДисперсияВещество
Пересыщенный
истинный раствор
Конденсация
Методы получения коллоидных растворов
Методы диспергирования (от лат. –измельчать) – получение частиц ДФ путем
дробления крупных частиц на более
мелкие.
Применяют:
механическое дробление (с помощью
шаровых или коллоидных мельниц)
ультразвуковое (под действием
ультразвука)
электрическое (при использовании
электродов).Методы диспергирования
Коллоидная
мельница
Методы получения коллоидных растворов
Химическое диспергирование –пептизация (заключается в
химическом воздействии на осадок).
Методы получения коллоидных растворов
Конденсационные методы (от лат. –укрупнять) – получение частиц ДФ путем
объединения атомов, молекул, ионов.
Различают физическую и химическую
конденсацию.
Методы получения коллоидных растворов
Физическая конденсация – это методзамены растворителя.
Сначала готовят истинный раствор
вещества в летучем растворителе (например,
канифоль в спирте) и добавляют к жидкости,
в которой вещество нерастворимо (вода).
В результате происходит резкое понижение
растворимости и молекулы вещества
конденсируются в частицы коллоидных
размеров.
Методы получения коллоидных растворов
Химическая конденсация – дляполучения коллоидных растворов
используют любые реакции, в
результате которых образуются
малорастворимые соединения
(реакции обмена, гидролиза,
восстановления и др.).
Химическая конденсация
Чтобы в ходе реакции образовалсяколлоидный раствор, необходимо
соблюдение, по крайней мере, трех условий:
чтобы вещество ДФ было нерастворимо в
ДСр;
чтобы скорость образования зародышей
кристаллов ДФ была гораздо больше, чем
скорость роста кристаллов;
чтобы одно из исходных веществ было
взято в избытке, именно оно является
стабилизатором.
Примеры реакций химической конденсации
Реакциявосстановления
Ag20 + Н2 → 2Ag↓ + Н20
Реакция
окисления
2H2S + S02 → 3S↓ + 2H20
Реакция
гидролиза
Реакция обмена
100°
FeCl3+ 3H20 → Fe(OH)3 ↓ +
ЗНСl
K4 + 2CuCl2 →
Cu2 ↓ + 4KCl
Методы очистки коллоидных растворов
Коллоидные растворы, как и истинные, хорошофильтруются через бумажный пористый фильтр, но,
в отличие от истинных, не проходят через
полупроницаемые мембраны.
На этом основана очистка
коллоидных растворов от
низкомолекулярных
веществ (диализ,
фильтрация,
ультрацентрифугирование).
Диализ
Методы очистки коллоидных растворовДиализ
Диализ проводят с помощью прибора диализатора. Он состоит из 2 сосудов,
отделенных полупроницаемой мембраной,
способной пропускать молекулы и ионы
низкомолекулярных веществ.
Во внутренний сосуд наливается раствор
золя, во внешнем – циркулирует вода. Примеси
удаляются через мембрану из раствора золя в
растворитель.
Методы очистки коллоидных растворов
Диализатор: 1 - диализуемая жидкость; 2 растворитель; 3 - диализная мембрана; 4 мешалкаДиализ
Методы очистки коллоидных растворовДиализЭлектродиализ
Для ускорения процесса применяют электродиализ.
Диализуемая
жидкость
Дистиллированная
вода
Дистиллированная
вода
Воронка
Раствор
примесей
Диализная
мембрана
Электродиализ
Электродиализприменяют
для
обессоливания.
Например,
для
опреснения морской
воды.
Диализ
По принципу компенсационного диализаработает аппарат «искусственная почка».
Аппарат подключают к системе
кровообращения больного, кровь под
давлением протекает между двумя
мембранами, омываемыми снаружи
физраствором.
При этом токсичные вещества крови
вымываются в физраствор, что способствует
очищению крови.Диализ
До диализа
В Момент
равновесия
Методы очистки коллоидных растворов
Для очистки коллоидных растворов отгрубодисперсных частиц проводят
фильтрование через обычные бумажные
фильтры. Грубодисперсные частицы
задерживаются на фильтре.
Для отделения ДФ от ДС, применяют
ультрафильтрацию. При этом используют
специальные фильтры, не пропускающие
коллоидные частицы или макромолекулы.
Как правило, ультрафильтрацию проводят
под давлением.
Методы очистки коллоидных растворов
Прибор дляультрафильтрации: 1
- воронка Бюхнера;
2 - мембрана;
3 - колба Бунзена;
4 - насос
Методы очистки коллоидных растворов
Для разделения частиц ДФ, имеющихразличную массу, применяют
ультрацентрифугирование.
При этом разделение частиц
происходит в центробежном поле
больших ускорений в центрифугах. Так,
разделяют фракции белков.Строение мицеллы
гидрофобных систем
Строение коллоидных частиц и
возникновение на них заряда объясняет
мицеллярная теория коллоидных систем.
Строение мицеллы
Заряд на коллоидных частицах возникаетлибо за счет ионизации молекул,
находящихся на поверхности твердой
фазы, либо в результате избирательной
адсорбции на твердой фазе.
Строение мицеллы
Рассмотрим второй случай –образование мицеллы AgI в KI.
AgNO3 + KI (избыток) = AgI +
KNO3
Осадок AgI находится в избытке
раствора KI.
Избыток электролита выполняет
роль стабилизатора.
Строение мицеллы
При этом образуется мицелла, имеющая следующеестроение:
K
K
K
K
I
I
+
+
K
+
I
+
+
агрегат
K
I
+
I
AgI I
I
I I
K
+
ядро
адсорбционный
слой
гранула
мицелла
потенциалопределяющие ионы (п.о.и.)
K
+
K
плотный слой противоионов (п.и.)
+
K
+
диффузный слой противоионов
Строение мицеллы
Осадок AgI является агрегатом мицеллы.На твердой кристаллической поверхности
осадка в соответствии с правилом Панета-Фаянса
будут адсорбироваться ионы I-, достраивая
кристаллическую решетку и сообщая частицам
отрицательный заряд.
Ионы I- называются потенциалопределяющими.
Строение мицеллы
Агрегат и потенциалопределяющие ионысоставляют ядро мицеллы.
К отрицательному заряду будут
притягиваться противоионы K+, образуя
плотный слой противоионов.
Потенциалопределяющие ионы и
противоионы плотного слоя вместе
образуют адсорбционный слой.
Строение мицеллы
Адсорбционный слой вместе с агрегатомсоставляют гранулу (или частицу). Гранула
заряжена, её заряд определятся знаком и
величиной заряда потенциалопределяющих
ионов.
Часть противоионов, не вошедших в
адсорбционный слой, образуют диффузный
слой.
Гранула и диффузный слой составляют
мицеллу.
Мицелла,
таким
образом,
электронейтральна.
Строение мицеллы.
Формула мицеллы AgI в KI:x
ядро
] nI
n
x
K
xK
m}