» » Определенный интеграл. Как вычислить площадь фигуры. Как вычислить площадь фигуры Как вычислить площадь разных фигур

Определенный интеграл. Как вычислить площадь фигуры. Как вычислить площадь фигуры Как вычислить площадь разных фигур

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S (G) = ∫ a b f (x) d x для непрерывной и неотрицательной функции y = f (x) на отрезке [ a ; b ] ,

S (G) = - ∫ a b f (x) d x для непрерывной и неположительной функции y = f (x) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f (x) или x = g (y) .

Теорема

Пусть функции y = f 1 (x) и y = f 2 (x) определены и непрерывны на отрезке [ a ; b ] , причем f 1 (x) ≤ f 2 (x) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 (x) и y = f 2 (x) будет иметь вид S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 (y) и x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y .

Доказательство

Разберем три случая, для которых формула будет справедлива.

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Поэтому, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графическая иллюстрация будет иметь вид:

Если обе функции неположительные, получаем: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графическая иллюстрация будет иметь вид:

Перейдем к рассмотрению общего случая, когда y = f 1 (x) и y = f 2 (x) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n - 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i - 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Следовательно,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f (x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формулу S (G) = ∫ a b f 2 (x) - f 1 (x) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f (x) и x = g (y) .

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y = - x 2 + 6 x - 5 и прямыми линиями y = - 1 3 x - 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

На отрезке [ 1 ; 4 ] график параболы y = - x 2 + 6 x - 5 расположен выше прямой y = - 1 3 x - 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Ответ: S (G) = 13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке (2 ; 2) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Ответ: S (G) = 59 6

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = - x 2 + 4 x - 2 .

Решение

Нанесем линии на график.

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и - x 2 + 4 x - 2 . При условии, что x не равно нулю, равенство 1 x = - x 2 + 4 x - 2 становится эквивалентным уравнению третьей степени - x 3 + 4 x 2 - 2 x - 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Разделив выражение - x 3 + 4 x 2 - 2 x - 1 на двучлен x - 1 , получаем: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Оставшиеся корни мы можем найти из уравнения x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 - 13 2 ≈ - 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Ответ: S (G) = 7 + 13 3 - ln 3 + 13 2

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = - log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = - log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке (0 ; 0) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения - log 2 x + 1 = 0 , поэтому графики функций y = - log 2 x + 1 и y = 0 пересекаются в точке (2 ; 0) .

x = 1 является единственным корнем уравнения x 3 = - log 2 x + 1 . В связи с этим графики функций y = x 3 и y = - log 2 x + 1 пересекаются в точке (1 ; 1) . Последнее утверждение может быть неочевидным, но уравнение x 3 = - log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = - log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В этом случае для нахождения площади придется использовать формулу вида S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и - log 2 x + 1 относительно x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Получим искомую площадь:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Ответ: S (G) = 1 ln 2 - 1 4

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = - 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x - 3 .

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 П р о в е р к а: x 1 = 16 = 4 , - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ (4 ; 2) т о ч к а п е р е с е ч е н и я y = x и y = - 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 П р о в е р к а: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ (9 ; 3) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = - 1 2 x + 4 и y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) т о ч к а п е р е с е ч е н и я y = - 1 2 x + 4 и y = 2 3 x - 3

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Тогда площадь фигуры равна:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = - 1 2 x + 4 ⇒ x = - 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S (G) = 11 3

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Чтобы решить задачи по геометрии, надо знать формулы - такие, как площадь треугольника или площадь параллелограмма - а также простые приёмы, о которых мы расскажем.

Для начала выучим формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!

Конечно, не все формулы по геометрии есть в нашей таблице. Например, для решения задач по геометрии и стереометрии во второй части профильного ЕГЭ по математике применяются и другие формулы площади треугольника. О них мы обязательно расскажем.

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.

1. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём - разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь - как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

Ответ: .

2. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Ответ: .

3. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора - части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

Класс: 5

На мой взгляд, задача учителя – не только научить, а развить познавательный интерес у учащегося. Поэтому, когда возможно, связываю темы урока с практическими задачами.

На занятии учащиеся под руководством учителя составляют план решения задач на нахождение площади «сложной фигуры» (для расчеты сметы ремонта), закрепляют навыки решения задач на нахождение площади; происходит развитие внимания, способности к исследовательской деятельности, воспитание активности, самостоятельности.

Работа в парах создает ситуацию общения между теми, кто имеет знания и теми, кто их приобретает; в основе такой работы лежит повышение качества подготовки по предмету. Способствует развитию интереса к процессу учения и более глубокому усвоению учебного материала.

Урок не только систематизирует знания обучающихся, но и способствует развитию творческих, аналитических способностей. Применение задач с практическим содержанием на уроке позволяет показать востребованность математических знаний в повседневной жизни.

Цели урока:

Образовательные:

  • закрепление знаний формул площади прямоугольника, прямоугольного треугольника;
  • анализ заданий на вычисление площади “сложной” фигуры и способов их выполнения;
  • самостоятельное выполнение заданий для проверки знаний, умений, навыков.

Развивающие:

  • развитие приёмов умственной и исследовательской деятельности;
  • развитие умения слушать и объяснять ход решения.

Воспитательные:

  • воспитывать у учащихся навыки учебного труда;
  • воспитывать культуру устной и письменной математической речи;
  • воспитывать дружеское отношение в классе и умение работать в группах.

Тип урока: комбинированный.

Оборудование:

  • Математика: учебник для 5 кл. общеобразоват. учреждений/ Н.Я. Виленкин, В.И. Жохов и др., М.: «Мнемозина», 2010.
  • Карточки для групп учащихся с фигурами для вычисления площади сложной фигуры.
  • Чертёжные инструменты.

План урока:

  1. Организационный момент.
  2. Актуализация знаний.
    а) Теоретические вопросы (тест).
    б) Постановка проблемы.
  3. Изученного нового материала.
    а) поиск решения проблемы;
    б) решение поставленной проблемы.
  4. Закрепление материала.
    а) коллективное решение задач;
    Физкультминутка.
    б) самостоятельная работа.
  5. Домашнее задание.
  6. Итог урока. Рефлексия.

Ход урока

I. Организационный момент.

Урок мы начнём вот с таких напутствующих слов:

Математика, друзья,
Абсолютно всем нужна.
На уроке работай старательно,
И успех тебя ждёт обязательно!

II. Актуализация знаний.

а) Фронтальная работа с сигнальными карточками (у каждого ученика карточки с числами 1, 2, 3, 4; при ответе на вопрос теста ученик поднимает карточку с номером правильного ответа).

1. Квадратный сантиметр – это:

  1. площадь квадрата со стороной 1 см;
  2. квадрат со стороной 1 см;
  3. квадрат с периметром 1 см.

2. Площадь фигуры, изображённой на рисунке, равна:

  1. 8 дм;
  2. 8 дм 2 ;
  3. 15 дм 2 .

3. Справедливо ли утверждение, что равные фигуры имеют равные периметры и равные площади?

4. Площадь прямоугольника определяется по формуле:

  1. S = a 2 ;
  2. S = 2 (a + b);
  3. S = a b.

5. Площадь фигуры изображённой на рисунке, равна:

  1. 12 см;
  2. 8 см;
  3. 16 см.

б) (Постановка проблемы). Задача. Сколько надо краски, чтобы покрасить пол, который имеет следующую форму (см. рис.), если на 1 м 2 расходуется 200 г краски?

III. Изучение нового материала.

Что же мы должны узнать, чтобы решить последнюю задачу? (Найти площадь пола, который имеет вид «сложной фигуры».)

Учащиеся формулируют тему и цели урока (если необходимо учитель помогает).

Рассмотрим прямоугольник ABCD . Проведём в нем линию KPMN , разбив прямоугольник ABCD на две части: ABNMPK и KPMNCD.

Чему равна площадь ABCD ? (15 см 2)

Чему равна площадь фигуры ABMNPK ? (7 см 2)

Чему равна площадь фигуры KPMNCD ? (8 см 2)

Проанализируйте полученные результаты. (15= = 7 + 8)

Вывод? (Площадь всей фигуры равна сумме площадей её частей.)

S = S 1 + S 2

Как можно применить это свойство для решения нашей задачи?(Разобьём сложную фигуру на части, найдём площади частей, затем площадь всей фигуры.)

S 1 = 7 2 = 14 (м 2)
S 2 = (7 – 4) (8 – 2 – 3) = 3 3 = 9 (м 2)
S 3 = 7 3 = 21 (м 2)
S = S 1 + S 2 + S 3 = 14 + 9 + 21 = 44 (м 2)

Давайте составим план решения задач на нахождение площади «сложной фигуры»:

  1. Разбиваем фигуру на простые фигуры.
  2. Находим площади простых фигур.

а) Задача 1. Сколько потребуется плитки, чтобы выложить площадку следующих размеров:

S = S 1 + S 2
S 1 = (60 – 30) 20 = 600 (дм 2)
S 2 = 30 50 = 1500 (дм 2)
S = 600 + 1500 = 2100 (дм 2)

Есть ли другой способ решения? (Рассматриваем предложенные варианты.)

Ответ: 2100 дм 2 .

Задача 2. (коллективное решение на доске и в тетрадях.) Сколько требуется м 2 линолеума для ремонта комнаты, имеющей следующую форму:

S = S 1 + S 2
S 1 = 3 2 = 6 (м 2)
S 2 = ((5 – 3) 2) : 2 = 2 (м 2)
S = 6 + 2 = 8 (м 2)

Ответ: 8 м 2 .

Физкультминутка.

А теперь, ребята, встали.
Быстро руки вверх подняли.
В стороны, вперед, назад.
Повернулись вправо, влево.
Тихо сели, вновь за дело.

б) Самостоятельная работа (обучающего характера).

Учащиеся разбиваются на группы (№ 5–8 более сильные). Каждая группа – ремонтная бригада.

Задание бригадам: определите, сколько надо краски, чтобы покрасить пол, имеющий форму фигуры, изображённой на карточке, если на 1 м 2 требуется 200 г краски.

Вы эту фигуру строите своей тетради и записывая все данные, приступаете к выполнению задания. Можете обсуждать решение (но только в своей группе!). Если какая-то группа справляется с заданием быстро, то ей – дополнительное задание (после проверки самостоятельной работы).

Задания для групп:

V. Домашнее задание.

п. 18, № 718, № 749.

Дополнительное задание. План-схема Летнего сада (Санкт-Петербург). Вычислить его площадь.

VI. Итоги урока.

Рефлексия. Продолжи фразу:

  • Сегодня я узнал…
  • Было интересно…
  • Было трудно…
  • Теперь я могу…
  • Урок дал мне для жизни…

Как найти площадь фигуры?


Знать и уметь рассчитывать площади различных фигур необходимо не только для решения простых геометрических задач. Не обойтись без этих знаний и при составлении или проверке смет на ремонт помещений, расчета количества необходимых расходных материалов. Поэтому давайте разберемся, как находить площади разных фигур.

Часть плоскости, заключенная внутри замкнутого контура, называется площадью этой плоскости. Выражается площадь количеством заключенных в ней квадратных единиц.

Чтобы вычислить площадь основных геометрических фигур, необходимо использовать правильную формулу.

Площадь треугольника

Обозначения:

  1. Если известны h, a, то площадь искомого треугольника определяется как произведение длин стороны и высоты треугольника, опущенной к этой стороне, разделенное пополам: S=(a·h)/2
  2. Если известны a, b, c, то искомая площадь рассчитывается по формуле Герона: корень квадратный, взятый из произведения половины периметра треугольника и трех разностей половины периметра и каждой стороны треугольника: S = √(p·(p - a)·(p - b)·(p - c)).
  3. Если известны a, b, γ, то площадь треугольника определяется как половина произведения 2-х сторон, умноженная на значение синуса угла между этими сторонами: S=(a·b·sin γ)/2
  4. Если известны a, b, c, R, то искомая площадь определяется как деление произведения длин всех сторон треугольника на четыре радиуса описанной окружности: S=(a·b·c)/4R
  5. Если известны p, r, то искомая площадь треугольника определяется умножением половины периметра на радиус вписанной в него окружности: S=p·r

Площадь квадрата

Обозначения:

  1. Если известна сторона, то площадь данной фигуры определяется как квадрат длины его стороны: S=a 2
  2. Если известна d, то площадь квадрата определяется как половина квадрата длины его диагонали: S=d 2 /2

Площадь прямоугольника

Обозначения:

  • S - определяемая площадь,
  • a, b - длины сторон прямоугольника.
  1. Если известны a, b, то площадь данного прямоугольника определяется произведением длин двух его сторон: S=a·b
  2. Если длины сторон неизвестны, то площадь прямоугольника нужно разбить на треугольники. В этом случае площадь прямоугольника определяется как сумма площадей составляющих его треугольников.

Площадь параллелограмма

Обозначения:

  • S - искомая площадь,
  • a, b - длины сторон,
  • h - длина высоты данного параллелограмма,
  • d1, d2 - длины двух диагоналей,
  • α - угол, находящийся между сторонами,
  • γ - угол, находящийся между диагоналями.
  1. Если известны a, h, то искомая площадь определяется перемножением длин стороны и высоты, опущенной на эту сторону: S=a·h
  2. Если известны a, b, α, то площадь параллелограмма определяется перемножением длин сторон параллелограмма и значения синуса угла между этими сторонами: S=a·b·sin α
  3. Если известны d 1 , d 2 , γ то площадь параллелограмма определяется как половина произведения длин диагоналей и значения синуса угла между этими диагоналями: S=(d 1 ·d 2 ·sinγ)/2

Площадь ромба

Обозначения:

  • S - искомая площадь,
  • a - длина стороны,
  • h - длина высоты,
  • α - меньший угол между двумя сторонами,
  • d1, d2 - длины двух диагоналей.
  1. Если известны a, h, то площадь ромба определяется умножением длины стороны на длину высоты, которая опущена на эту сторону: S=a·h
  2. Если известны a, α, то площадь ромба определяется перемножением квадрата длины стороны на синус угла между сторонами: S=a 2 ·sin α
  3. Если известны d 1 и d 2 , то искомая площадь определяется как половина произведения длин диагоналей ромба: S=(d 1 ·d 2)/2

Площадь трапеции

Обозначения:

  1. Если известны a, b, c, d, то искомая площадь определяется по формуле: S= (a+b) /2 *√ .
  2. При известных a, b, h, искомая площадь определяется как произведение половины суммы оснований и высоты трапеции: S=(a+b)/2·h

Площадь выпуклого четырехугольника

Обозначения:

  1. Если известны d 1 , d 2 , α, то площадь выпуклого четырехугольника определяется как половина произведения диагоналей четырехугольника, умноженная на величину синуса угла между этими диагоналями: S=(d 1 · d 2 ·sin α)/2
  2. При известных p, r площадь выпуклого четырехугольника определяется как произведение полупериметра четырехугольника на радиус окружности, вписанной в этот четырехугольник: S=p·r
  3. Если известны a, b, c, d, θ, то площадь выпуклого четырехугольника определяется как корень квадратный из произведений разницы полупериметра и длины каждой стороны за минусом произведения длин всех сторон и квадрата косинуса половины суммы двух противоположных углов: S 2 = (p - a)(p - b)(p - c)(p - d) - abcd·cos 2 ((α+β)/2)

Площадь круга

Обозначения:

Если известен r, то искомая площадь определяется как произведение числа π на радиус в квадрате: S=π r 2

Если известна d, то площадь круга определяется как произведение числа π на квадрат диаметра, поделенное на четыре: S=(π·d 2)/4

Площадь сложной фигуры

Сложную можно разбить на простые геометрические фигуры. Площадь сложной фигуры определяется как сумма или разность составляющих площадей. Рассмотрим, к примеру, кольцо.

Обозначение:

  • S - площадь кольца,
  • R, r - радиусы внешней окружности и внутренней соответственно,
  • D, d - диаметры внешней окружности и внутренней соответственно.

Для того чтобы найти площадь кольца, надо из площади большего круга отнять площадь меньшего круга. S = S1-S2 = πR 2 -πr 2 = π (R 2 -r 2).

Таким образом, если известны R и r, то площадь кольца определяется как разница квадратов радиусов внешней и внутренней окружностей, умноженная на число пи: S=π(R 2 -r 2).

Если известны D и d, то площадь кольца определяется как четверть разницы квадратов диаметров внешней и внутренней окружностей, умноженная на число пи: S= (1/4)(D 2 -d 2) π.

Площадь закрашенной фигуры

Предположим, что внутри одного квадрата (А) находится другой (Б) (меньшего размера), и нам нужно найти закрашенную полость между фигурами "А" и "Б". Скажем так, "рамку" маленького квадрата. Для этого:

  1. Находим площадь фигуры "А" (вычисляется по формуле нахождения площади квадрата).
  2. Аналогичным образом находим площадь фигуры "Б".
  3. Вычитаем из площади "А" площадь "Б". И таким образом получаем площадь закрашенной фигуры.

Теперь вы знаете, как находить площади разных фигур.