» » Сила взаимодействия параллельных токов в вакууме. Сила Ампера. Взаимодействие параллельных проводников с током. Работа сил магнитного поля по перемещению витка с током. Закон Био-Савара-Лапласа. Вектор магнитной индукции. Теорема о циркуляции вектора магн

Сила взаимодействия параллельных токов в вакууме. Сила Ампера. Взаимодействие параллельных проводников с током. Работа сил магнитного поля по перемещению витка с током. Закон Био-Савара-Лапласа. Вектор магнитной индукции. Теорема о циркуляции вектора магн

Рассмотрим провод, находящийся с магнитном поле и по которому течет ток (рис.12.6).

На каждый носитель тока (электрон), действует сила Лоренца . Определим силу, действующей на элемент провода длины dl

Последнее выражение носит название закона Ампера .

Модуль силы Ампера вычисляется по формуле:

.

Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.


Применим закон Ампера для вычисления силы взаимодействия двух находящихся в вакууме параллельных бесконечно длинных прямых токов (рис.12.7).

Расстояние между проводниками - b. Предположим, что проводник I 1 создает магнитное поле индукцией

По закону Ампера на проводник I 2 , со стороны магнитного поля, действует сила

, учитывая, что (sinα =1)

Следовательно, на единицу длины (dl =1) проводника I 2 , действует сила

.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца расположить по направлению электрического тока в проводнике, то отставленный большой палец укажет направление силы, действующей на проводник со стороны поля.

12.4. Циркуляция вектора магнитной индукции (закон полного тока). Следствие.

Магнитное поле в отличие от электростатического - непотенциальное поле: циркуляция вектора В магнитной индукции поля вдоль замкнутого контура не равна нулю и зависит от выбора контура. Такое поле в векторном анализе называют вихревым полем.


Рассмотрим в качестве примера магнитное поле замкнутого контура L произвольной формы, охватывающего бесконечно длинный прямолинейный проводник с током l , находящегося в вакууме (рис.12.8).

Линии магнитной индукции этого поля представляют собой окружности, плоскости которых перпендикулярны проводнику, а центры лежат на его оси (на рис. 12.8 эти линии изображены пунктиром). В точке А контура L вектор В магнитной индукции поля этого тока перпендикулярен радиусу-вектору .

Из рисунка видно, что

где - длина проекции вектора dl на направление вектора В . В то же время малый отрезок dl 1 касательной к окружности радиуса r можно заменить дугой окружности: , где dφ - центральный угол, под которым виден элемент dl контура L из центра окружности.

Тогда получаем, что циркуляция вектора индукции

Во всех точках линии вектор магнитной индукции равен

интегрируя вдоль всего замкнутого контура, и учитывая, что угол изменяется от нуля до 2π, найдем циркуляцию

Из формулы можно сделать следующие выводы:

1. Магнитное поле прямолинейного тока – вихревое поле и не консервативно, так как в нем циркуляция вектора В вдоль линии магнитной индукции не равна нулю;

2. циркуляция вектора В магнитной индукции замкнутого контура, охватывающего поле прямолинейного тока в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока.

Если магнитное поле образовано несколькими проводниками с током, то циркуляция результирующего поля

Данное выражение называется теоремой о полном токе .

Сила Ампера

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sina

I - сила тока в проводнике;

B - модуль вектора индукции магнитного поля;

L - длина проводника, находящегося в магнитном поле;

a - угол между вектором магнитного поля инаправлением тока в проводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

Ей соответствует a = 900.

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

В ходе эксперимента мы наблюдали силу, которую нельзя обЪяснить в рамках электростатики. Когда в двух параллельных проводниках ток идет только в одном направлении, между ними существует сила притяжения. Когда токи идут в противоположных направлениях, провода отталкиваются друг от друга.

Фактическое значение этой силы действующей между параллельными токами, и ее зависимость от расстояния между проводами могут быть измерены с помощью простого устройства в виде весов. В виду отсутствия таковых, примим на веру, результаты опытов которые показывают, что эта сила обратно пропорциональна расстоянию между осями проводов: F (1/r).

Поскольку эта сила должна быть обусловлена каким – то влиянием, распространяющимся от одного провода к другому, то такая цилиндрическая геометрия создаст силу, зависящую обратно пропорционально первой степени расстояния. Вспомним, что электростатическое поле распространяется от заряженного провода тоже с зависимостью от расстояния вида 1/r.

Исходя из опытов видно также что сила взаимодействия между проводами зависит от произведения протекающих по ним токов. Из симметрии можно сделать вывод что если эта сила пропорциональна I1 , она должна быть пропорциональна и I2. То, что эта сила прямо пропорциональна каждому из токов, представляет собой просто экспериментальный факт.

Добавляя коэффициент пропорциональности, можем теперь записать формулу для силы взаимодействия двух параллельных проводов: F (l/r, F (I1 I2); следовательно,

Коэффициент пропорциональности будет содержать связанный с ним множетель 2(, не в саму константу.

Взаимодействие между двумя парралельными проводами выражается в виде силы на еденицу длины. Чем длиннее провода тем больше сила:

Расстояние r между осями проводов F/l измеряется в метрах. Сила на 1 метр длины измеряется в ньютонах на метр, и токи I1 I2 – в амперах.

В школьном курсе физики первым дается определение кулону через ампер, не давая при этом определения амперу, и затем принимается на веру значение константы, появляющейся в законе Кулона.

Только теперь возможно перейти ктому, чтобы рассмотреть определение ампера.

Когда полагается что уравнение для F/l определяет ампер. Константа называется магнитной постоянной. Она аналогична константе 0 - электрической постоянной. Однако в присвоении значений этим двум константам имеется операционное различие. Мы можем выбирать для какой-нибудь одной из них любое произвольное значение. Но затем вторая константа должна определяться на опыте, поскольку кулон и ампер связаны между собой.

Исходя теперь из выше описанной формулы значение ампера можно выразить словами: если взаимодействие на 1м длины двух длинных параллельных проводов, находящихся на расстоянии 1м друг от друга, равна 2*10-7 Н, то ток в каждом проводе равен 1А.

В случае, когда взаимодействующие провода находятся перпендикулярно друг к другу, имеется лиш очень небольшая область влияния, где провода проходят близко друг к другу, и поэтому можно ожидать, что будет мала и сила взаимодействия между проводами. На самом деле эта сила равна нулю. Поскольку силу можно считать положительной, когда токи параллельны, и отрицательной, когда токи антипараллельны, вполне правдоподобно, что эта сила должна быть равна нулю, когда провода перпендикулярны, ибо это нулевое значение лежит посередине между положительными и отрицательными значениями.

Единица измерения в СИ - 1 Ампер (А) = 1 Кулон / секунду.

Для измерения силы тока используют специальный прибор - амперметр (для приборов, предназначенных для измерения малых токов, также используются названия миллиамперметр, микроамперметр, гальванометр). Его включают в разрыв цепи в том месте, где нужно измерить силу тока. Основные методы измерения силы тока: магнитоэлектрический, электромагнитный и косвенный (путём измерения вольтметром напряжения на известном сопротивлении).

Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила d ,с которой магнитное поле действует на элемент проводника d с током, находящийся в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длиной d проводника на магнитную индукцию :

Направление вектора d может быть найдено, согласно (3.3.1), по общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор , а четыре вы­тянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера вычисляется по формуле

где a -угол между векторами d и .

Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I 1 и I 2 (направления токов указаны на рис. 3.3.2), расстояние между которыми равно R.

Каждый из проводников создает магнит­ное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I 1 на элемент dl второго проводника с током 1 2 .

Ток I 1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора задается правилом правого винта, его модуль по формуле (3.3.2) равен

Направление силы d 1 , с которой поле 1 действует на участок dl, второ­го тока, определяется по правилу левой руки и указано на рис 3.3.1. Модуль силы,
согласно (3.3.2), с учетом того, что угол, а между элементами тока 1 2 и вектором
1 прямой равен

или, подставляя значения для В 1 , получим

Рассуждая аналогично, можно показать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl первого проводника с током I 1 , направле­на в противоположную сторону и по модулю равна

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, ис­пытываемый рамкой, есть результат дейст­вия сил на отдельные ее элементы. Обоб­щая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила dF , с которой магнитное поле действует на элемент проводника dl с током, находяще­гося в магнитном поле, прямо пропорцио­нальна силе тока I в проводнике и век­торному произведению элемента длиной dl проводника на магнитную индук­цию В:

dF = I . (111.1)

Направление вектора dF может быть найдено, согласно (111.1), по общим пра­вилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера (см. (111.1)) вычисляется по формуле

dF = IB dl sin, (111.2)

где a - угол между векторами dl и В.

Закон Ампера применяется для опре­деления силы взаимодействия двух токов. Рассмотрим два бесконечных прямолиней­ных параллельных тока I 1 и I 2 (направле­ния токов указаны на рис. 167), расстоя­ние между которыми равно R . Каждый из проводников создает магнитное поле, ко­торое действует по закону Ампера на дру­гой проводник с током. Рассмотрим, с ка­кой силой действует магнитное поле тока I 1 на элемент dl второго проводника с то­ком I 2 . Ток I 1 создает вокруг себя магнит­ное поле, линии магнитной индукции кото­рого представляют собой концентрические окружности. Направление вектора b 1 за­дается правилом правого винта, его мо­дуль по формуле (110.5) равен

Направление силы dF 1 , с которой поле B 1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, со­гласно (111.2), с учетом того, что угол  между элементами тока I 2 и вектором B 1 прямой, равен

dF 1 =I 2 B 1 dl , или, подставляя значение для В 1 , получим

Рассуждая аналогично, можно пока­зать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl пер­вого проводника с током I 1 , направлена в противоположную сторону и по модулю равна

Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой

Если токи имеют противоположные на­правления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяе­мая формулой (111.5).

45. Закон Фарадея и его вывод из закона сохранения энергии

Обобщая результаты своих многочислен­ных опытов, Фарадей пришел к количе­ственному закону электромагнитной ин­дукции. Он показал, что всякий раз, когда происходит изменение сцепленного с кон­туром потока магнитной индукции, в контуре возникает индукционный ток; возник­новение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой элек­тромагнитной индукции. Значение индук­ционного тока, а следовательно, и э. д. с, электромагнитной индукции ξ i определя­ются только скоростью изменения магнит­ного потока, т. е.

Теперь необходимо выяснить знак ξ i . В § 120 было показано, что знак магнитно­го потока зависит от выбора положитель­ной нормали к контуру. В свою очередь, положительное направление нормали свя­зано с током правилом правого винта (см. § 109). Следовательно, выбирая опре­деленное положительное направление нор­мали, мы определяем как знак потока маг­нитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими пред­ставлениями и выводами, можно соответ­ственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватыва­емого замкнутым проводящим контуром, возникающая в контуре э.д.с.

Знак минус показывает, что увеличе­ние потока (dФ/dt>0) вызывает э.д.с.

ξξ i <0, т. е. поле индукционного тока на­правлено навстречу потоку; уменьшение

потока (dФ/dt<0) вызывает ξ i >0,

т. е. направления потока и поля индукци­онного тока совпадают. Знак минус в фор­муле (123.2) является математическим выражением правила Ленца - общего правила для нахождения направления ин­дукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по­тока, вызвавшего этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона сохранения энергии, как это впервые сде­лал Г. Гельмгольц. Рассмотрим проводник с током I , который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно переме­щаться (см. рис. 177). Под действием си­лы Ампера F , направление которой пока­зано на рисунке, проводник перемещается на отрезок dx . Таким образом, сила Ампе­ра производит работу (см.(121.1)) dA =I dФ, где dФ - пересеченный проводни­ком магнитный поток.

Если полное сопротивление контура равно R , то, согласно закону сохранения энергии, работа источника тока за вре­мя dt (ξIdt ) будет складываться из рабо­ты на джоулеву теплоту (I 2 Rdt ) и работы по перемещению проводника в магнитном поле (I dФ):

где-dФ/dt=ξ i есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулиро­вать еще таким образом: э.д.с. ξ i элек­тромагнитной индукции в контуре числен­но равна и противоположна по знаку ско­рости изменения магнитного потока сквозь поверхность, ограниченную этим конту­ром. Этот закон является универсальным: э.д.с. ξ i не зависит от способа изменения магнитного потока.

Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнит­ной индукции? Если проводник (подвиж­ная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противо­положно току, т. е. она будет создавать в проводнике индукционный ток противо­положного направления (за направление электрического тока принимается движе­ние положительных зарядов). Таким обра­зом, возбуждение э.д.с. индукции при движении контура в постоянном магнит­ном поле объясняется действием силы Ло­ренца, возникающей при движении про­водника.

Согласно закону Фарадея, возникнове­ние э.д.с. электромагнитной индукции возможно и в случае неподвижного кон­тура, находящегося в переменном магнит­ном поле. Однако сила Лоренца на непод­вижные заряды не действует, поэтому в данном случае ею нельзя объяснить воз­никновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в непод­вижных проводниках предположил, что всякое переменное магнитное поле воз­буждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция векто­ра Е В этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:

47. . Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное по­ле, индукция которого, по закону Био - Савара-Лапласа (см. (110.2)), пропор­циональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорциона­лен току I в контуре:

Ф= LI , (126.1)

где коэффициент пропорциональности L называется индуктивностью контура.

При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в прово­дящем контуре при изменении в нем силы тока называется самоиндукцией.

Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн - индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

1 Гн=1 Вб/А=1В с/А.

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток через соленоид

(потокосцепление) равен 0(N 2 I / l )S . Под­ставив это выражение в формулу (126.1), получим

т. е. индуктивность соленоида зависит от числа витков соленоида N , его длины l , площади S и магнитной проницаемости  вещества, из которого изготовлен сердеч­ник соленоида.

Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его разме­ров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура - аналог электри­ческой емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектриче­ской проницаемости среды (см. §93).

Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э.д.с. самоиндукции

Если контур не деформируется и магнит­ная проницаемость среды не изменяется (в дальнейшем будет показано, что по­следнее условие выполняется не всегда), то L =const и

где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктив­ности в контуре приводит к замедлению изменения тока в нем.

Если ток со временем возрастает, то

dI/dt>0 и ξ s <0, т. е. ток самоиндукции

направлен навстречу току, обусловленно­му внешним источником, и тормозит его возрастание. Если ток со временем убывает, то dI/dt<0 и ξ s > 0, т. е. индукционный

ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, об­ладая определенной индуктивностью, при­обретает электрическую инертность, за­ключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.

59. Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю (см. (137.3)), а циркуляция вектора Е B оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D :

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью , то формула (139.1) запишется в виде

4. Теорема Гаусса для поля В (см. (120.3)):

Итак, полная система уравнений Максвел­ла в интегральной форме:

Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

D = 0 E ,

В=  0 Н,

j =E ,

где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла - интегральная

и дифференциальная - эквивалентны. Однако когда имеются поверхности разры­ва - поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

D 1 n = D 2 n , E 1 = E 2 , B 1 n = B 2 n , H 1  = H 2 

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн - перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3 10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D , Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

44. . Диа- и парамагнетизм

Всякое вещество является магнетиком, т. е. оно способно под действием магнитно­го поля приобретать магнитный момент (намагничиваться). Для понимания меха­низма этого явления необходимо рассмот­реть действие магнитного поля на движу­щиеся в атоме электроны.

Ради простоты предположим, что элек­трон в атоме движется по круговой орби­те. Если орбита электрона ориентирована относительно вектора В произвольным об­разом, составляя с ним угол а (рис. 188), то можно доказать, что она приходит в та­кое движение вокруг В, при котором век­тор магнитного момента р m , сохраняя по­стоянным угол а, вращается вокруг направления В с некоторой угловой скоро­стью. Такое движение в механике на­зывается прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.

Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движе­ние, которое эквивалентно круговому то­ку. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется со­ставляющая магнитного поля, направлен­ная противоположно внешнему полю. На­веденные составляющие магнитных полей атомов (молекул) складываются и обра­зуют собственное магнитное поле вещест­ва, ослабляющее внешнее магнитное по­ле. Этот эффект получил название диа­магнитного эффекта, а вещества, на­магничивающиеся во внешнем магнитном поле против направления поля, называют­ся диамагнетиками.

В отсутствие внешнего магнитного по­ля диамагнетик немагнитен, поскольку в данном случае магнитные моменты элек­тронов взаимно компенсируются, и сум­марный магнитный момент атома (он ра­вен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (на­пример, Bi, Ag, Au, Cu), большинство органических соединений, смолы, углерод и т. д.

Так как диамагнитный эффект обус­ловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными ве­ществами существуют и парамагнитные - вещества, намагничивающиеся во внеш­нем магнитном поле по направлению поля.

У парамагнитных веществ при отсутст­вии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнети­ков всегда обладают магнитным момен­том. Однако вследствие теплового движе­ния молекул их магнитные моменты ори­ентированы беспорядочно, поэтому парамагнитные вещества магнитными свой­ствами не обладают. При внесении пара­магнетика во внешнее магнитное поле устанавливается преимущественная ори­ентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким обра­зом, парамагнетик намагничивается, со­здавая собственное магнитное поле, со­впадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослабле­нии внешнего магнитного поля до нуля ориентация магнитных моментов вследст­вие теплового движения нарушается и па­рамагнетик размагничивается. К парамаг­нетикам относятся редкоземельные эле­менты, Pt, Al и т. д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и по­этому остается незаметным.

Из рассмотрения явления парамагне­тизма следует, что его объяснение совпа­дает с объяснением ориентационной (дипольной) поляризации диэлектриков с по­лярными молекулами (см. §87), только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.

Подводя итог качественному рассмот­рению диа- и парамагнетизма, еще раз отметим, что атомы всех веществ являют­ся носителями диамагнитных свойств. Ес­ли магнитный момент атомов велик, то парамагнитные свойства преобладают над диамагнитными и вещество является па­рамагнетиком; если магнитный момент атомов мал, то преобладают диамагнит­ные свойства и вещество является диамагнетиком.

Ферромагнетики и их свойства

Помимо рассмотренных двух классов ве­ществ - диа- и парамагнетиков, называе­мых слабомагнитными веществами, су­ществуют еще сильномагнитные вещест­ва - ферромагнетики - вещества, обла­дающие спонтанной намагниченностью, т. е. они намагничены даже при отсутствии внешнего магнитного поля. К ферромагне­тикам кроме основного их представите­ля - железа (от него и идет название «ферромагнетизм») - относятся, напри­мер, кобальт, никель, гадолиний, их спла­вы и соединения.