» » Какая формула определяет максимальный магнитный поток. Единица измерения магнитного потока. Что такое магнитный поток

Какая формула определяет максимальный магнитный поток. Единица измерения магнитного потока. Что такое магнитный поток

То линии индукции магнитного поля будут проходить через этот контур. Линия магнитной индукции это магнитная индукция в каждой точке этой линии. То есть, мы можем говорить о том, что линии магнитной индукции это поток вектора индукции по пространству, ограниченному и описываемому этими линиями. Можно сказать короче магнитный поток.

В общих чертах с понятием «магнитный поток» знакомятся в девятом классе. Более детальное рассмотрение с выводом формул и пр., относится к курсу физики старших классов. Итак, магнитный поток это определенное количество индукции магнитного поля в какой-либо области пространства.

Направление и количество магнитного потока

Магнитный поток имеет направление и количественное значение. В нашем случае контура с током, говорят, что этот контур пронизывает определенный магнитный поток. При этом понятно, что чем больше по размеру будет контур, тем больший магнитный поток пройдет сквозь него.

То есть, магнитный поток зависит от площади пространства, через которую он проходит. Если мы имеем неподвижную рамку определенного размера, пронизываемую постоянным магнитным полем, то магнитный поток, проходящий через эту рамку, будет постоянным.

Если же мы увеличим силу магнитного поля, то соответственно увеличится магнитная индукция. Величина магнитного потока также возрастет, причем пропорционально возросшей величине индукции. То есть, магнитный поток зависит от величины индукции магнитного поля и площади пронизываемой поверхности.

Магнитный поток и рамка - рассмотрим пример

Рассмотрим вариант, когда наша рамка расположена перпендикулярно магнитному потоку. Площадь, ограничиваемая этой рамкой, будет максимальна по отношению к проходящему через нее магнитному потоку. Следовательно, величина потока будет максимальной для данной величины индукции магнитного поля.

Если же мы начнем вращать рамку относительно направления магнитного потока, то площадь, через которую может проходить магнитный поток, будет уменьшаться, следовательно, будет уменьшаться величина магнитного потока через эту рамку. Причем, она будет уменьшаться вплоть до нуля, когда рамка станет расположена параллельно линиям магнитной индукции.

Магнитный поток будет как бы скользить мимо рамки, он не будет ее пронизывать. В таком случае и действие магнитного поля на рамку с током будет равно нулю. Таким образом, мы можем вывести следующую зависимость:

Магнитный поток, пронизывающий площадь контура, меняется при изменении модуля вектора магнитной индукции B, площади контура S и при вращении контура, то есть при изменении его ориентации к линиям индукции магнитного поля.

Закон Ампера используется для установления единицы силы тока – ампер.

Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстоянии один метр, один от другого в вакууме, вызывает между этими проводниками силу в .

, (2.4.1)

Здесь ; ; ;

Определим отсюда размерность и величину в СИ.

, следовательно

, или .

Из закона Био–Савара–Лапласа, для прямолинейного проводника с током , тоже можно найти размерность индукции магнитного поля:

Тесла – единица измерения индукции в СИ. .

Гаусс – единица измерения в Гауссовой системе единиц (СГС).

1 Тл равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющим магнитный момент , действует вращающий момент .

Тесла Никола (1856–1943) – сербский ученый в области электротехники и радиотехники. Имел огромное количество изобретений. Изобрел электрический счетчик, частотомер и др. Разработал ряд конструкций многофазных генераторов, электродвигателей и трансформаторов. Сконструировал ряд радиоуправляемых самоходных механизмов. Изучал физиологическое действие токов высокой частоты. Построил в 1899 г. радиостанцию на 200 кВт в Колорадо и радиоантенну высотой 57,6 м в Лонг-Айленде (башня Ворденклиф). Вместе с Эйнштейном и Опенгеймером в 1943 г. участвовал в секретном проекте по достижению невидимости американских кораблей (Филадельфийский эксперимент). Современники говорили о Тесле как о мистике, ясновидце, пророке, способном заглянуть в разумный космос и мир мертвых. Он верил, что с помощью электромагнитного поля можно перемещаться в пространстве и управлять временем.

Другое определение: 1 Тл равен магнитной индукции, при которой магнитный поток сквозь площадку 1 м 2 , перпендикулярную направлению поля , равен 1 Вб.

Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804–1891) – профессора университетов в Галле, Геттингене, Лейпциге.

Как мы уже говорили, магнитный поток Ф через поверхность S – одна из характеристик магнитного поля (рис. 2.5):

Единица измерения магнитного потока в СИ:

. , а так как , то .

Здесь Максвелл (Мкс) – единица измерения магнитного потока в СГС названая в честь знаменитого английского ученого Джеймса Максвелла (1831–1879), создателя теории электромагнитного поля.

Напряженность магнитного поля Н измеряется в .

, .

Сведем в одну таблицу основные характеристики магнитного поля.

Таблица 2.1

Наименование

«Физика - 11 класс»

Электромагнитная индукция

Английский физик Майкл Фарадей был уверен в единой природе электрических и магнитных явлений.
Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле - магнитное.
В 1831 году Фарадей открыл явление электромагнитной индукции, легшее в основу устройства генераторов, превращающих механическую энергию в энергию электрического тока.


Явление электромагнитной индукции

Явление электромагнитной индукции - это возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Для своих многочисленных опытов Фарадей использовал две катушки, магнит, выключатель, источник постоянного тока и гальванометр.

Электрический ток способен намагнитить кусок железа. Не может ли магнит вызвать появление электрического тока?

В результате опытов Фарадей установил главные особенности явления электромагнитной индукции:

1). индукционный ток возникает в одной из катушек в момент замыкания или размыкания электрической цепи другой катушки, неподвижной относительно первой.

2) индукционный ток возникает при изменении силы тока в одной из катушек с помощью реостата 3). индукционный ток возникает при движении катушек относительно друг друга 4). индукционный ток возникает при движении постоянного магнита относительно катушки

Вывод:

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром.
И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток.

При этом не важно. что является причиной изменения числа линий магнитной индукции.
Это может быть и изменение числа линий магнитной индукции, пронизывающих поверхность, ограниченную неподвижным проводящим контуром, вследствие изменения силы тока в соседней катушке,

и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве, и т.д.

Магнитный поток

Магнитный поток - это характеристика магнитного поля, которая зависит от вектора магнитной индукции во всех точках поверхности, ограниченной плоским замкнутым контуром.

Есть плоский замкнутый проводник (контур), ограничивающий поверхность площадью S и помещенный в однородное магнитное поле.
Нормаль (вектор, модуль которого равен единице) к плоскости проводника составляет угол α с направлением вектора магнитной индукции

Магнитным потоком Ф (потоком вектора магнитной индукции) через поверхность площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь S и косинус угла α между векторами и :

Ф = BScos α

где
Вcos α = В n - проекция вектора магнитной индукции на нормаль к плоскости контура.
Поэтому

Ф = B n S

Магнитный поток тем больше, чем больше В n и S .

Магнитный поток зависит от ориентации поверхности, которую пронизывает магнитное поле.

Магнитный поток графически можно истолковать как величину, пропорциональную числу линий магнитной индукции, пронизывающих поверхность площадью S .

Единицей магнитного потока является вебер .
Магнитный поток в 1 вебер (1 Вб ) создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Магнитная индукция (обозначается символом В) главная характеристика магнитного поля (векторная величина), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Если же металл попадает под действие переменного магнитного поля (из-за перемещения постоянного магнита внутри катушки — именно перемещения ), то заряды начинают двигаться под действием этого магнитного поля.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий .

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.



Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Ремонтом ежедневно занимаются тысячи людей во всем мире. При его выполнении каждый начинает задумываться о тех тонкостях, которые сопутствуют ремонту: в какой цветовой гамме выбрать обои, как подобрать шторы в цвет обоев, правильно расставить мебель для получения единого стиля помещения. Но о самом главном редко кто задумывается, а этим главным является замена электропроводки в квартире. Ведь если со старой проводкой что-то произойдет, то квартира потеряет всю свою привлекательность и станет совершенно не пригодной для жизни.

Как заменить проводку в квартире знает любой электрик, но это под силу любому обычному гражданину, однако при выполнении данного вида работ ему следует выбирать качественные материалы, чтобы получить безопасную электрическую сеть в помещении.

Первое действие, которое необходимо выполнить, спланировать будущую проводку . На данном этапе нужно определить, в каких именно местах будут проложены провода. Также на данном этапе можно вносить любые коррективы в существующую сеть, что позволит максимально комфортно в соответствии с потребностями хозяев расположить светильники и .

12.12.2019

Узкоотраслевые приборы трикотажной подотрасли и их техническое обслуживание

Для определения растяжимости чулочно-носочных изделий применяется прибор, схема которого показана на рис. 1.

В основе конструкции прибора лежит принцип с автоматическим уравновешиванием коромысла упругими силами испытываемого изделия, действующими с постоянной скоростью.

Весовое коромысло представляет собой равноплечий круглый стальной стержень 6, имеющий ось вращения 7. На его правый конец крепятся с помощью байонетного замка лапки или раздвижная форма следа 9, на которые одевается изделие. На левом плече шарнирно укреплена подвеска для грузов 4, а его конец заканчивается стрелкой 5, показывающей равновесное состояние коромысла. До начала испытаний изделия коромысло приводят в равновесие подвижной гирей 8.

Рис. 1. Схема прибора для измерения растяжимости чулочно-носочных изделий: 1 —направляющая, 2 — левая линейка, 3 — движок, 4 — подвеска для грузов; 5, 10 — стрелки, 6 — стержень, 7 — ось вращения, 8 — гиря, 9 — форма следа, 11— растягивающий рычаг,

12— каретка, 13 — ходовой винт, 14 — правая линейка; 15, 16 — винтовые шестерни, 17 — червячный редуктор, 18 — соединительная муфта, 19 — электродвигатель


Для перемещения каретки 12 с растягивающим рычагом 11 служит ходовой винт 13, на нижнем конце которого закреплена винтовая шестерня 15; через нее вращательное движение передается ходовому винту. Перемена направления вращения винта зависит от изменения вращения 19, который при помощи соединительной муфты 18 связан с червячным редуктором 17. На вал редуктора посажена винтовая шестерня 16, непосредственно сообщающая движение шестерне 15.

11.12.2019

В пневматических исполнительных механизмах перестановочное усилие создается за счет воздействия сжатым воздухом на мембрану, или поршень. Соответственно различают механизмы мембранные, поршневые и сильфонные. Они предназначены для установки и перемещения затвора регулирующего органа в соответствии с пневматическим командным сигналом. Полный рабочий ход выходного элемента механизмов осуществляется при изменении командного сигнала от 0,02 МПа (0,2 кг/см 2) до 0,1 МПа (1 кг/см 2). Предельное давление сжатого воздуха в рабочей полости — 0,25 МПа (2,5 кг/см 2).

У мембранных прямоходных механизмов шток совершает возвратно-поступательное движение. В зависимости от направления движения выходного элемента они подразделяются на механизмы прямого действия (при повышении давления мембраны) и обратного действия.

Рис. 1. Конструкция мембранного исполнительного механизма прямого действия: 1, 3 — крышки, 2—мембрана, 4 — опорный диск, 5 — кронштейн, 6 — пружина, 7 — шток, 8 — опорное кольцо, 9 — регулировочная гайка, 10 — соединительная гайка


Основными конструктивными элементами мембранного исполнительного механизма являются мембранная пневматическая камера с кронштейном и подвижная часть.

Мембранная пневматическая камера механизма прямого действия (рис. 1) состоит из крышек 3 и 1 и мембраны 2. Крышка 3 и мембрана 2 образуют герметическую рабочую полость, крышка 1 прикреплена к кронштейну 5. К подвижной части относятся опорный диск 4, к которому прикреплена мембрана 2, шток 7 с соединительной гайкой 10 и пружина 6. Пружина одним концом упирается в опорный диск 4, а другим через опорное кольцо 8 в регулировочную гайку 9, служащую для изменения начального натяжения пружины и направления движения штока.

08.12.2019

На сегодняшний день существует несколько видов ламп для . У каждого из них есть свои плюсы и минусы. Рассмотрим виды ламп которые наиболее часто используются для освещения в жилом доме или квартире.

Первый вид ламп – лампа накаливания . Это самый дешевый вид ламп. К плюсам таких ламп можно отнести ее стоимость, простоту устройства. Свет от таких ламп является наиболее лучшим для глаз. К минусам таких ламп можно отнести невысокий срок службы и большое количество потребляемой электроэнергии.

Следующий вид ламп – энергосберегающие лампы . Такие лампы можно встретить абсолютно для любых типов цоколей. Представляют из себя вытянутую трубку в которой находится специальный газ. Именно газ создает видимое свечение. У современных энергосберегающих ламп, трубка может иметь самую разнообразную форму. Плюсы таких ламп: низкое энергопотребление по сравнению с лампами накаливания, дневное свечение, большое выбор цоколей. К минусам таких ламп можно отнести сложность конструкции и мерцание. Мерцание обычно незаметно, но глаза будут уставать от света.

28.11.2019

Кабельная сборка — разновидность монтажного узла. Кабельная сборка представляет собой несколько местных , оконцованных с двух сторон в электромонтажном цехе и увязанных в пучок. Монтаж кабельной трассы, осуществляют, укладывая кабельную сборку в устройства крепления кабельной трассы (рис. 1).

Судовая кабельная трасса - электрическая линия, смонтированная на судне из кабелей (пучков кабелей), устройств крепления кабельной трассы, уплотнительных устройств и т. п. (рис. 2).

На судне кабельную трассу располагают в труднодоступных местах (по бортам, подволоку и переборкам); они имеют до шести поворотов в трех плоскостях (рис. 3). На крупных судах наибольшая длина кабелей достигает 300 м, а максимальная площадь сечения кабельной трассы — 780 см 2 . На отдельных судах с суммарной длиной кабелей свыше 400 км для размещения кабельной трассы предусматривают кабельные коридоры.

Кабельные трассы и проходящие по ним кабели подразделяют на местные и магистральные в зависимости от отсутствия (наличия) устройств уплотнения.

Магистральные кабельные трассы подразделяют на трассы с торцовыми и проходными коробками в зависимости от типа применения кабельной коробки. Это имеет смысл для выбора средств технологического оснащения и технологии монтажа кабельной трассы.

21.11.2019

В области разработки и производства приборов КИПиА американская компания Fluke Corporation занимает одну из лидирующих позиций в мире. Она была основана в 1948 году и с этого времени постоянно развивает, совершенствует технологии в области диагностики, тестирования, анализа.

Инновации от американского разработчика

Профессиональное измерительное оборудование от мультинациональной корпорации используется при обслуживании систем обогрева, кондиционирования и вентиляции, холодильных установок, проверки качества воздуха, калибровки электрических параметров. Фирменный магазин Fluke предлагает приобрести сертифицированное оборудование от американского разработчика. Полный модельный ряд включает:
  • тепловизоры, тестеры сопротивления изоляции;
  • цифровые мультиметры;
  • анализаторы качества электрической энергии;
  • дальномеры, вибромеры, осциллографы;
  • калибраторы температуры, давления и многофункциональные аппараты;
  • визуальные пирометры и термометры.

07.11.2019

Используют уровнемер для определения уровня разных видов жидкостей в открытых и закрытых хранилищах, сосудах. С его помощью измеряют уровень вещества или расстояние до него.
Для измерения уровня жидкости используют датчики, которые отличаются по типу: радарный уровнемер , микроволновый (или волноводный), радиационный, электрический (или емкостный), механический, гидростатический, акустический.

Принципы и особенности работы радарных уровнемеров

Стандартными приборами не определить уровень химически агрессивных жидкостей. Только радарный уровнемер способен его измерить, так как не соприкасается с жидкостью при работе. К тому же радарные уровнемеры более точные по сравнению, например, с ультразвуковыми или с емкостными.