» » Что такое арифметика и чем она отличается от математики? Что такое арифметика? Основная теорема арифметики. Двоичная арифметика Арифметика кто придумал

Что такое арифметика и чем она отличается от математики? Что такое арифметика? Основная теорема арифметики. Двоичная арифметика Арифметика кто придумал
Все обо всем. Том 5 Ликум Аркадий

Кто придумал арифметику?

Кто придумал арифметику?

Арифметика - наука о числах. Она имеет дело со значениями чисел, их символами и способами работы с ними. Никто арифметику не «изобретал». Она возникла из человеческих потребностей. Сначала люди оперировали только понятием количества, но считать еще не умели. Например, первобытный человек мог сказать, что он собрал достаточно ягод. Охотник с первого взгляда мог сказать, что потерял одно из копий.

Но шло время, и человек стал нуждаться в определении количества, то есть в числах. Пастухи должны были считать поголовье животных. Фермерам нужно было отсчитывать сроки сезонных работ. Поэтому очень давно, неизвестно когда, были изобретены и числа, и их названия. Эти числа мы называем целыми илинатуральными. Позже человеку потребовались числа меньше единицы и числа между целыми числами. Так возникли дроби.

Много позже в употребление вошли и другие числа. Одними из них стали отрицательные, например, минус два или минус семь. Нумерация стала основой арифметики, а потом человек научился производить и четыре основных арифметических действия - складывать, вычитать, умножать и делить.

Из книги 100 великих тайн космонавтики автора Славин Станислав Николаевич

Кто придумал луноход? Проиграв лунную гонку, советское правительство сделало вид, что не очень-то этим и огорчено. Дескать, мы с самого начала держали курс на исследование Селены автоматами. И это было отчасти правдой. Хотя бы потому, что первые сведения о луноходах были

Из книги Кто есть кто в мире искусства автора Ситников Виталий Павлович

Кто придумал серенаду? С незапамятных времен по земле бродят поэты-певцы. В Древней Греции странствующие поэты, нараспев читающие свои стихи, звались рапсодами. У северных народов Европы в большом почете были барды. В более поздние времена по городам и селам ходили

Из книги Мир вокруг нас автора Ситников Виталий Павлович

Кто придумал басню? Басня – это один из древнейших жанров литературы; полагают, что, как и миф, она стала одной из первых литературных форм, в которых отразились представления людей о мире. Первым ее автором называют раба Эзопа, славившегося своим остроумием. Полагают, что

автора Ситников Виталий Павлович

Кто придумал инъекцию? В 1628 году английский ученый У. Гарвей впервые заявил о возможности введения в организм лекарственных веществ через кожу.Он опубликовал фундаментальный труд, в котором рассказал о работе системы кровообращения у человека. Гарвей высказал

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал светофоры? Знаете ли вы, что организация движения была проблемой еще задолго до появления автомобилей. Юлий Цезарь был, вероятно, первым правителем в истории, который ввел правила дорожного движения. Он, например, принял закон, по которому женщины не имели

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал карандаш? Современным карандашам не более 200 лет. Примерно 500 лет назад в шахтах города Камберленд в Англии был обнаружен графит. Считается, что тогда же начали изготовлять и графитовые карандаши.В германском городе Нюрнберг знаменитая семья Фабер с 1760 года

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал ручку? С изобретением мягких материалов для письма: восковой дощечки и папируса, возникла необходимость в изготовлении и специальных пишущих приспособлений.Первыми их создали древние египтяне.На покрытой воском дощечке писали с помощью стальной палочки –

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал марки? Хотелось ли вам когда-нибудь узнать, почему они называются «почтовыми марками»? Для ответа на этот вопрос нам нужно вернуться в старину, когда посылки и письма перевозились через всю страну эстафетой. Станции, где один посыльный передавал почту

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал пижаму? Слово «пижама» произошло от английского «pyjamas», которое, в свою очередь, в переводе с урду (одного из официальных языков Индии) означало широкие полосатые панталоны из легкой ткани (обычно муслина). Они были элементом женской одежды, обязательным в

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал свечку? Первым осветительным прибором, который использовал человек, была горящая деревянная палка, которую доставали из костра. Первой лампой служил камень с углублением, ракушка или череп, наполненный животным или рыбьим жиром в качестве топлива и с

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал бутерброд? Изобретателем бутерброда можно считать графа Сэндвича. Он был настолько азартным игроком, что не мог оторваться от карт даже для приема пищи. Поэтому он требовал, чтобы ему приносили легкую закуску в виде кусочков хлеба и мяса. Игра не могла

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал йогурт? Изобретением йогурта мы обязаны русскому ученому, жившему в XX веке, – И. И. Мечникову. Он первым догадался применить для заквашивания молока бактерию коли, которая обитает в кишечнике многих млекопитающих.Оказалось, что заквашенное этими бактериями

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал телефон? Телефон такой, каким мы его знаем сегодня, является результатом разработок Александра Грэхэма Белла, шотландского ученого, эмигрировавшего в Канаду, а затем в США. Но еще до Белла в 1856 году опыты, способствовавшие изобретению телефонного аппарата,

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал телеграф? А возможно ли передавать сообщения без проводов? Поначалу это казалось фантастикой. Но вот в 1887 году немецкий физик Генрих Герц открыл невидимые электромагнитные волны.Правда, чтобы их «поймать», нужны были высокие антенны, которые поднимались с

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал парашют? Представьте себе выход в воздушное пространство на высоте 5 километров и затем спокойное приземление, будто вы прыгнули вниз с трехметрового забора. Вы смогли бы это сделать – с парашютом! С его помощью человек может спускаться вниз в воздушной

Из книги Кто есть кто в мире открытий и изобретений автора Ситников Виталий Павлович

Кто придумал компас? Самая простая форма компаса – это магнитная стрелка, укрепленная на стержне так, чтобы она могла свободно вращаться во все стороны. Стрелка такого примитивного компаса указывает на «север», под которым имеется в виду Северный магнитный полюс Земли.

Школа-лицей № __

Реферат


на тему

«История возникновения арифметических действий»

Выполнила: учении__ 5 _ класса

______________
Караганда, 2015

Арабы не стирали цифры, а перечеркивали их и надписывали новую цифру над перечеркнутой. Это было очень неудобно. Тогда арабские математики, используя тот же прием вычитания, стали начинать действие с низших разрядов, т. е. раз работали новый способ вычитания, сходный с современным. Для обозначения вычитания в III в. до н. э. в Греции использовали перевернутую греческую букву пси (Ф). Итальянские математики пользовались для обозначения вычитания буквой М, начальной в слове минус. В 16 веке для обозначения вычитания стали применять знак- . Вероятно, этот знак перешел в математику из торговли. Торговцы, отливая для продажи вино из бочек, черточкой мелом обозначали число мер проданного из бочки вина.

Умножение


Умножение - это особый случай сложения нескольких одинаковых чисел. В далекие времена люди учились умножать уже при счете предметов. Так, считая по порядку числа 17, 18, 19, 20, они должны были представлять

20 не только как 10+10, но и как два десятка, то есть 2 10;

30 - как три десятка, то есть три раза повторить слагаемым десяток - 3 - 10 - и так далее

Умножать люди начали значительно позже, чем складывать. Египтяне выполняли умножение посредством повторного сложения или последовательного удвоения. В Вавилоне при умножении чисел пользовались специальными таблицами умножения - «предками» современных. В Древней Индии применяли способ умножения чисел, тоже довольно близкий к современному. Индийцы производили умножение чисел начиная с высших разрядов. При этом они стирали те цифры, которые при последующих действиях надо было заменять, так как к ним прибавляли число, ныне запоминаемое нами при умножении. Таким образом, математики Индии сразу записывали произведение , выполняя промежуточные вычисления на песке или в уме. Индийский прием умножения перешел к арабам. Но арабы не стирали цифры, а перечеркивали их и надписывали новую цифру над перечеркнутой. В Европе продолжительное время произведение называли сумма умножения. Название «множитель» упоминается в работах 6 веке, а «множимое» - в 13 веке.

В 17 веке некоторые из математиков стали обозначать умножение косым крестиком - х, а иные употребляли для этого точку. В 16-17 веках для обозначения действий применяли различные символы - единообразия в их употреблении не было. Только в конце 18 веке большинство математиков стали употреблять в качестве знака умножения точку, но допускали и употребление косого креста. Знаки умножения ( , х) и знак равенства (=) стали общепризнанными благодаря авторитету знаменитого немецкого математика Готфрида Вильгельма Лейбница (1646- 1716).

Деление

Два любых натуральных числа всегда можно сложить, а также умножить. Вычитание из натурального числа можно выполнить лишь тогда, когда вычитаемое меньше уменьшаемого. Деление же без остатка выполнимо только для некоторых чисел, причем узнать, делится ли одно число на другое, трудно. Помимо того, есть числа, которые вообще нельзя разделить ни на какое число , кроме единицы. Делить на нуль нельзя. Эти особенности действия значительно усложнили путь к уяснению приемов деления. В Древнем Египте деление чисел выполняли способом удвоения и медиации, то есть делением на два с последующим сложением отобранных чисел. Математики Индии изобрели способ «деление вверх». Они записывали делитель под делимым, а все промежуточные вычисления - вверху над делимым. При чем те цифры, которые при про межуточных вычислениях подвергались изменению, индийцы стирали и на их место писали новые. Позаимствовав этот способ, арабы в промежуточных вычислениях стали цифры перечеркивать и надписывать над ними другие. Такое нововведение значительно усложнило «деление вверх». Способ деления, близкий к сов ременному, впервые появился в Италии в 15 веке.

На протяжении тысячелетий действие деления не обозначали каким-либо знаком - его просто называли и записывали словом. Индийские математики первыми стали обозначать деление начальной буквой из названия этого действия. Арабы ввели для обо значения деления черту. Черту для обозначения деления от арабов перенял в 13 веке итальянский математик Фибоначчи. Он же впервые употребил термин частное. Знак двоеточия (:) для обозначения деления вошел в употребление в конце 17 веке.


Знак равенства (=) впервые введен английским учителем ма тематики Р. Рикоррдом в 16 веке. Он пояснял: «Никакие два предмета не могут в большей степени быть равны между собой, как две параллельные линии». Но еще в египетских папирусах встречается знак, который обозначал равенство двух чисел , хотя этот знак совершенно не похож на знак = .

Что такое арифметика? Когда человечество начало использовать числа и работать с ними? Куда уходят корни таких обыденных понятий, как числа, сложение и умножение, которые человек сделал неотделимой частью своей жизни и мировоззрения? Древнегреческие умы восхищались такими науками, как и геометрия, как прекраснейшими симфониями человеческой логики.

Возможно, арифметика не так глубока, как другие науки, но что было бы с ними, забудь человек элементарную таблицу умножения? Привычное нам логическое мышление, использующие цифры, дроби и другие инструменты, нелегко давалось людям и долгое время было недоступно для наших предков. Фактически до развития арифметики ни одна область человеческого знания не была по-настоящему научной.

Арифметика - это азбука математики

Арифметика - это наука о числах, с которой любой человек начинает знакомство с увлекательным миром математики. Как говорил М. В. Ломоносов, арифметика - это врата учености, открывающие нам путь к миропознанию. А ведь он прав, разве познание мира можно отделить от знания цифр и букв, математики и речи? Возможно, в былые времена, но не в современном мире, где бурное развитие науки и техники диктует свои законы.

Слово "арифметика" (греч. "арифмос") греческого происхождения, обозначает "число". Она изучает число и все что может быть с ними связано. Это мир чисел: различные действия над числами, числовые правила, решение задач, которые связаны с умножением, вычитанием и т. д.

Основной объект арифметики

Основа арифметики - это целое число, свойства и закономерности которого рассматриваются в высшей арифметике или По сути, от того, насколько верный подход взят в рассмотрении такого небольшого блока, как натуральное число, зависит прочность всего здания - математики.

Поэтому на вопрос о том, что такое арифметика, можно ответить просто: это наука о числах. Да, о привычной семерке, девятке и всем этом разнообразном сообществе. И подобно тому, как и хороших, и самых посредственных стихов не напишешь без элементарной азбуки, без арифметики не решить даже элементарной задачи. Вот почему все науки продвинулись только после развития арифметики и математики, будучи до этого всего лишь набором предположений.

Арифметика - наука-фантом

Что такое арифметика - натуральная наука или фантом? На самом деле, как рассуждали древнегреческие философы, ни чисел, ни фигур в реальности не существует. Это всего лишь фантом, который создается в человеческом мышлении при рассматривании окружающей среды с ее процессами. В самом деле, Нигде вокруг мы не видим ничего подобного, что можно было бы назвать числом, скорее, число - это способ человеческого разума изучать мир. А может быть, это изучение нас самих изнутри? Об этом спорят философы много веков подряд, поэтому дать исчерпывающий ответ мы не беремся. Так или иначе, арифметике удалось настолько прочно занять свои позиции, что в современном мире никто не может считаться социально адаптированным без знания ее основ.

Как появилось натуральное число

Конечно, основной объект, которым оперирует арифметика, - натуральное число, такое, как 1, 2, 3, 4, …, 152... и т.д. Арифметика натуральных чисел является результатом счета обычных предметов, например, коров на лугу. Все-таки определение "много" или "мало" когда-то перестало устраивать людей, и пришлось изобретать более совершенные техники счета.

Но настоящий прорыв случился, когда человеческая мысль дошла до того, что можно одним и тем же числом «два» обозначить и 2 килограмма, и 2 кирпича, и 2 детали. Дело в том, что нужно абстрагироваться от форм, свойств и смысла предметов, тогда можно производить некоторые действия с этими предметами в виде натуральных чисел. Так родилась арифметика чисел, которая дальше развивалась и ширилась, занимая все большие позиции в жизни общества.

Такие углубленные понятия числа, как ноль и отрицательное число, дроби, обозначения чисел цифрами и другими способами, имеют богатейшую и интереснейшую историю развития.

Арифметика и практичные египтяне

Два древнейших спутника человека в исследовании окружающего мира и решении бытовых задач - это арифметика и геометрия.

Считается, что история арифметики берет свое начало на Древнем Востоке: в Индии, Египте, Вавилоне и Китае. Так, папирус Ринда египетского происхождения (назван так, поскольку принадлежал одноименному владельцу), датируемый XX в. до н.э, кроме других ценных данных содержит разложение одной дроби на сумму дробей с разными знаменателями и числителем, равным единице.

Например: 2/73=1/60+1/219+1/292+1/365.

Но в чем смысл такого сложного разложения? Дело в том, что египетский подход не терпел абстрагированных размышлений о числах, наоборот, вычисления производились только с практической целью. То есть египтянин станет заниматься таким делом, как расчеты, исключительно для того, чтобы построить гробницу, например. Нужно было высчитать длину ребра сооружения, и это заставляло садиться человека за папирус. Как видно, египетский прогресс в расчетах был вызван, скорее массовым, строительством, нежели любовью к науке.

По этой причине расчеты, найденные на папирусах, нельзя назвать размышлениями на тему дробей. Скорее всего, это практическая заготовка, которая помогала в дальнейшем решать задачи с дробями. Древние египтяне, не знавшие таблицы умножения, производили довольно длинные вычисления, разложенные на множество подзадач. Возможно, это одна из таковых подзадач. Нетрудно заметить, что расчеты с такими заготовками весьма трудоемки и малоперспективны. Может быть, по этой причине мы не видим большого вклада Древнего Египта в развитие математики.

Древняя Греция и философская арифметика

Многие знания Древнего Востока были успешно освоены древними греками, известными любителями отвлеченных, абстрактных и философских размышлений. Практика их интересовала не меньше, но лучших теоретиков и мыслителей найти сложно. Это пошло на пользу науке, поскольку в арифметику невозможно углубиться, не разорвав ее с реальностью. Конечно, можно умножать 10 коров и 100 литров молока, но далеко продвинуться не удастся.

Мыслящие глубоко греки оставили значительный след в истории, и их труды дошли до нас:

  • Евклид и «Начала».
  • Пифагор.
  • Архимед.
  • Эратосфен.
  • Зенон.
  • Анаксагор.

И, конечно, превращающие все в философию греки, а особенно продолжатели дела Пифагора, настолько были увлечены числами, что считали их таинством гармонии мира. Числа настолько были изучены и исследованы, что некоторым из них и их парам приписывали особые свойства. Например:

  • Совершенные числа - те, которые равны сумме всех своих делителей, кроме самого числа (6=1+2+3).
  • Дружественные числа - это такие числа, одно из которых равно сумме всех делителей второго, и наоборот (пифагорейцы знали только одну такую пару: 220 и 284).

Греки, считавшие, что науку нужно любить, а не быть с ней ради выгоды, достигли больших успехов, исследуя, играя и складывая числа. Нужно отметить, что не все их изыскания нашли широкое применение, некоторые из них остались лишь "для красоты".

Восточные мыслители Средневековья

Точно так же и в Средние века арифметика своим развитием обязана восточным современникам. Индийцы передали нам цифры, которые мы активно используем, такое понятие как "нуль", и позиционный вариант привычный современному восприятию. От Аль-каши, который в 15 веке работал в Самарканде, мы унаследовали без которых трудно представить современную арифметику.

Во многом знакомство Европы с достижениями Востока стало возможно благодаря труду итальянского ученого Леонардо Фибоначчи, который написал произведение "Книга абака", знакомящее с восточными новшествами. Оно стало краеугольным камнем развития алгебры и арифметики, исследовательской и научной деятельности в Европе.

Российская арифметика

И, наконец, арифметика, нашедшая свое место и укоренившаяся в Европе, стала распространяться и на русские земли. Первая русская арифметика вышла в 1703 году - это была книга об арифметике Леонтия Магницкого. Долгое время она оставалась единственным учебным руководством по математике. Она содержит начальные моменты алгебры и геометрии. Цифры, которые использовал в примерах первый в России учебник арифметики, арабские. Хотя арабские цифры встречались и ранее, на гравюрах, датирующихся 17 веком.

Сама книга украшена изображениями Архимеда и Пифагора, а на первом листе - образ арифметики в виде женщины. Она сидит на престоле, под ней написано на иврите слово, обозначающее имя Бога, а на ступенях, которые ведут к престолу, начертаны слова «деление», «умножение», «сложение» и т. д. Можно только представить, какое значение предавали таким истинам, которые сейчас считаются обыденным явлением.

Учебник из 600 страниц описывает как основы вроде таблицы сложения и умножения, так и приложения к навигационным наукам.

Не удивительно, что автор выбрал изображения греческих мыслителей для своей книги, ведь он и сам был пленен красотой арифметики, говоря: «Арифметика есть числительница, есть художество честное, независтное… ». Такой подход к арифметике вполне обоснован, ведь именно ее повсеместное внедрение можно считать началом бурного развития научной мысли в России и общего образования.

Непростые простые числа

Простое число - это такое натуральное число, которое имеет только 2 положительных делителя: 1 и само себя. Все остальные числа, не считая 1, называют составными. Примеры простых чисел: 2, 3, 5, 7, 11, и все другие, которые не имеют прочих делителей, кроме числа 1 и себя самого.

Что же касается числа 1, то оно на особом счету - существует уговор, что его нужно считать ни простым, ни составным. Простое на первый взгляд простое число таит множество неразгаданных тайн внутри себя.

Теорема Евклида говорит, что простых чисел бесконечное множество, а Эратосфен придумал специальное арифметическое «решето», которое отсеивает непростые числа, оставляя только простые.

Ее суть в том чтобы подчеркивать первое невычеркнутое число, а в последующем вычеркивать те, которые ему кратны. Многократно повторяем эту процедуру - и получаем таблицу простых чисел.

Основная теорема арифметики

Среди наблюдений о простых числах нужно особым образом упомянуть основную теорему арифметики.

Основная теорема арифметики гласит, что любое целое число, большее 1, либо является простым, либо его можно разложить на произведение простых чисел с точностью до порядка следования сомножителей, причем единственным образом.

Основная теорема арифметики доказывается достаточно громоздко, да и понимание ее уже не похоже на простейшие основы.

На первый взгляд простые числа - элементарное понятие, однако это не так. Физика также некогда считала атом элементарным, пока не нашла внутри него целую вселенную. Простым числам посвящен прекрасный рассказ математика Дона Цагира «Первые пятьдесят миллионов простых чисел».

От «трех яблочек» до дедуктивных законов

Что поистине можно назвать армированным фундаментом всей науки - это законы арифметики. Еще в детстве все сталкиваются с арифметикой, изучая количество ножек и ручек у кукол, количество кубиков, яблочек и т. д. Так мы изучаем арифметику, которая дальше переходит в более сложные правила.

Вся наша жизнь знакомит нас с правилами арифметики, которые стали для простого человека наиболее полезными из всего, что дает наука. Изучение чисел - это "арифметика-малышка", которая знакомит человека с миром чисел в виде цифр еще в раннем детстве.

Высшая арифметика - дедуктивная наука, которая изучает законы арифметики. Большинство из них нам известно, хотя, возможно, мы и не знаем их точных формулировок.

Закон сложения и умножения

Два любых натуральных числа a и b могут быть выражены в виде суммы a+b, которая также будет числом натуральным. Касательно сложения действуют следующие законы:

  • Коммутативный , который говорит, что от перестановки слагаемых местами сумма не изменяется, или a+b= b+a.
  • Ассоциативный , который говорит, что сумма не зависит от способа группировки слагаемых местами, или a+(b+c)= (a+ b)+ c.

Правила арифметики, такие, как сложение, - одни из элементарных, но их используют все науки, не говоря уже о повседневной жизни.

Два любых натуральных числа a и b могут быть выражены в произведении a*b или a*b, которое также является числом натуральным. К произведению применимы те же коммутативные и ассоциативные законы, что и к сложению:

  • a*b= b* a;
  • a*(b*c)= (a* b)* c.

Интересно, что существует закон, который объединяет сложение и умножение, называемый также распределительным, или дистрибутивным законом:

a(b+c)= ab+ac

Этот закон фактически учит нас работать со скобками, раскрывая их, тем самым мы можем работать уже с более сложными формулами. Это именно те законы, которые будут вести нас по причудливому и непростому миру алгебры.

Закон арифметического порядка

Закон порядка человеческая логика использует каждый день, сверяя часы и считая купюры. И, тем не менее, и его нужно оформить в виде конкретных формулировок.

Если мы имеем два натуральных числа a и b, то возможны следующие варианты:

  • a равно b, или a=b;
  • a меньше b, или a < b;
  • a больше b, или a > b.

Из трех вариантов справедливым может быть только один. Основной закон, который управляет порядком, говорит: если a < b и b < c, то a< c.

Существуют также и законы, связывающие порядок с действиями умножения и сложения: если a< b, то a + c < b+c и ac< bc.

Законы арифметики учат нас работать с числами, знаками и скобками, превращая все в стройную симфонию чисел.

Позиционные и непозиционные системы исчисления

Можно сказать, что числа - это математический язык, от удобства которого зависит многое. Существует множество систем исчисления, которые, как и алфавиты разных языков, отличаются между собой.

Рассмотрим системы счисления с точки зрения влияния позиции на количественное значение цифры на этой позиции. Так, например, римская система является непозиционной, где каждое число кодируется определенным набором специальных символов: I/ V/ X/L/ C/ D/ M. Они равны, соответственно, числам 1/ 5/10/50/100/500/1000. В такой системе цифра не изменяет своего количественного определения в зависимости от того, на какой она стоит позиции: первой, второй и т. д. Чтобы получить другие числа, нужно сложить базовые. Например:

  • DCC=700.
  • CCM=800.

Более привычная для нас система счисления с использованием арабских цифр является позиционной. В такой системе разряд числа определяет количество цифр, например, трехразрядные числа: 333, 567 и т.д. Вес любого разряда зависит от позиции, на которой находится та или иная цифра, например цифра 8 на второй позиции имеет значение 80. Это характерно для десятичной системы, существуют и другие позиционные системы, например двоичная.

Двоичная арифметика

Двоичная арифметика работает с двоичным алфавитом, который состоит всего из 0 и 1. А использование этого алфавита называется двоичной системой исчисления.

Отличие двоичной арифметики от десятичной в том, что значимость позиции слева больше не в 10, а в 2 раза. Двоичные числа имеют вид 111, 1001 и т. д. Как понимать такие числа? Итак, рассмотрим число 1100:

  1. Первая цифра слева - 1*8=8, помня о том, что четвертая цифра, а значит, ее нужно умножить на 2, получаем позицию 8.
  2. Вторая цифра 1*4=4 (позиция 4).
  3. Третья цифра 0*2=0 (позиция 2).
  4. Четвертая цифра 0*1=0 (позиция 1).
  5. Итак, наше число 1100=8+4+0+0=12.

То есть при переходе на новый разряд слева его значимость в двоичной системе умножается на 2, а в десятичной - на 10. Такая система имеет один минус: это слишком большой рост разрядов, которые необходимы для записи чисел. Примеры представления десятичных чисел в виде двочиных можно посмотреть в следующей таблице.

Десятичные числа в двоичном виде изображены ниже.

Используются также и восьмеричная, и шестнадцатеричная системы исчисления.

Эта загадочная арифметика

Что такое арифметика, «дважды два» или неизведанные тайны чисел?Как видим, арифметика, может, и кажется на первый взгляд простой, но ее неочевидная легкость обманчива. Ее можно изучать и детям вместе с тетушкой Совой из мультика «Арифметика-малышка», а можно погрузиться в глубоко научные изыскания чуть ли не философского порядка. В истории она прошла путь от счета предметов до поклонения красоте чисел. Одно только точно известно: с установлением основных постулатов арифметики вся наука может опираться на ее крепкое плечо.

С одной стороны это очень простой вопрос. С другой, школьники, да и многие взрослые, часто путают арифметику и математику и толком не знают в чем же разница между этими двумя предметами. Математика — это наиболее обширное понятие, которое включает в себя любые действия с числами. Арифметика же лишь один из разделов математики. К арифметике относятся знакомство с цифрами, простой счет и операции с числами. Раньше в школах уроки назывались именно арифметикой и лишь со временем стали носить название математика, которая плавно перетекает в алгебру. По сути алгебра начинается тогда, когда в примерах появляются неизвестные числа и вместо них используются буквы. То есть по-простому операции с x и y .

Термин «арифметика» произошел от греческого слова «arithmos» , что означает «число». В 14-15 веках данный термин переводился в Англии не совсем верно — «the metric art», что по сути означало «метрическое искусство», подходящее больше для геометрии, нежели простого счета и несложных действий с числами.

Одна из причин, почему в школах не используется понятие «арифметика» заключается в том, что даже на уроках в начальных классах помимо цифр изучают также геометрические формы и единицы измерения (сантиметр, метр и т.д.), а это уже выходит за пределы обычного счета. Тем не менее, обучение ментальной арифметике происходит в жизни ребенка в какой-то степени само собой, в процессе знакомства с окружающим миром. Термин «ментальная арифметика» означает умение считать в уме. Согласитесь, каждый из нас в какой-то момент жизни учится этому и не только благодаря школьным урокам.

Сегодня есть целые методики для развития у детей навыков скоростного счета в уме. Например, особенно популярно древнее Абакус обучение, в основе которого лежит умение считать на специальных счетах (отличаются от обычных с десятками). Abacus в переводе с английского и есть «счеты» , потому и название методики звучит так же. Японцы же эту методику называют Соробан обучение, т.к. на их языке «счеты» называются именно «soroban».

В арифметике используются четыре элементарные операции — сложение, вычитание, умножение и деление. Причем неважно целые числа используются в примере или же десятичные и дроби. Знакомить ребенка с цифрами можно еще с раннего детства, причем делать это непринужденно и в игре. В этом родителям поможет не только воображение, но и множество специальных развивающих материалов, найти которые можно в любом магазине.

По современным требованиям к первому классу ребенок должен уже считать минимум в пределе десяти (а лучше до 20), а также осуществлять со знакомыми цифрами основные операции — складывать их и вычитать. Важно также, чтобы ребенок мог сравнивать, какое из чисел больше, какое меньше, а какие числа равны. Таким образом, можно сказать, что именно арифметику ребенок должен знать еще до поступления в школу.

Такие требования предъявляются не только в России, но и во всем мире, т.к. темп жизни ускоряется, а объем знаний ежедневно увеличивается. То, что достаточно было знать в школьной программе еще 20-30 лет назад, сегодня занимает не более 50% преподаваемой учителями информации. Как бы там ни было, арифметика всегда останется основой основ для изучения цифр и счета, а также первоначальным уровнем математики, без которого невозможно изучить более сложные задания и умения.

Ответ от Николай Федотов[гуру]
Кто придумал арифметику?
Арифметика - наука о числах. Она имеет дело со значениями чисел, их символами и способами работы с ними.
Никто арифметику не «изобретал». Она возникла из человеческих потребностей. Сначала люди оперировали только понятием количества, но считать еще не умели. Например, первобытный человек мог сказать, что он собрал достаточно ягод. Охотник с первого взгляда мог сказать, что потерял одно из копий.
Но шло время, и человек стал нуждаться в определении количества, то есть в числах. Пастухи должны были считать поголовье животных. Фермерам нужно было отсчитывать сроки сезонных работ. Поэтому очень давно, неизвестно когда, были изобретены и числа, и их названия. Эти числа мы называем целыми или натуральными.
Позже человеку потребовались числа меньше единицы и числа между целыми числами. Так возникли дроби. Много позже в употребление вошли и другие числа. Одними из них стали отрицательные, например, минус два или минус семь.
Нумерация стала основой арифметики, а потом человек научился производить и четыре основных арифметических действия - складывать, вычитать, умножать и делить.
Источник: ссылка

Ответ от Знакомый [гуру]
АРИФМЕТИКА, искусство вычислений, производимых с положительными действительными числами.
Краткая история арифметики. С глубокой древности работа с числами подразделялась на две различные области: одна касалась непосредственно свойств чисел, другая была связана с техникой счета. Под «арифметикой» во многих странах обычно имеется ввиду именно эта последняя область, которая несомненно является старейшей отраслью математики.
По-видимому, наибольшую трудность у древних вычислителей вызывала работа с дробями. Об этом можно судить по папирусу Ахмеса (называемому также папирусом Ринда) , древнеегипетскому сочинению по математике, датируемому примерно 1650 до н. э. Все дроби, упоминаемые в папирусе, за исключением 2/3, имеют числители, равные 1. Трудность обращения с дробями заметна и при изучении древневавилонских клинописных табличек. И древние египтяне, и вавилоняне, по-видимому, производили вычисления с помощью некоторой разновидности абака. Наука о числах получила у древних греков существенное развитие начиная с Пифагора, около 530 до н. э. Что же касается непосредственно техники вычисления, то в этой области греками было сделано гораздо меньше.
Жившие позднее римляне, напротив, практически не внесли никакого вклада в науку о числе, зато исходя из нужд быстро развивавшихся производства и торговли усовершенствовали абак как счетное устройство. О зарождении индийской арифметики известно очень мало. До нас дошли лишь некоторые более поздние работы о теории и практике операций с числами, написанные уже после того, как индийская позиционная система была усовершенствована посредством включения в нее нуля. Когда в точности это произошло, нам достоверно неизвестно, но именно тогда были заложены основы для наших наиболее распространенных арифметических алгоритмов (см. также ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ).
Индийская система счисления и первые арифметические алгоритмы были заимствованы арабами. Самый ранний из дошедших до нас арабских учебников арифметики был написан аль-Хорезми около 825. В нем широко используются и объясняются индийские цифры. Позднее этот учебник был переведен на латынь и оказал значительное влияние на Западную Европу. Искаженный вариант имени аль-Хорезми дошел до нас в слове «алгоризм» , которое при дальнейшем смешении с греческим словом аритмос превратилось в термин «алгоритм».
Индо-арабская арифметика стала известна в Западной Европе в основном благодаря сочинению Л. Фибоначчи Книга абака (Liber abaci, 1202). Метод абацистов предлагал упрощения, подобные использованию нашей позиционной системы, во всяком случае для сложения и умножения. Абацистов сменили алгоритмики, которые использовали нуль и арабский метод деления и извлечения квадратного корня. Один из первых учебников арифметики, автор которого нам неизвестен, вышел в Тревизо (Италия) в 1478. В нем речь шла о расчетах при совершении торговых сделок. Этот учебник стал предшественником многих появившихся впоследствии учебников арифметики. До начала 17 в. в Европе было опубликовано более трехсот таких учебников. Арифметические алгоритмы за это время были существенно усовершенствованы. В 16–17 вв. появились символы арифметических операций, такие как =, +,-
Принято считать, что десятичные дроби изобрел в 1585 С. Стевин, логарифмы – Дж. Непер в 1614, логарифмическую линейку – У. Оутред в 1622. Современные аналоговые и цифровые вычислительные устройства были изобретены в середине 20 века.