» » С 45 определенный интеграл вычисление площадей. Вычисление площадей фигур, ограниченных заданными линиями. Определенный интеграл. Как вычислить площадь фигуры

С 45 определенный интеграл вычисление площадей. Вычисление площадей фигур, ограниченных заданными линиями. Определенный интеграл. Как вычислить площадь фигуры

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа , поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, и гиперболу .

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл.

С точки зрения геометрии определенный интеграл - это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости кривую, располагающуюся выше оси (желающие могут выполнить чертёж), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения - построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом - параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


На отрезке график функции расположен над осью , поэтому:

Ответ:

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже - ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка - в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение : Выполним чертеж:


Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:


В данном случае:

Внимание! Не следует путать два типа задач :

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение : Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ - аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .

Этим способом лучше, по возможности, не пользоваться .

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула : Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура - над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой - НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

Пример 4

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение : Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие - чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов.

Действительно :

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Из определения следует, что для неотрицательной функции f(x) определенный интегралравен площади криволинейной трапеции, ограниченной кривой у =f(x), прямыми х = а, х =bи осью абсциссy= 0 (рисунок 4.1).

Если функция – f(x) неположительна, то определенный интеграл
равен площади соответствующей криволинейной трапеции, взятой со знаком минус (рисунок 4.7).

Рисунок 4.7 – Геометрический смысл определенного интеграла для неположительной функции

Для произвольной непрерывной функции f(x) определенный интеграл
равен сумме площадей криволинейных трапеций, лежащих под графиком функцииf(x) и выше оси абсцисс, за вычетом суммы площадей криволинейных трапеций, лежащих над графиком функцииf(x) и ниже оси абсцисс (рисунок 4.8).

Рисунок 4.8 – Геометрический смысл определенного интеграла для произвольной непрерывной функции f(x) (знаком «плюс» помечена площадь, которую прибавляют, а «минусом» - та, которую вычитают).

При вычислении на практике площадей криволинейных фигур часто используется следующая формула:
, гдеS– площадь фигуры, заключенной между кривыми y = f 1 (x) и y = f 2 (x) на отрезке [а,b], а f 1 (x) и f 2 (x) - непрерывные функции, заданные на этом отрезке, такие, что f 1 (x) ≥ f 2 (x) (см. рисунки 4.9, 4.10).

При изучении экономического смысла производной было выяснено, что производная выступает как скорость изменения некоторого экономического объекта или процесса во времени или относительного другого исследуемого фактора. Чтобы установить экономический смысл определенного интеграла, необходимо саму эту скорость рассмотреть в виде функции от времени или другого фактора. Тогда, так как определенный интеграл представляет собой изменение первообразной, мы получим, что в экономике он оценивает изменение этого объекта (процесса) за определенный период времени (или при определенном изменении другого фактора).

Например, если функция q=q(t) описывает производительность труда в зависимости от времени, то определенный интеграл от этой функции
представляет собой объем выпущенной продукцииQза промежуток времени отt 0 доt 1 .

Методы вычисления определенных интегралов основаны на рассмотренных ранее методах интегрирования (доказательств проводить не будем).

При нахождении неопределенного интеграла мы пользовались методом замены переменной, основанным на формуле: f(x)dx= =f((t))`(t)dt, где x =(t) - функция, дифференцируемая на рассматриваемом промежутке. Для определенного интеграла формула замены переменной примет вид
, где
и для всех.

Пример 1 . Найти

Пусть t= 2 –x 2 . Тогдаdt= -2xdxиxdx= - ½dt.

При х = 0 t= 2 – 0 2 = 2. При х = 1t= 2 – 1 2 = 1. Тогда

Пример 2 . Найти

Пример 3 . Найти

Формула интегрирования по частям для определенного интеграла примет вид:
, где
.

Пример 1 . Найти

Пусть u=ln(1 +x),dv=dx. Тогда

Пример 2 . Найти

Вычисление площадей плоских фигур с помощью определенного интеграла

Пример 1. Найти площадь фигуры, ограниченной линиями у = х 2 – 2 иy=x.

График функции y= х 2 – 2 представляет собой параболу с точкой минимума приx= 0,y= -2; ось абсцисс пересекается в точках
. График функции у = х – прямая, биссектриса неотрицательной координатной четверти.

Найдем координаты точек пересечения параболы у = х 2 – 2 и прямой у = х, решив систему этих уравнений:

х 2 – х - 2 = 0

х = 2; y= 2 или х = -1;y= -1

Таким образом, фигуру, площадь которой необходимо найти, можно представить на рисунке 4.9.

Рисунок 4.9 – Фигура, ограниченная линиями у = х 2 – 2 иy=x

На отрезке [-1, 2] х ≥ х 2 – 2 .

Воспользуемся формулой
, полагая f 1 (х) = х; f 2 (х) = х 2 – 2;a= -1;b= 2.

Пример 2. Найти площадь фигуры, ограниченной линиями у = 4 - х 2 иy= х 2 – 2x.

График функции y = 4 - х 2 представляет собой параболу с точкой максимума приx= 0,y= 4; ось абсцисс пересекается в точках 2 и -2. График функции у = х 2 – 2x– парабола с точкой минимума при 2x- 2 = 0, х = 1;y= -1; ось абсцисс пересекается в точках 0 и 2.

Найдем координаты точек пересечения кривых:

4 - х 2 = х 2 – 2х

2х 2 – 2х - 4 = 0

х 2 – х - 2 = 0

х = 2; y= 0 или х = -1;y= 3

Таким образом, фигуру, площадь которой необходимо найти, можно предствить на рисунке 4.10.

Рисунок 4.10 - Фигура, ограниченная линиями у = 4 - х 2 иy= х 2 – 2x

На отрезке [-1, 2] 4 - х 2 ≥ х 2 – 2x.

Воспользуемся формулой
, полагая f 1 (х) = 4 - - х 2 ; f 2 (х) = х 2 – 2х;a= -1;b= 2.

Пример 3. Найти площадь фигуры, ограниченной линиями у = 1/х;y= х 2 иy= 4 в неотрицательной координатной четверти.

График функции у = 1/х представляет собой гиперболу, при положительных х она выпукла вниз; оси координат являются асимптотами. График функции у = х 2 в неотрицательной координатной четверти – ветвь параболы с точкой минимума в начале координат. Эти графики пересекаются при 1/х = х 2 ; х 3 = 1; х = 1; у = 1.

Прямую y= 4 график функции у = 1/х пересекает при х =1/4, а график функции у = х 2 при х = 2 (или -2).

Таким образом, фигуру, площадь которой необходимо найти, можно представить на рисунке 4.11.

Рисунок 4.11 - Фигура, ограниченная линиями у = 1/х; y= х 2 иy= 4 в неотрицательной координатной четверти

Искомая площадь фигуры ABCравна разности между площадью прямоугольника АВНЕ, которая равна 4*(2 – ¼) = 7, и суммой площадей двух криволинейных трапеций АСFЕ и СВНF. Вычислим площадь АСFЕ:

Вычислим площадь СВНF:

.

Итак, искомая площадь равна 7 – (ln4 + 7/3) = 14/3 –ln43,28 (ед. 2).

С помощью определенного интеграла можно вычислять площади плоских фигур, так как эта задача всегда сводится к вычислению площадей криволинейных трапеций.

Площадь всякой фигуры в прямоугольной системе координат может быть составлена из площадей криволинейных трапеций, прилегающих к оси Ох или к оси Оу .

Задачи на вычисление площадей плоских фигур удобно решать по следующему плану:

1. По условию задачи сделать схематический чертеж

2. Представить искомую площадь как сумму или разность площадей криволинейных трапеций. Из условия задачи и чертежа определяют пределы интегрирования для каждой составляющей криволинейной трапеции.

3. Записывают каждую функцию в виде y = f(x) .

4. Вычисляют площади каждой криволинейной трапеции и площадь искомой фигуры.

Рассмотрим несколько вариантов расположения фигур.

1). Пусть на отрезке [a; b ] функция f(x) принимает неотрицательные значения. Тогда график функции y = f(x) расположен над осью Ох .

S =

2). Пусть на отрезке [a; b ] неположительная непрерывная функция f(x). Тогда график функции y = f(x) расположен под осью Ох :

Площадь такой фигуры вычисляется по формуле:S = -

Площадь такой фигуры вычисляется по формуле:S =

4). Пусть на отрезке [a; b ] функция f(x) принимает как положительные, так и отрицательные значения. Тогда отрезок [a; b ] нужно разбить на такие части, в каждой из которых функция не изменяет знак, затем по приведенным выше формулам вычислить соответствующие этим частям площади и найденные площади сложить.

S 1 = S 2 = - S ф = S 1 + S 2

Начинаем рассматривать собственно процесс вычисления двойного интеграла и знакомиться с его геометрическим смыслом.

Двойной интеграл численно равен площади плоской фигуры (области интегрирования). Это простейший вид двойного интеграла, когда функция двух переменных равна единице: .

Сначала рассмотрим задачу в общем виде. Сейчас вы немало удивитесь, насколько всё действительно просто! Вычислим площадь плоской фигуры , ограниченной линиями . Для определённости считаем, что на отрезке . Площадь данной фигуры численно равна:

Изобразим область на чертеже:

Выберем первый способ обхода области:

Таким образом:

И сразу важный технический приём: повторные интегралы можно считать по отдельности . Сначала внутренний интеграл, затем – внешний интеграл. Данный способ настоятельно рекомендую начинающим в теме чайникам.

1) Вычислим внутренний интеграл, при этом интегрирование проводится по переменной «игрек»:

Неопределённый интеграл тут простейший, и далее используется банальная формула Ньютона-Лейбница, с той лишь разницей, что пределами интегрирования являются не числа, а функции . Сначала подставили в «игрек» (первообразную функцию) верхний предел, затем – нижний предел

2) Результат, полученный в первом пункте необходимо подставить во внешний интеграл:

Более компактная запись всего решения выглядит так:

Полученная формула – это в точности рабочая формула для вычисления площади плоской фигуры с помощью «обычного» определённого интеграла! Смотрите урок Вычисление площади с помощью определенного интеграла , там она на каждом шагу!

То есть, задача вычисления площади с помощью двойного интеграла мало чем отличается от задачи нахождения площади с помощью определённого интеграла! Фактически это одно и тоже!

Соответственно, никаких трудностей возникнуть не должно! Я рассмотрю не очень много примеров, так как вы, по сути, неоднократно сталкивались с данной задачей.

Пример 9

Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Здесь и далее я не буду останавливаться на том, как выполнять обход области, поскольку в первом параграфе были приведены очень подробные разъяснения.

Таким образом:

Как я уже отмечал, начинающим лучше вычислять повторные интегралы по отдельности, этого же метода буду придерживаться и я:

1) Сначала с помощью формулы Ньютона-Лейбница разбираемся с внутренним интегралом:

2) Результат, полученный на первом шаге, подставляем во внешний интеграл:

Пункт 2 – фактически нахождение площади плоской фигуры с помощью определённого интеграла.

Ответ:

Вот такая вот глупая и наивная задача.

Любопытный пример для самостоятельного решения:

Пример 10

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями , ,

Примерный образец чистового оформления решения в конце урока.

В Примерах 9-10 значительно выгоднее использовать первый способ обхода области, любознательные читатели, кстати, могут изменить порядок обхода и вычислить площади вторым способом. Если не допустите ошибку, то, естественно, получатся те же самые значения площадей.

Но в ряде случаев более эффективен второй способ обхода области, и в заключение курса молодого ботана рассмотрим ещё пару примеров на эту тему:

Пример 11

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: нас с нетерпением ждут две параболы с бзиком, которые лежат на боку. Улыбаться не нужно, похожие вещи в кратных интегралах встречаются частенько.

Как проще всего сделать чертёж?

Представим параболу в виде двух функций:
– верхняя ветвь и – нижняя ветвь.

Аналогично, представим параболу в виде верхней и нижней ветвей.

Далее рулит поточечное построение графиков, в результате чего получается вот такая причудливая фигура:

Площадь фигуры вычислим с помощью двойного интеграла по формуле:

Что будет, если мы выберем первый способ обхода области? Во-первых, данную область придётся разделить на две части. А во-вторых, мы будем наблюдать сию печальную картину: . Интегралы, конечно, не сверхсложного уровня, но… существует старая математическая присказка: кто с корнями дружен, тому зачёт не нужен.

Поэтому из недоразумения, которое дано в условии, выразим обратные функции:

Обратные функции в данном примере обладают тем преимуществом, что задают сразу всю параболу целиком без всяких там листьев, желудей веток и корней.

Согласно второму способу, обход области будет следующим:

Таким образом:

Как говорится, ощутите разницу.

1) Расправляемся с внутренним интегралом:

Результат подставляем во внешний интеграл:

Интегрирование по переменной «игрек» не должно смущать, была бы буква «зю» – замечательно бы проинтегрировалось и по ней. Хотя кто прочитал второй параграф урока Как вычислить объем тела вращения , тот уже не испытывает ни малейшей неловкости с интегрированием по «игрек».

Также обратите внимание на первый шаг: подынтегральная функция является чётной, а отрезок интегрирования симметричен относительно нуля. Поэтому отрезок можно споловинить, а результат – удвоить. Данный приём подробно закомментирован на уроке Эффективные методы вычисления определённого интеграла .

Что добавить…. Всё!

Ответ:

Для проверки своей технике интегрирования можете попробовать вычислить . Ответ должен получиться точно таким же.

Пример 12

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями

Это пример для самостоятельного решения. Интересно отметить, что если вы попробуете использовать первый способ обхода области, то фигуру придётся разделить уже не на две, а на три части! И, соответственно, получится три пары повторных интегралов. Бывает и такое.

Мастер класс подошел к завершению, и пора переходить на гроссмейстерский уровень – Как вычислить двойной интеграл? Примеры решений . Постараюсь во второй статье так не маньячить =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Таким образом:
Перейдём к обратным функциям:


Таким образом:
Ответ:

Пример 4: Решение: Перейдём к прямым функциям:


Выполним чертёж:

Изменим порядок обхода области:

Ответ: