» » Степень окисления в спиртах. Непредельные углеводороды. Алкины. Определение степени окисления атомов в органических веществах

Степень окисления в спиртах. Непредельные углеводороды. Алкины. Определение степени окисления атомов в органических веществах

Составление уравнений окислительно-восстановительных реакций с участием органических веществ

В связи с введением в качестве единственной формы итоговой аттестации выпускников средней школы единого государственного экзамена (ЕГЭ) и переходом старшей школы на профильное обучение все большую актуальность приобретает подготовка старшеклассников к выполнению наиболее “дорогих” в балльном отношении заданий части “С” теста ЕГЭ по химии. Несмотря на то, что пять заданий части “С” считаются разными: химические свойства неорганических веществ, цепочки превращений органических соединений, расчетные задачи, – все они в той или иной мере связаны именно с окислительно-восстановительными реакциями (ОВР). Если усвоены основные знания теории ОВР, то можно правильно выполнить первое и второе задания полностью, а третье – частично. На наш взгляд, значительная часть успеха при выполнении части “С” заключается именно в этом. Опыт показывает, что если, изучая неорганическую химию, ученики достаточно хорошо справляются с заданиями по написанию уравнений ОВР, то аналогичные задания по органической химии вызывают у них большие трудности. Поэтому на протяжении изучения всего курса органической химии в профильных классах мы стараемся сформировать у старшеклассников навыки составления уравнений ОВР.

При изучении сравнительной характеристики неорганических и органических соединений мы знакомим учащихся с использованием степени окисления (с.о.) (в органической химии прежде всего углерода) и способами ее определения:

1) вычисление средней с.о. углерода в молекуле органического вещества;

2) определение с.о. каждого атома углерода.

Уточняем, в каких случаях лучше использовать тот или иной способ.

Статья опубликована при поддержке компании "ГЕО-Инжиниринг", представляющей на рынке продукцию под брендом "ProfKresla". Сфера деятельности компании - производство, продажа и установка кресел и стульев для различных залов. Высокий профессионализм сотрудников и собственные производственные мощности позволяют быстро и качественно реализовывать проекты любой степени сложности. Всю продукцию под брендом "ProfKresla", будь тоТеатральные кресла , сидения для залов ожидания или стулья для учебных заведений, отличают современный и эргономичный дизайн, а также высокая износостойкость, прочность и комфорт. Из огромного ассортимента продукции, представленного в каталоге на сайте profkresla.ru, Вы всегда сможете подобрать модели, наилучшим образом соответствующие корпоративному стилю, принятому в Вашей компании. Если же у Вас все-таки возникнут трудности с выбором, то специалисты компании всегда готовы дать консультацию, помочь определиться с моделью, после чего подготовить проект, на месте произвести все необходимые замеры и установку.

П ри изучении темы “Алканы” показываем, что процессы окисления, горения, галогенирования, нитрования, дегидрирования, разложения относятся к окислительно-восстановительным процессам. При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с.о. углерода. Например:

Обращаем внимание на первую половину электронного баланса: у атома углерода в дробном значении с.о. знаменатель равен 4, поэтому расчет передачи электронов ведем по этому коэффициенту.

В остальных случаях при изучении темы “Алканы” определяем значения с.о. каждого атома углерода в соединении, обращая при этом внимание учащихся на последовательность замещения атомов водорода у первичных, вторичных, третичных атомов углерода:

Таким образом мы подводим учащихся к выводу, что в начале протекает процесс замещения у третичных, затем – у вторичных, и, в последнюю очередь – у первичных атомов углерода.

П ри изучении темы “Алкены” рассматриваем процессы окисления в зависимости от строения алкена и среды протекания реакции.

При окислении алкенов концентрированным раствором перманганата калия KMnO 4 в кислой среде (жесткое окисление) происходит разрыв - и -связей с образованием карбоновых кислот, кетонов и оксида углерода(IV). Эта реакция используется для определения положения двойной связи.

Если двойная связь находится на конце молекулы (например, у бутена-1), то одним из продуктов окисления является муравьиная кислота, легко окисляющаяся до углекислого газа и воды:

Подчеркиваем, что если в молекуле алкена атом углерода при двойной связи содержит два углеродных заместителя (например, в молекуле 2-метилбутена-2), то при его окислении происходит образование кетона, т. к. превращение такого атома в атом карбоксильной группы невозможно без разрыва C–C-связи, относительно устойчивой в этих условиях:

Уточняем, что если молекула алкена симметрична и двойная связь содержится в середине молекулы, то при окислении образуется только одна кислота:

Сообщаем, что особенностью окисления алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, является образование двух кетонов:

Рассматривая окисление алкенов в нейтральной или слабощелочной средах, акцентируем внимание старшеклассников на том, что в таких условиях окисление сопровождается образованием диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам углерода, между которыми существовала двойная связь:

В аналогичном плане рассматриваем окисление ацетилена и его гомологов в зависимости от того, в какой среде протекает процесс. Так, уточняем, что в кислой среде процесс окисления сопровождается образованием карбоновых кислот:

Реакция используется для определения строения алкинов по продуктам окисления:

В нейтральной и слабощелочной средах окисление ацетилена сопровождается образованием соответствующих оксалатов (солей щавелевой кислоты), а окисление гомологов – разрывом тройной связи и образованием солей карбоновых кислот:

В се правила отрабатываются с учащимися на конкретных примерах, что приводит к лучшему усвоению ими теоретического материала. Поэтому при изучении окисления аренов в различных средах ученики могут самостоятельно высказать предположения, что в кислой среде следует ожидать образования кислот, а в щелочной – солей. Учителю останется только уточнить, какие продукты реакции образуются в зависимости от строения соответствующего арена.

Показываем на примерах, что гомологи бензола с одной боковой цепью (независимо от ее длины) окисляются сильным окислителем до бензойной кислоты по -углеродному атому. Гомологи бензола при нагревании окисляются перманганатом калия в нейтральной среде с образованием калиевых солей ароматических кислот.

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O.

Подчеркиваем, что если в молекуле арена несколько боковых цепей, то в кислой среде каждая из них окисляется по a-углеродному атому до карбоксильной группы, в результате чего образуются многоосновные ароматические кислоты:

П олученные навыки составления уравнений ОВР для углеводородов позволяют использовать их при изучении раздела “Кислородсодержащие соединения”.

Так, при изучении темы “Спирты” учащиеся самостоятельно составляют уравнения окисления спиртов, используя следующие правила:

1) первичные спирты окисляются до альдегидов

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O;

2) вторичные спирты окисляются до кетонов

3) для третичных спиртов реакция окисления не характерна.

В целях подготовки к ЕГЭ учителю целесообразно дать дополнительные сведения к указанным свойствам, что, несомненно, будет полезным для учащихся.

При окислении метанола подкисленным раствором перманганата калия или дихромата калия образуется CO 2 , первичные спирты при окислении в зависимости от условий протекания реакции могут образовать не только альдегиды, но и кислоты. Например, окисление этанола дихроматом калия на холоду заканчивается oбразованием уксусной кислоты, а при нагревании – ацетальдегида:

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O,

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O.

Вновь напомним учащимся о влиянии среды на продукты реакций окисления спиртов, а именно: горячий нейтральный раствор KMnO 4 окисляет метанол до карбоната калия, а остальные спирты – до солей соответствующих карбоновых кислот:

При изучении темы “Альдегиды и кетоны” акцентируем внимание учащихся на том, что альдегиды легче, чем спирты, окисляются в соответствующие карбоновые кислоты не только под действием сильных окислителей (кислород воздуха, подкисленные растворы KMnO 4 и K 2 Cr 2 O 7), но и под действием слабых (аммиачный раствор оксида серебра или гидроксида меди(II)):

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 = 5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Особое внимание уделяем окислению метаналя аммиачным раствором оксида серебра, т.к. в этом случае образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

Как показывает наш многолетний опыт, предложенная методика обучения старшеклассников составлению уравнений ОВР с участием органических веществ повышает их итоговый результат ЕГЭ по химии на несколько баллов.

Физические свойства

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Все арены горят коптящим пламенем ввиду высокого содержания углерода вих молекулах.

Физические свойства некоторых аренов представлены в таблице.

Таблица. Физические свойства некоторых аренов

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

Бензол

C 6 H 6

5,5

80,1

Толуол (метилбензол)

С 6 Н 5 СH 3

95,0

110,6

Этилбензол

С 6 Н 5 С 2 H 5

95,0

136,2

Ксилол (диметилбензол)

С 6 Н 4 (СH 3) 2

орто-

25,18

144,41

мета-

47,87

139,10

пара-

13,26

138,35

Пропилбензол

С 6 Н 5 (CH 2) 2 CH 3

99,0

159,20

Кумол (изопропилбензол)

C 6 H 5 CH(CH 3) 2

96,0

152,39

Стирол (винилбензол)

С 6 Н 5 CH=СН 2

30,6

145,2

Бензол – легкокипящая ( t кип = 80,1°С), бесцветная жидкость, не растворяется в воде

Внимание! Бензол – яд, действует на почки, изменяет формулу крови (при длительном воздействии), может нарушать структуру хромосом.

Большинство ароматических углеводородов опасны для жизни, токсичны.

Получение аренов (бензола и его гомологов)

В лаборатории

1. Сплавление солей бензойной кислоты с твёрдыми щелочами

C 6 H 5 -COONa + NaOH t → C 6 H 6 + Na 2 CO 3

бензоат натрия

2. Реакция Вюрца-Фиттинга : (здесь Г – галоген)

С 6 H 5 -Г + 2 Na + R -Г → C 6 H 5 - R + 2 Na Г

С 6 H 5 -Cl + 2Na + CH 3 -Cl → C 6 H 5 -CH 3 + 2NaCl

В промышленности

  • выделяют из нефти и угля методом фракционной перегонки, риформингом;
  • из каменноугольной смолы и коксового газа

1. Дегидроциклизацией алканов с числом атомов углерода больше 6:

C 6 H 14 t , kat →C 6 H 6 + 4H 2

2. Тримеризация ацетилена (только для бензола) – р. Зелинского :

3С 2 H 2 600° C , акт. уголь →C 6 H 6

3. Дегидрированием циклогексана и его гомологов:

Советский академик Николай Дмитриевич Зелинский установил, что бензол образуется из циклогексана (дегидрирование циклоалканов

C 6 H 12 t, kat →C 6 H 6 + 3H 2

C 6 H 11 -CH 3 t , kat →C 6 H 5 -CH 3 + 3H 2

метилциклогексантолуол

4. Алкилирование бензола (получение гомологов бензола) – р Фриделя-Крафтса .

C 6 H 6 + C 2 H 5 -Cl t, AlCl3 →C 6 H 5 -C 2 H 5 + HCl

хлорэтан этилбензол


Химические свойства аренов

I . РЕАКЦИИ ОКИСЛЕНИЯ

1. Горение (коптящее пламя):

2C 6 H 6 + 15O 2 t →12CO 2 + 6H 2 O + Q

2. Бензол при обычных условиях не обесцвечивает бромную воду и водный раствор марганцовки

3. Гомологи бензола окисляются перманганатом калия (обесцвечивают марганцовку):

А) в кислой среде до бензойной кислоты

При действии на гомологи бензола перманганата калия и других сильных окислителей боковые цепи окисляются. Какой бы сложной ни была цепь заместителя, она разрушается, за исключением a -атома углерода, который окисляется в карбоксильную группу.

Гомологи бензола с одной боковой цепью дают бензойную кислоту:


Гомологи, содержащие две боковые цепи, дают двухосновные кислоты:

5C 6 H 5 -C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 +28H 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 COOH + 3K 2 SO 4 + 6MnSO 4 +14H 2 O

Упрощённо:

C 6 H 5 -CH 3 + 3O KMnO4 →C 6 H 5 COOH + H 2 O

Б) в нейтральной и слабощелочной до солей бензойной кислоты

C 6 H 5 -CH 3 + 2KMnO 4 → C 6 H 5 COO К + K ОН + 2MnO 2 + H 2 O

II . РЕАКЦИИ ПРИСОЕДИНЕНИЯ (труднее, чем у алкенов)

1. Галогенирование

C 6 H 6 +3Cl 2 h ν → C 6 H 6 Cl 6 (гексахлорциклогексан - гексахлоран)

2. Гидрирование

C 6 H 6 + 3H 2 t , Pt или Ni →C 6 H 12 (циклогексан)

3. Полимеризация

III . РЕАКЦИИ ЗАМЕЩЕНИЯ – ионный механизм(легче, чем у алканов)

1. Галогенирование -

a ) бензола

C 6 H 6 + Cl 2 AlCl 3 → C 6 H 5 -Cl + HCl (хлорбензол)

C 6 H 6 + 6Cl 2 t ,AlCl3 →C 6 Cl 6 + 6HCl ( гексахлорбензол )

C 6 H 6 + Br 2 t,FeCl3 → C 6 H 5 -Br + HBr ( бромбензол )

б) гомологов бензола при облучении или нагревании

По химическим свойствам алкильные радикалы подобны алканам. Атомы водорода в них замещаются на галоген по свободно-радикальному механизму. Поэтому в отсутствие катализатора при нагревании или УФ-облучении идет радикальная реакция замещения в боковой цепи. Влияние бензольного кольца на алкильные заместители приводит к тому, что замещается всегда атом водорода у атома углерода, непосредственно связанного с бензольным кольцом (a -атома углерода).

1) C 6 H 5 -CH 3 + Cl 2 h ν → C 6 H 5 -CH 2 -Cl + HCl

в) гомологов бензола в присутствии катализатора

C 6 H 5 -CH 3 + Cl 2 AlCl 3 → (смесь орта, пара производных) +HCl

2. Нитрование (с азотной кислотой)

C 6 H 6 + HO-NO 2 t, H2SO4 →C 6 H 5 -NO 2 + H 2 O

нитробензол - запах миндаля !

C 6 H 5 -CH 3 + 3HO-NO 2 t, H2SO4 С H 3 -C 6 H 2 (NO 2) 3 + 3H 2 O

2,4,6-тринитротолуол (тол, тротил)

Применение бензола и его гомологов

Бензол C 6 H 6 – хороший растворитель. Бензол в качестве добавки улучшает качество моторного топлива. Служит сырьем для получения многих ароматических органических соединений – нитробензола C 6 H 5 NO 2 (растворитель, из него получают анилин), хлорбензола C 6 H 5 Cl, фенола C 6 H 5 OH, стирола и т.д.

Толуол C 6 H 5 –CH 3 – растворитель, используется при производстве красителей, лекарственных и взрывчатых веществ (тротил (тол), или 2,4,6-тринитротолуол ТНТ).

Ксилолы C 6 H 4 (CH 3) 2 . Технический ксилол – смесь трех изомеров (орто -, мета - и пара -ксилолов) – применяется в качестве растворителя и исходного продукта для синтеза многих органических соединений.

Изопропилбензол C 6 H 5 –CH(CH 3) 2 служит для получения фенола и ацетона.

Хлорпроизводные бензола используют для защиты растений. Так, продукт замещения в бензоле атомов Н атомами хлора – гексахлорбензол С 6 Сl 6 – фунгицид; его применяют для сухого протравливания семян пшеницы и ржи против твердой головни. Продукт присоединения хлора к бензолу – гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6 – инсектицид; его используют для борьбы с вредными насекомыми. Упомянутые вещества относятся к пестицидам – химическим средствам борьбы с микроорганизмами, растениями и животными.

Стирол C 6 H 5 – CH = CH 2 очень легко полимеризуется, образуя полистирол, а сополимеризуясь с бутадиеном – бутадиенстирольные каучуки.

ВИДЕО-ОПЫТЫ

В окислительно-восстановительных реакциях органические вещества чаще проявляют свойства восстановителей, а сами окисляются. Легкость окисления органических соединений зависит от доступности электронов при взаимодействии с окислителем. Все известные факторы, вызывающие увеличение электронной плотности в молекулах органических соединений (например, положительные индуктивный и мезомерные эффекты), будут повышать их способность к окислению и наоборот.

Склонность органических соединений к окислению возрастает с ростом их нуклеофильности , что соответствует следующим рядам:

Рост нуклеофильности в ряду

Рассмотрим окислительно-восстановительные реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Окисление алкенов

При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

3C 2 H 4 + 2KMnO 4 + 4H 2 O → 3CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5C 2 H 5 COOH + 8MnSO 4 + 4K 2 SO 4 + 17H 2 O

2) 5CH 3 CH=CH 2 + 10KMnO 4 + 15H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 10MnSO 4 + 5K 2 SO 4 + 20H 2 O

3) CH 3 CH=CHCH 2 CH 3 + 8KMnO 4 + 10KOH → CH 3 COOK + C 2 H 5 COOK + 6H 2 O + 8K 2 MnO 4

4) CH 3 CH=CH 2 + 10KMnO 4 + 13KOH → CH 3 COOK + K 2 CO 3 + 8H 2 O + 10K 2 MnO 4

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

При окислении алкенов, в которых атомы углерода при двойной связи содержат по два углеродных радикала, происходит образование двух кетонов:


Окисление алкинов

Алкины окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алкенов, атомы-восстановители здесь – атомы углерода, связанные кратной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH 3 C≡CH + 8KMnO 4 + 12H 2 SO 4 → 5CH 3 COOH + 5CO 2 + 8MnSO 4 + 4K 2 SO 4 + 12H 2 O

Ацетилен может быть окислен перманганатом калия в нейтральной среде до оксалата калия:

3CH≡CH +8KMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +2Н 2 О

В кислотной среде окисление идет до щавелевой кислоты или углекислого газа:

5CH≡CH +8KMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +12Н 2 О
CH≡CH + 2KMnO 4 +3H 2 SO 4 → 2CO 2 + 2MnSO 4 + 4H 2 O + K 2 SO 4

Окисление гомологов бензола

Бензол не окисляется даже в довольно жестких условиях. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C 6 H 5 CH 3 +2KMnO 4 → C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

C 6 H 5 CH 2 CH 3 + 4KMnO 4 → C 6 H 5 COOK + K 2 CO 3 + 2H 2 O + 4MnO 2 + KOH

Окисление гомологов бензола дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

5С 6 Н 5 СН 3 +6КMnO 4 +9 H 2 SO 4 → 5С 6 Н 5 СООН+6MnSO 4 +3K 2 SO 4 + 14H 2 O

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 → 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O


Окисление спиртов

Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C 2 H 5 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

С избытком окислителя (KMnO 4 , K 2 Cr 2 O 7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов.

5C 2 H 5 OH + 4KMnO 4 + 6H 2 SO 4 → 5CH 3 COOH + 4MnSO 4 + 2K 2 SO 4 + 11H 2 O

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа.

Двухатомный спирт, этиленгликоль HOCH 2 –CH 2 OH, при нагревании в кислой среде с раствором KMnO 4 или K 2 Cr 2 O 7 легко окисляется до щавелевой кислоты, а в нейтральной – до оксалата калия.

5СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 +12H 2 SO 4 → 5HOOC –COOH +8MnSO 4 +4К 2 SO 4 +22Н 2 О

3СН 2 (ОН) – СН 2 (ОН) + 8КMnO 4 → 3KOOC –COOK +8MnO 2 +2КОН +8Н 2 О

Окисление альдегидов и кетонов

Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO 4 , K 2 Cr 2 O 7 , OH, Cu(OH) 2 . Все реакции идут при нагревании:

3CH 3 CHO + 2KMnO 4 → CH 3 COOH + 2CH 3 COOK + 2MnO 2 + H 2 O

3CH 3 CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COOH + Cr 2 (SO 4) 3 + 7H 2 O

CH 3 CHO + 2KMnO 4 + 3KOH → CH 3 COOK + 2K 2 MnO 4 + 2H 2 O

5CH 3 CHO + 2KMnO 4 + 3H 2 SO 4 → 5CH 3 COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O

CH 3 CHO + Br 2 + 3NaOH → CH 3 COONa + 2NaBr + 2H 2 O

реакция «серебряного зеркала»

C аммиачным раствором оксида серебра альдегиды окисляются до карбоновых кислот которые в аммиачном растворе дают соли аммония (реакция «серебрянного зеркала»):

CH 3 CH=O + 2OH → CH 3 COONH 4 + 2Ag + H 2 O + 3NH 3

CH 3 –CH=O + 2Cu(OH) 2 → CH 3 COOH + Cu 2 O + 2H 2 O

Муравьиный альдегид (формальдегид) окисляется, как правило, до углекислого газа:

5HCOH + 4KMnO 4 (изб ) + 6H 2 SO 4 → 4MnSO 4 + 2K 2 SO 4 + 5CO 2 + 11H 2 O

3СН 2 О + 2K 2 Cr 2 O 7 + 8H 2 SO 4 → 3CO 2 +2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

HCHO + 4OH → (NH 4) 2 CO 3 + 4Ag↓ + 2H 2 O + 6NH 3

HCOH + 4Cu(OH) 2 → CO 2 + 2Cu 2 O↓+ 5H 2 O

Кетоны окисляются в жестких условия сильными окислителями с разрывом связей С-С и дают смеси кислот:

Карбоновые кислоты. Среди кислот сильными восстановительными свойствами обладают муравьиная и щавелевая, которые окисляются до углекислого газа.

НСООН + HgCl 2 =CO 2 + Hg + 2HCl

HCOOH+ Cl 2 = CO 2 +2HCl

HOOC-COOH+ Cl 2 =2CO 2 +2HCl

Муравьиная кислота , кроме кислотных свойств, проявляет также некоторые свойства альдегидов, в частности, восстановительные. При этом она окисляется до углекислого газа. Например:

2KMnO4 + 5HCOOH + 3H2SO4 → K2SO4 + 2MnSO4 + 5CO2 + 8H2O

При нагревании с сильными водоотнимающими средствами (H2SO4 (конц.) или P4O10) разлагается:

HCOOH →(t) CO + H2O

Каталитическое окисление алканов:

Каталитическое окисление алкенов:

Окисление фенолов:

Окислительно-восстановительные процессы издавна интересовали химиков и даже алхимиков. Среди химических реакций, происходящих в природе, быту и технике, огромное множество составляют окислительно-восстановительные: сгорание топлива, окисление питательных веществ, тканевое дыхание, фотосинтез, порча пищевых продуктов и т.д. В таких реакциях могут участвовать как неорганические вещества, так и органические. Однако если в школьном курсе неорганической химии разделы, посвященные окислительно-восстановительным реакциям, занимают значительное место, то в курсе органической химии на этот вопрос обращено недостаточно внимания.

Что же представляют собой восстановительно-окислительные процессы?

Все химические реакции можно разделить на два типа. К первому относятся реакции, протекающие без изменения степени окисления атомов, входящих в состав реагирующих веществ.

Ко второму типу относятся все реакции, идущие с изменением степени окисления атомов, входящих в состав реагирующих веществ.

Реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

С современной точки зрения изменение степени окисления связано с оттягиванием или перемещением электронов. Поэтому наряду с приведенным можно дать и такое определение восстановительно-окислительных реакций: это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.

Рассмотрим основные положения, относящиеся к теории окислительно-восстановительных реакций.

1. Окислением называется процесс отдачи электроном атомом, молекулой или ионом электронов, степени окисления при этом повышаются.

2. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом, степень окисления при этом понижается.

3. Атомы, молекулы или ионы, отдающие электроны, называются восстановителями. Во время реакции они окисляются. Атомы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстанавливаются.

4. Окисление всегда сопровождается восстановлением; восстановление всегда связано с окислением, что можно выразить уравнениями.

Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов – окисления и восстановления. В этих реакциях число электронов, отдаваемых восстановителем, равно числу электронов, присоединяемых окислителем. При этом независимо от того, переходят ли электроны с одного атома на другой полностью или лишь частично оттягиваются к одному из атомов, условно говорят только об отдаче и присоединения электронов.

Окислительно-восстановительные реакции органических веществ – важнейшее свойство, объединяющее эти вещества. Склонность органических соединений к окислению связывают с наличием кратных связей, функциональных групп, атомов водорода при атоме углерода, содержащем функциональную группу.

Применение понятия «степени окисления» (СО) в органической химии очень ограничено и реализуется, прежде всего, при составлении уравнений окислительно-восстановительных реакций. Однако, учитывая, что более или менее постоянной состав продуктов реакции возможен только при полном окислении (горении) органических веществ, целесообразность расстановки коэффициентов в реакциях неполного окисления отпадает. По этой причине обычно ограничиваются составлением схемы превращений органических соединений.

Нам представляется важным указывать значение СО атома углерода при изучении всей совокупности свойств органических соединений. Систематизация сведений об окислителях, установление связи между строением органических веществ и их СО помогут научить учащихся :

Выбирать лабораторные и промышленные окислители;

Находить зависимость окислительно-восстановительной способности органического вещества от его строения;

Устанавливать связь между классом органических веществ и окислителем нужной силы, агрегатного состояния и механизма действия;

Предсказывать условия проведения реакции и ожидаемые продукты окисления.

Определение степени окисления атомов в органических веществах

Степень окисления любого атома углерода в органическом веществе равна алгебраической сумме всех его связей с более электроотрицательных элементов (Cl, O, S,N, и др.), учитываемых со знаком «+», и связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-». При этом связи с соседними атомами углерода не учитываются .

Определим степени окисления атомов углерода в молекулах предельного углеводорода пропана и спирта этанола:

Последовательное окисление органических веществ можно представить в виде следующей цепочки превращений:

Насыщенный углеводород Ненасыщенный углеводород Спирт Альдегид (кетон) Карбоновая кислота CO + H O.

Генетическая связь между классами органических соединений представляется здесь как ряд окислительно–восстановительных реакций, обеспечивающих переход от одного класса органических соединений к другому. Завершают его продукты полного окисления (горения) любого из представителей классов органических соединений.

Приложение . Таблица №1.

Изменение СО у атомов углерода в молекуле углерода в молекулах органических соединений приведены в таблице. Из данных таблицы видно, что при переходе от одного класса органических соединений к другому и увеличения степени разветвленности углеродного скелета молекул соединений внутри отдельного класса степень окисления атома углерода, ответственного за восстанавливающую способность соединения, изменяется. Органические вещества, в молекулах которых содержатся атомы углерода с максимальными (- и +) значениями СО (-4, -3, +2, +3), вступают в реакцию полного окисления-горения, но устойчивых к воздействию мягких окислителей и окислителей средней силы. Вещества, в молекулах которых содержится атомы углерода в СО -1; 0; +1, окисляются легко, восстановительные способности их близки, поэту их неполное окисление может быть достигнуто за счет одного из известных окислителей малой и средней силы. Эти вещества могут проявлять двойственную природу, выступая и в качестве окислителя, подобно тому, как это присуще неорганическим веществам.

Окисление и восстановление органических веществ

Повышенная склонность органических соединений к окислению обусловлена наличием в молекуле веществ :

  • атомов водорода при атоме углерода, содержащем функциональную группу.

Сравним первичные, вторичные и третичные спирты по реакционной способности к окислению:

Первичные и вторичные спирты, имеющие атомы водорода при атоме углерода, несущем функциональную группу; окисляются легко: первые – до альдегидов, вторые до кетонов. При этом структура углеродного скелета исходного спирта сохраняется. Третичные спирты, в молекулах которых нет атома водорода при атоме углерода, содержащем группу ОН, в обычных условиях не окисляются. В жестких условиях (при действии сильных окислителей и при высоких температурах) они могут быть окислены до смеси низкомолекулярных карбоновых кислот, т.е. происходит деструкция углеродного скелета.

Существуют два подхода к определению степеней окисления элементов в органических веществах.

1. Вычисляют среднюю степень окисления атома углерода в молекуле органического соединения, например пропана.

Такой подход оправдан, если в ходе реакции в органическом веществе разрушаются все химические связи (горение, полное разложение).

Отметим, что формально дробные степени окисления, вычисленные таким образом, могут быть и в случае неорганических веществ. Например, в соединении КО (надпероксида калия) степень окисления кислорода равна – 1/2.

2. Определяют степень окисления каждого атома углерода, например в бутане.

В этом случае степень окисления любого атома углерода в органическом соединении равна алгебраической сумме чисел всех связей с атомами более электроотрицательных элементов, учитываемых со знаком «+», и числа связей с атомами водорода (или другого более электроположительного элемента), учитываемых со знаком «-». При этом связи с атомами углерода не учитывают.

В качестве простейшего примера определим степень окисления углерода в молекуле метанола.

Атом углерода связан с тремя атомами водорода (эти связи учитываются со знаком « - »), одной связью – с атомом кислорода (ее учитывают со знаком «+»). Получаем:

Таким образом, степень окисления углерода в метаноле равна -2.

Вычисленная степень окисления углерода хотя и условное значение, но оно указывает на характер смещения электронной плотности в молекуле, а ее изменение в результате реакции свидетельствует об имеющем место окислительно-восстановительном процессе.

Рассмотрим цепочку превращений веществ:

При каталитическом дегидрировании этана получается этилен; продукт гидратации этилена – этанол; его окисление приведет к этаналю, а затем – к уксусной кислоте; при ее сгорании образуется углекислый газ и вода.

Определим степени окисления каждого атома углерода в молекулах перечисленных веществ.

Можно заметить, что в ходе каждого из этих превращений постоянно меняется степень окисления одного из атомов углерода. В направлении от этана к оксиду углерода (IV) происходит увеличение степени окисления атома углерода.

Несмотря на то, что в ходе любых окислительно-восстановительных реакций происходит как окисление, так и восстановление, их классифицируют в зависимости оттого, что происходит непосредственно с органическим соединением (если оно окисляется, говорят о процессе окисления, если восстанавливается – о процессе восстановления).

Так, в реакции этанола с перманганатом калия этанол будет окисляться, а перманганат калия – восстанавливается. Реакцию называют окислением этанола.

Составление окислительно – восстановительных уравнений

Для составления уравнений окислительно- восстановительных реакций используют как метод электронного баланса, так и метод полуреакций (электронно - ионный метод). Рассмотрим несколько примеров окислительно- восстановительных реакций с участием органических веществ .

1. Горение н-бутана.

Схема реакции имеет вид:

Составим полное уравнение химической реакции методом баланса.

Среднее значение степени окисления углерода в н-бутане:

Степень окисления углерода в оксиде углерода(IV) равна +4.

Составим схему электронного баланса:

C учетом найденных коэффициентов уравнение химической реакции горения н-бутана будет выглядеть следующим образом:

Коэффициенты для этого уравнения можно найти и другим методом, о котором уже упоминалось. Рассчитав степени окисления каждого из атомов углерода, видим, что они различаются:

В этом случае схема электронного баланса будет выглядеть так:

Так как в ходе горения н-бутана в его молекулах разрушаются все химические связи, то в данном случае первый подход вполне оправдан, тем более что схема электронного баланса, составленная вторым способом, несколько сложнее.

2. Реакция окисления этилена раствором перманганата калия в нейтральной среде на холоду (реакция Вагнера).

Расставим коэффициенты в уравнении реакции методом электронного баланса.

Полное уравнение химической реакции будет выглядеть так:

Для определения коэффициентов можно воспользоваться и методом полуреакций. Этилен окисляется в этой реакции до этиленгликоля, а перманганат – ионы восстанавливаются с образованием диоксида марганца.

Схемы соответствующих полуреакций:

Суммарное электронно-ионное уравнение:

3. Реакции окисления глюкозы перманганата калия в кислой среде.

А. Метод электронного баланса.

Первый вариант

Второй вариант

Рассчитаем степени окисления каждого из атомов углерода в молекуле глюкозы:

Схема электронного баланса усложняется по сравнению с предыдущими примерами:

Б. Метод полуреакций в данном случае выглядит следующим образом:

Суммарное ионное уравнение:

Молекулярное уравнение реакции глюкозы перманганататом калия:

В органической химии целесообразно использовать определение окисления как увеличение содержания кислорода или уменьшение содержания водорода . Восстановление в таком случае определяется как уменьшение содержания кислорода или увеличение содержания водорода. При таком определении последовательное окисление органических веществ можно представить следующей схемой:

Практика показывает, что подбор коэффициентов в реакциях окисления органических веществ вызывает определенные затруднения, так как приходится иметь дело с весьма непривычными степенями окисления.. Некоторые учащиеся из-за отсутствия опыта продолжают отождествлять степень окисления с валентностью и, вследствие этого, неправильно определяют степень окисления углерода в органических соединениях. Валентность углерода в этих соединениях всегда равна четырем, а степень окисления может принимать различные значения (от -3 до +4, в том числе дробные значения). Непривычным моментом при окислении органических веществ является нулевая степень окисления атома углерода в некоторых сложных соединениях. Если преодолеть психологический барьер, составление таких уравнений не представляет сложности, например:

Степень окисления атома углерода в сахарозе равна нулю. Переписываем схему реакции с указанием степеней окисления атомов, которые их меняют:

Составляем электронные уравнения и находим коэффициенты при окислителе и восстановителе и продуктах их окисления и восстановления:

Подставим полученные коэффициенты в схему реакции:

Оставшиеся коэффициенты подбираем в такой последовательности: K SO , H SO , H O. Окончательное уравнение имеет вид:

Многие вузы включают в билеты для вступительных экзаменов задания по подбору коэффициентов в уравнениях ОВР электронным методом(методом полуреакций). Если в школе и уделяется хоть какое-то внимание этому методу, то, в основном при окислении неорганических веществ. Попробуем применить метод полуреакций для выше приведенного примера окисления сахарозы перманганатом калия в кислой среде.

Первое преимущество этого метода заключается в том, что нет необходимости сразу угадывать и записывать продукты реакции. Они достаточно легко определяются в ходе уравнения. Окислитель в кислой среде наиболее полно проявляет свои окислительные свойства, например, анион MnO превращается в катион Mn , легко окисляющиеся органические окисляются до CO .

Запишем в молекулярном виде превращения сахарозы:

В левой части не хватает 13 атомов кислорода, чтобы устранить это противоречие, прибавим 13 молекул H O. СН

2. Карцова А.А, Левкин А. Н. Окислительно-восстановительные реакции в органической химии // Химия в школе. - 2004. - №2. – С.55-61.

3. Хомченко Г.П., Савостьянова К.И. Окислительно-восстановительные реакции: Пособие для учащихся. М.- : Просвещение, 1980.

4. Шарафутдинов В. Окислительно-восстановительные реакции в органической химии // Башкортостан уkытыусыhы. - 2002. - №5. – С.79 -81.


Алкины (иначе ацетиленовые углеводороды) - углеводороды, содержащие тройную связь между атомами углерода, с общей формулой CnH2n-2. Атомы углерода при тройной связи находятся в состоянии sp - гибридизации.

Взаимодействие ацетилена с бромной водой

Молекула ацетилена содержит тройную связь, бром разрушает её и присоединяется к ацетилену. Образуется терабромэтан. Бром расходуется на образование тетрабромэтана. Бромная вода (жёлтая) - обесцвечивается.


Эта реакция протекает с меньшей скоростью, чем в ряду этиленовых углеводородов. Реакция также проходит ступенчато:


HC ≡ CH + Br 2 → CHBr = CHBr + Br 2 → CHBr 2 - CHBr 2


ацетилен → 1,2-дибромэтан → 1,1,2,2-тетрабромэтан


Обесцвечивание бромной воды доказывает непредельность ацетилена.

Реакция ацетилена с раствором перманганата калия

В растворе перманганата калия происходит окисление ацетилена, при этом происходит разрыв молекулы по месту тройной связи, раствор быстро обесцвечивается.


3НC ≡ СН + 10KMnO 4 + 2H 2 O → 6CO 2 + 10КОН + 10MnO 2


Эта реакция является качественной реакцией на двойную и тройную связь.

Реакция ацетилена с аммиачным раствором оксида серебра

Если ацетилен пропустить через аммиачный раствор оксида серебра, атомы водорода в молекуле ацетилена легко заместятся металлами, так как обладают большой подвижностью. В данном опыте атомы водорода замещаются атомами серебра. Образуется ацетиленид серебра - осадок жёлтого цвета (взрывоопасен).


CH ≡ СН + OH → AgC≡CAg↓ + NH 3 + H 2 O


Эта реакция является качественной реакцией на тройную связь.