» » Дифференцирование показательной и логарифмической функции. Первообразная показательной функции в заданиях ЕНТ. Вычисление производных с помощью логарифмической производной Дифференцирование показательной и логарифмической функции конспект

Дифференцирование показательной и логарифмической функции. Первообразная показательной функции в заданиях ЕНТ. Вычисление производных с помощью логарифмической производной Дифференцирование показательной и логарифмической функции конспект

При дифференцировании показательно степенной функции или громоздких дробных выражений удобно пользоваться логарифмической производной. В этой статье мы рассмотрим примеры ее применения с подробными решениями.

Дальнейшее изложение подразумевает умение пользоваться таблицей производных , правилами дифференцирования и знание формулы производной сложной функции .


Вывод формулы логарифмической производной.

Сначала производим логарифмирование по основанию e , упрощаем вид функции, используя свойства логарифма, и далее находим производную неявно заданной функции:

Для примера найдем производную показательно степенной функции x в степени x .

Логарифмирование дает . По свойствам логарифма . Дифференцирование обеих частей равенства приводит к результату:

Ответ: .

Этот же пример можно решить и без использования логарифмической производной. Можно провести некоторые преобразования и перейти от дифференцирования показательно степенной функции к нахождению производной сложной функции:

Пример.

Найти производную функции .

Решение.

В этом примере функция представляет собой дробь и ее производную можно искать с использованием правил дифференцирования. Но в силу громоздкости выражения это потребует множества преобразований. В таких случаях разумнее использовать формулу логарифмической производной . Почему? Вы сейчас поймете.

Найдем сначала . В преобразованиях будем использовать свойства логарифма (логарифм дроби равен разности логарифмов, а логарифм произведения равен сумме логарифмов, и еще степень у выражения под знаком логарифма можно вынести как коэффициент перед логарифмом):

Эти преобразования привели нас к достаточно простому выражению, производная которого легко находится:

Подставляем полученный результат в формулу логарифмической производной и получаем ответ:

Для закрепления материала приведем еще пару примеров без подробных объяснений.


Пример.

Найдите производную показательно степенной функции

Пусть
(1)
есть дифференцируемая функция от переменной x . В начале мы рассмотрим ее на множестве значений x , для которых y принимает положительные значения: . В дальнейшем мы покажем, что все полученные результаты применимы и для отрицательных значений .

В некоторых случаях, чтобы найти производную функции (1), ее удобно предварительно прологарифмировать
,
а затем вычислить производную. Тогда по правилу дифференцирования сложной функции ,
.
Отсюда
(2) .

Производная от логарифма функции называется логарифмической производной:
.

Логарифмическая производная функции y = f(x) - это производная натурального логарифма этой функции: (ln f(x))′ .

Случай отрицательных значений y

Теперь рассмотрим случай, когда переменная может принимать как положительные, так и отрицательные значения. В этом случае возьмем логарифм от модуля и найдем его производную:
.
Отсюда
(3) .
То есть, в общем случае, нужно найти производную от логарифма модуля функции .

Сравнивая (2) и (3) мы имеем:
.
То есть формальный результат вычисления логарифмической производной не зависит от того, взяли мы по модулю или нет. Поэтому, при вычислении логарифмической производной, мы можем не беспокоится о том, какой знак имеет функция .

Прояснить такую ситуацию можно с помощью комплексных чисел. Пусть, при некоторых значениях x , отрицательна: . Если мы рассматриваем только действительные числа, то функция не определена. Однако, если ввести в рассмотрение комплексные числа, то получим следующее:
.
То есть функции и отличаются на комплексную постоянную :
.
Поскольку производная от постоянной равна нулю, то
.

Свойство логарифмической производной

Из подобного рассмотрения следует, что логарифмическая производная не изменится, если умножить функцию на произвольную постоянную :
.
Действительно, применяя свойства логарифма , формулы производной суммы и производной постоянной , имеем:

.

Применение логарифмической производной

Применять логарифмическую производную удобно в тех случаях, когда исходная функция состоит из произведения степенных или показательных функций. В этом случае операция логарифмирования превращает произведение функций в их сумму. Это упрощает вычисление производной.

Пример 1

Найти производную функции:
.

Решение

Логарифмируем исходную функцию:
.

Дифференцируем по переменной x .
В таблице производных находим:
.
Применяем правило дифференцирования сложной функции .
;
;
;
;
(П1.1) .
Умножим на :

.

Итак, мы нашли логарифмическую производную:
.
Отсюда находим производную исходной функции:
.

Примечание

Если мы хотим использовать только действительные числа, то следует брать логарифм от модуля исходной функции:
.
Тогда
;
.
И мы получили формулу (П1.1). Поэтому результат не изменился.

Ответ

Пример 2

С помощью логарифмической производной, найдите производную функции
.

Решение

Логарифмируем:
(П2.1) .
Дифференцируем по переменной x :
;
;

;
;
;
.

Умножим на :
.
Отсюда мы получаем логарифмическую производную:
.

Производная исходной функции:
.

Примечание

Здесь исходная функция неотрицательная: . Она определена при . Если не предполагать, что логарифм может быть определен для отрицательных значений аргумента, то формулу (П2.1) следует записать так:
.
Поскольку

и
,
то это не повлияет на окончательный результат.

Ответ

Пример 3

Найдите производную
.

Решение

Дифференцирование выполняем с помощью логарифмической производной. Логарифмируем, учитывая что :
(П3.1) .

Дифференцируя, получаем логарифмическую производную.
;
;
;
(П3.2) .

Поскольку , то

.

Примечание

Проделаем вычисления без предположения, что логарифм может быть определен для отрицательных значений аргумента. Для этого возьмем логарифм от модуля исходной функции:
.
Тогда вместо (П3.1) имеем:
;

.
Сравнивая с (П3.2) мы видим, что результат не изменился.

Тема урока: «Дифференцирование показательной и логарифмической функции. Первообразная показательной функции» в заданиях ЕНТ

Цель : развивать у учащихся навыкиприменения теоретических знаний по теме «Дифференцирование показательной и логарифмической функции. Первообразная показательной функции» для решения задач ЕНТ.

Задачи

Образовательные: систематизировать теоретические знания учащихся, закрепить навыки решения задач по данной теме.

Развивающие: развивать память, наблюдательность, логическое мышление, математическую речь учащихся, внимания, навыков самооценки и самоконтроля.

Воспитательные: способствовать:

формированию у учащихся ответственного отношения к учению;

развитию устойчивого интереса к математике;

созданию положительной внутренней мотивации к изучению математики.

Методы обучения : словесный, наглядный, практический.

Формы работы: индивидуальная, фронтальная, в парах.

Ход урока

Эпиграф: « Ум заключается не только в знании, но и в умении применять знания на практике» Аристотель (слайд 2)

I. Организационный момент.

II. Разгадывание кроссворда. (слайд 3-21)

    Французский математик XVII века Пьер Ферма определил эту линию так «Прямая, наиболее тесно прилегающая к кривой в малой окрестности точки».

Касательная

    Функция, которая задается формулой у = log a x.

Логарифмическая

    Функция, которая задается формулой у = а х.

Показательная

    В математике это понятие используется при нахождении скорости движения материальной точки и углового коэффициента касательной к графику функции в заданной точке.

Производная

    Как называется функция F(x) для функции f(x), если выполняется условие F"(x) =f(x) для любой точки из интервала I.

Первообразная

    Как называется зависимость между X и У, при которой каждому элементу Х ставится в соответствие единственный элемент У.

    Производная от перемещения

Скорость

    Функция, которая задается формулой у = е x .

Экспонента

    Если функцию f(x) можно представить в виде f(x)=g(t(x)), то эту функцию называют…

III. Математический диктант.(слайд 22)

1. Записать формулу производной показательной функции. (а х)" = а х ·ln a

2. Записать формулу производной экспоненты. (e х)" = e х

3. Записать формулу производной натурального логарифма. (ln x)"=

4. Записать формулу производной логарифмической функции. (log a x)"=

5. Записать общий вид первообразных для функции f(x) = а х. F(x)=

6. Записать общий вид первообразных для функции f(x) =, x≠0. F(x)=ln|x|+C

Проверить работу (ответы на слайде 23).

IV. Решение задач ЕНТ (тренажер)

А) №1,2,3,6,10,36 на доске и в тетради (слайд 24)

Б) Работа в парах №19,28 (тренажер) (слайд 25-26)

V. 1. Найти ошибки: (слайд 27)

1) f(x)=5 e – 3х, f "(x)= – 3 e – 3х

2) f(x)=17 2х, f "(x)= 17 2х ln17

3) f(x)= log 5 (7x+1), f "(x)=

4) f(x)= ln(9 – 4х), f "(x)=
.

VI. Презентация учащихся.

Эпиграф: «Знание – столь драгоценная вещь, что его не зазорно добывать из любого источника» Фома Аквинский (слайд 28)

VII. Дом.задание №19,20 стр.116

VIII. Тест (резервное задание) (слайд 29-32)

IX. Итог урока.

«Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей жизни» М.Калинин (слайд 33)

Алгебра и начала математического анализа

Дифференцирование показательной и логарифмической функции

Составитель:

учитель математики МОУ СОШ №203 ХЭЦ

г. Новосибирск

Видутова Т. В.


Число е. Функция y = e x , её свойства, график, дифференцирование


1. Построим для различных оснований а графики: 1. y = 2 x 3. y = 10 x 2. y = 3 x (2 вариант) (1 вариант) " width="640"

Рассмотрим показательную функцию y = а x , где а 1.

Построим для различных оснований а графики:

1. y = 2 x

3. y = 10 x

2. y = 3 x

(2 вариант)

(1 вариант)


1)Все графики проходят через точку (0 ; 1);

2) Все графики имеют горизонтальную асимптоту у = 0

при х  ∞;

3) Все они обращены выпуклостью вниз;

4) Все они имеют касательные во всех своих точках.


Проведем касательную к графику функции y = 2 x в точке х = 0 и измерим угол, который образует касательная с осью х



С помощью точных построений касательных к графикам можно заметить, что если основание а показательной функции y = а x постепенно увеличивается основание от 2 до 10, то угол между касательной к графику функции в точке х = 0 и осью абсцисс постепенно увеличивается от 35’ до 66,5’.

Следовательно существует основание а , для которого соответствующий угол равен 45’. И это значение а заключено между 2 и 3, т.к. при а = 2 угол равен 35’, при а = 3 он равен 48’.

В курсе математического анализа доказано, что данное основание существует, его принято обозначать буквой е.

Установлено, что е иррациональное число, т. е. представляет собой бесконечную непериодическую десятичную дробь:

е = 2, 7182818284590… ;

На практике обычно полагают, что е 2,7.



График и свойства функции y = е x :

1) D (f) = (- ∞; + ∞);

3) возрастает;

4) не ограничена сверху, ограничена снизу

5) не имеет ни наибольшего, ни наименьшего

значения;

6) непрерывна;

7) E (f) = (0; + ∞);

8) выпукла вниз;

9) дифференцируема.

Функцию y = е x называют экспонентой .


В курсе математического анализа доказано, что функция y = е x имеет производную в любой точке х :

(e x ) = e x

)" = 5е

х-3 )" = е х-3

-4х+1 )" = -4е -4х-1


Пример 1 . Провести касательную к графику функции в точке x=1.

2) f()=f(1)=e

4) y=e+e(x-1); y = ex

Ответ:


Пример 2 .

x = 3.


Пример 3 .

Исследовать на экстремум функцию

х=0 и х=-2


х = -2 – точка максимума

х = 0 – точка минимума



Если основанием логарифма служит число е , то говорят, что задан натуральный логарифм . Для натуральных логарифмов введено специальное обозначение ln (l – логарифм, n – натуральный).


График и свойства функции y = ln x

Свойства функции y = ln x:

1) D (f) = (0; + ∞);

2) не является ни четной, ни нечетной;

3) возрастает на (0; + ∞);

4) не ограничена;

5) не имеет ни наибольшего, ни наименьшего значений;

6) непрерывна;

7) Е (f) = (- ∞; + ∞);

8) выпукла верх;

9) дифференцируема.


0 справедлива формула дифференцирования " width="640"

В курсе математического анализа доказано, что для любого значения х0 справедлива формула дифференцирования


Пример 4:

Вычислить значение производной функции в точке x = -1.


Например:




Интернет-ресурсы:

  • http://egemaximum.ru/pokazatelnaya-funktsiya/
  • http://or-gr2005.narod.ru/grafik/sod/gr-3.html
  • http://ru.wikipedia.org/wiki/
  • http://900igr.net/prezentatsii
  • http://ppt4web.ru/algebra/proizvodnaja-pokazatelnojj-funkcii.html