Для того, чтобы найти обратную матрицу онлайн, вам потребуется указать размер самой матрицы. Для этого кликните на иконки «+» или «-» до тех пор, пока значение количества столбцов и строк вас не устроит. Далее введите в поля требуемые элементы. Ниже находится кнопка «Вычислить» - нажав её, вы получите на экране ответ с подробным решением.
В линейной алгебре довольно часто приходится сталкиваться с процессом вычисления обратной матрицы. Она существует только для невыраженных матриц и для квадратных матриц при условии отличного от нуля детерминанта. В принципе, рассчитать её не представляет особой сложности, особенно если вы имеете дело с небольшой матрицей. Но если нужны более сложные расчёты или тщательная перепроверка своего решения, лучше воспользуйтесь данным онлайн калькулятором. С его помощью вы оперативно и с высокой точностью решите обратную матрицу.
С помощью данного онлайн калькулятора вы сможете значительно облегчить себе задачу в плане расчётов. Кроме того, он помогает закрепить материал, полученный в теории – это своеобразный тренажёр для мозга. Не стоит рассматривать его, как замену вычислениям вручную, он может дать вам гораздо больше, облегчив понимание самого алгоритма. К тому же, лишняя перепроверка себя никогда не помешает.
Обратная матрица — это матрица A −1 , при умножении на которую заданная начальная матрица A даёт в итоге единичную матрицу E :
АA −1 = A −1 A = E.
Метод обратной матрицы.
Метод обратной матрицы - это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.
Пусть есть система n линейных уравнений с n неизвестными:
Такую систему можно записать как матричное уравнение A* X = B ,
где
- матрица системы,
- столбец неизвестных,
- столбец свободных коэффициентов.
Из выведенного матричного уравнения выражаем X путем умножения обеих частей матричного уравнения слева на A -1 , в результате чего имеем:
A -1 * A * X = A -1 * B
Зная, что A -1 * A = E , тогда E * X = A -1 * B либо X = A -1 * B .
Следующим шагом определяется обратная матрица A -1 и умножается на столбец свободных членов B .
Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0 . Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A . Если det A ≠ 0 , то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0 , то такая система методом обратной матрицы не решается.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы :
- Получаем определитель матрицы A . Если определитель больше нуля, решаем обратную матрицы дальше, если он равен нулю, то здесь обратную матрицу найти не удастся.
- Находим транспонированную матрицу AT .
- Ищем алгебраические дополнения, после чего заменяем все элементы матрицы их алгебраическими дополнениями.
- Собираем обратную матрицу из алгебраических дополнений: все элементы полученной матрицы делим на определитель исходно заданной матрицы. Итоговая матрица будет искомой обратной матрицей относительно исходной.
Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C .
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Вычисляем алгебраические дополнения.
- Составляем союзную (взаимную, присоединённую) матрицу C .
- Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
- Проверяем выполненную работу: умножаем начальную и полученную матрицы, результатом должна стать единичная матрица.
Это лучше всего делать с помощью присоединённой матрицы.
Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.
Пример нахождения обратной матрицы.
Задание. Для матрицы найти обратную методом присоединенной матрицы .
Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:
Из 1й строки вычитаем 2ю:
От второй строки отнимаем 2 первых:
Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.
Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.
Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.
Повторение: умножение матриц
Прежде всего договоримся об обозначениях. Матрицей $A$ размера $\left[ m\times n \right]$ называется просто таблица из чисел, в которой ровно $m$ строк и $n$ столбцов:
\=\underbrace{\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} \\ ... & ... & ... & ... \\ {{a}_{m1}} & {{a}_{m2}} & ... & {{a}_{mn}} \\\end{matrix} \right]}_{n}\]
Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:
Определение индексов для клеток матрицыЧто происходит? Если разместить стандартную систему координат $OXY$ в левом верхнем углу и направить оси так, чтобы они охватывали всю матрицу, то каждой клетке этой матрицы можно однозначно сопоставить координаты $\left(x;y \right)$ — это и будет номер строки и номер столбца.
Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.
А почему ось $x$ направлена именно вниз, а не вправо? Опять всё просто: возьмите стандартную систему координат (ось $x$ идёт вправо, ось $y$ — вверх) и поверните её так, чтобы она охватывала матрицу. Это поворот на 90 градусов по часовой стрелке — его результат мы и видим на картинке.
В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.
Определение. Матрицы $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, когда количество столбцов в первой совпадает с количеством строк во второй, называются согласованными.
Именно в таком порядке. Можно сумничать и сказать, мол, матрицы $A$ и $B$ образуют упорядоченную пару $\left(A;B \right)$: если они согласованы в таком порядке, то совершенно необязательно, что $B$ и $A$, т.е. пара $\left(B;A \right)$ — тоже согласована.
Умножать можно только согласованные матрицы.
Определение. Произведение согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой ${{c}_{ij}}$ считаются по формуле:
\[{{c}_{ij}}=\sum\limits_{k=1}^{n}{{{a}_{ik}}}\cdot {{b}_{kj}}\]
Другими словами: чтобы получить элемент ${{c}_{ij}}$ матрицы $C=A\cdot B$, нужно взять $i$-строку первой матрицы, $j$-й столбец второй матрицы, а затем попарно перемножить элементы из этой строки и столбца. Результаты сложить.
Да, вот такое суровое определение. Из него сразу следует несколько фактов:
- Умножение матриц, вообще говоря, некоммутативно: $A\cdot B\ne B\cdot A$;
- Однако умножение ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$;
- И даже дистрибутивно: $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$;
- И ещё раз дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$.
Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.
Если всё же получается так, что $A\cdot B=B\cdot A$, такие матрицы называются перестановочными.
Среди всех матриц, которые там на что-то умножаются, есть особые — те, которые при умножении на любую матрицу $A$ снова дают $A$:
Определение. Матрица $E$ называется единичной, если $A\cdot E=A$ или $E\cdot A=A$. В случае с квадратной матрицей $A$ можем записать:
Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)
А ещё из-за этой $E$ кое-кто придумал всю ту дичь, которая будет написана дальше.
Что такое обратная матрица
Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.
Ключевое определение
Что ж, пора познать истину.
Определение. Матрица $B$ называется обратной к матрице $A$ , если
Обратная матрица обозначается через ${{A}^{-1}}$ (не путать со степенью!), поэтому определение можно переписать так:
Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:
- Всегда ли существует обратная матрица? И если не всегда, то как определить: когда она существует, а когда — нет?
- А кто сказал, что такая матрица ровно одна? Вдруг для некоторой исходной матрицы $A$ найдётся целая толпа обратных?
- Как выглядят все эти «обратные»? И как, собственно, их считать?
Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.
Основные свойства
Начнём с того, как в принципе должна выглядеть матрица $A$, чтобы для неё существовала ${{A}^{-1}}$. Сейчас мы убедимся в том, что обе эти матрицы должны быть квадратными, причём одного размера: $\left[ n\times n \right]$.
Лемма 1 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда обе эти матрицы — квадратные, причём одинакового порядка $n$.
Доказательство. Всё просто. Пусть матрица $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ a\times b \right]$. Поскольку произведение $A\cdot {{A}^{-1}}=E$ по определению существует, матрицы $A$ и ${{A}^{-1}}$ согласованы в указанном порядке:
\[\begin{align} & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end{align}\]
Это прямое следствие из алгоритма перемножения матриц: коэффициенты $n$ и $a$ являются «транзитными» и должны быть равны.
Вместе с тем определено и обратное умножение: ${{A}^{-1}}\cdot A=E$, поэтому матрицы ${{A}^{-1}}$ и $A$ тоже согласованы в указанном порядке:
\[\begin{align} & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end{align}\]
Таким образом, без ограничения общности можем считать, что $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ n\times m \right]$. Однако согласно определению $A\cdot {{A}^{-1}}={{A}^{-1}}\cdot A$, поэтому размеры матриц строго совпадают:
\[\begin{align} & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end{align}\]
Вот и получается, что все три матрицы — $A$, ${{A}^{-1}}$ и $E$ — являются квадратными размером $\left[ n\times n \right]$. Лемма доказана.
Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.
Лемма 2 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда эта обратная матрица — единственная.
Доказательство. Пойдём от противного: пусть у матрицы $A$ есть хотя бы два экземпляра обратных —$B$ и $C$. Тогда, согласно определению, верны следующие равенства:
\[\begin{align} & A\cdot B=B\cdot A=E; \\ & A\cdot C=C\cdot A=E. \\ \end{align}\]
Из леммы 1 мы заключаем, что все четыре матрицы — $A$, $B$, $C$ и $E$ — являются квадратными одинакового порядка: $\left[ n\times n \right]$. Следовательно, определено произведение:
Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:
\[\begin{align} & B\cdot A\cdot C=\left(B\cdot A \right)\cdot C=E\cdot C=C; \\ & B\cdot A\cdot C=B\cdot \left(A\cdot C \right)=B\cdot E=B; \\ & B\cdot A\cdot C=C=B\Rightarrow B=C. \\ \end{align}\]
Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.
Приведённые рассуждения почти дословно повторяют доказательство единственность обратного элемента для всех действительных чисел $b\ne 0$. Единственное существенное дополнение — учёт размерности матриц.
Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.
Лемма 3 . Дана матрица $A$. Если обратная к ней матрица ${{A}^{-1}}$ существует, то определитель исходной матрицы отличен от нуля:
\[\left| A \right|\ne 0\]
Доказательство. Мы уже знаем, что $A$ и ${{A}^{-1}}$ — квадратные матрицы размера $\left[ n\times n \right]$. Следовательно, для каждой из них можно вычислить определитель: $\left| A \right|$ и $\left| {{A}^{-1}} \right|$. Однако определитель произведения равен произведению определителей:
\[\left| A\cdot B \right|=\left| A \right|\cdot \left| B \right|\Rightarrow \left| A\cdot {{A}^{-1}} \right|=\left| A \right|\cdot \left| {{A}^{-1}} \right|\]
Но согласно определению $A\cdot {{A}^{-1}}=E$, а определитель $E$ всегда равен 1, поэтому
\[\begin{align} & A\cdot {{A}^{-1}}=E; \\ & \left| A\cdot {{A}^{-1}} \right|=\left| E \right|; \\ & \left| A \right|\cdot \left| {{A}^{-1}} \right|=1. \\ \end{align}\]
Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:
\[\left| A \right|\ne 0;\quad \left| {{A}^{-1}} \right|\ne 0.\]
Вот и получается, что $\left| A \right|\ne 0$. Лемма доказана.
На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.
Но для начала сформулируем «вспомогательное» определение:
Определение. Вырожденная матрица — это квадратная матрица размера $\left[ n\times n \right]$, чей определитель равен нулю.
Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.
Как найти обратную матрицу
Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.
Тот, который будет рассмотрен сейчас, очень эффективен для матриц размера $\left[ 2\times 2 \right]$ и — частично — размера $\left[ 3\times 3 \right]$. А вот начиная с размера $\left[ 4\times 4 \right]$ его лучше не применять. Почему — сейчас сами всё поймёте.
Алгебраические дополнения
Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».
Начнём с главного. Пусть имеется квадратная матрица размера $A=\left[ n\times n \right]$, элементы которой именуются ${{a}_{ij}}$. Тогда для каждого такого элемента можно определить алгебраическое дополнение:
Определение. Алгебраическое дополнение ${{A}_{ij}}$ к элементу ${{a}_{ij}}$, стоящего в $i$-й строке и $j$-м столбце матрицы $A=\left[ n\times n \right]$ — это конструкция вида
\[{{A}_{ij}}={{\left(-1 \right)}^{i+j}}\cdot M_{ij}^{*}\]
Где $M_{ij}^{*}$ — определитель матрицы, полученной из исходной $A$ вычёркиванием той самой $i$-й строки и $j$-го столбца.
Ещё раз. Алгебраическое дополнение к элементу матрицы с координатами $\left(i;j \right)$ обозначается как ${{A}_{ij}}$ и считается по схеме:
- Сначала вычёркиваем из исходной матрицы $i$-строчку и $j$-й столбец. Получим новую квадратную матрицу, и её определитель мы обозначаем как $M_{ij}^{*}$.
- Затем умножаем этот определитель на ${{\left(-1 \right)}^{i+j}}$ — поначалу это выражение может показаться мозговыносящим, но по сути мы просто выясняем знак перед $M_{ij}^{*}$.
- Считаем — получаем конкретное число. Т.е. алгебраическое дополнение — это именно число, а не какая-то новая матрица и т.д.
Саму матрицу $M_{ij}^{*}$ называют дополнительным минором к элементу ${{a}_{ij}}$. И в этом смысле приведённое выше определение алгебраического дополнения является частным случаем более сложного определения — того, что мы рассматривали в уроке про определитель.
Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:
- Берём в квадратной матрице $k$ строчек и $k$ столбцов. На их пересечении получится матрица размера $\left[ k\times k \right]$ — её определитель называется минором порядка $k$ и обозначается ${{M}_{k}}$.
- Затем вычёркиваем эти «избранные» $k$ строчек и $k$ столбцов. Снова получится квадратная матрица — её определитель называется дополнительным минором и обозначается $M_{k}^{*}$.
- Умножаем $M_{k}^{*}$ на ${{\left(-1 \right)}^{t}}$, где $t$ — это (вот сейчас внимание!) сумма номеров всех выбранных строчек и столбцов. Это и будет алгебраическое дополнение.
Взгляните на третий шаг: там вообще-то сумма $2k$ слагаемых! Другое дело, что для $k=1$ мы получим лишь 2 слагаемых — это и будут те самые $i+j$ — «координаты» элемента ${{a}_{ij}}$, для которого мы ищем алгебраическое дополнение.
Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:
Определение. Союзная матрица $S$ к квадратной матрице $A=\left[ n\times n \right]$ — это новая матрица размера $\left[ n\times n \right]$, которая получается из $A$ заменой ${{a}_{ij}}$ алгебраическими дополнениями ${{A}_{ij}}$:
\\Rightarrow S=\left[ \begin{matrix} {{A}_{11}} & {{A}_{12}} & ... & {{A}_{1n}} \\ {{A}_{21}} & {{A}_{22}} & ... & {{A}_{2n}} \\ ... & ... & ... & ... \\ {{A}_{n1}} & {{A}_{n2}} & ... & {{A}_{nn}} \\\end{matrix} \right]\]
Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)
Что ж, всё это очень мило, но зачем это нужно? А вот зачем.
Основная теорема
Вернёмся немного назад. Помните, в Лемме 3 утверждалось, что обратимая матрица $A$ всегда не вырождена (т.е. её определитель отличен от нуля: $\left| A \right|\ne 0$).
Так вот, верно и обратное: если матрица $A$ не вырождена, то она всегда обратима. И даже существует схема поиска ${{A}^{-1}}$. Зацените:
Теорема об обратной матрице. Пусть дана квадратная матрица $A=\left[ n\times n \right]$, причём её определитель отличен от нуля: $\left| A \right|\ne 0$. Тогда обратная матрица ${{A}^{-1}}$ существует и считается по формуле:
\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}\]
А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:
- Посчитать определитель $\left| A \right|$ и убедиться, что он отличен от нуля.
- Составить союзную матрицу $S$, т.е. посчитать 100500 алгебраических дополнений ${{A}_{ij}}$ и расставить их на месте ${{a}_{ij}}$.
- Транспонировать эту матрицу $S$, а затем умножить её на некое число $q={1}/{\left| A \right|}\;$.
И всё! Обратная матрица ${{A}^{-1}}$ найдена. Давайте посмотрим на примеры:
\[\left[ \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right]\]
Решение. Проверим обратимость. Посчитаем определитель:
\[\left| A \right|=\left| \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right|=3\cdot 2-1\cdot 5=6-5=1\]
Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:
Посчитаем алгебраические дополнения:
\[\begin{align} & {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| 2 \right|=2; \\ & {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| 5 \right|=-5; \\ & {{A}_{21}}={{\left(-1 \right)}^{2+1}}\cdot \left| 1 \right|=-1; \\ & {{A}_{22}}={{\left(-1 \right)}^{2+2}}\cdot \left| 3 \right|=3. \\ \end{align}\]
Обратите внимание: определители |2|, |5|, |1| и |3| — это именно определители матриц размера $\left[ 1\times 1 \right]$, а не модули. Т.е. если в определителях стояли отрицательные числа, убирать «минус» не надо.
Итого наша союзная матрица выглядит так:
\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}=\frac{1}{1}\cdot {{\left[ \begin{array}{*{35}{r}} 2 & -5 \\ -1 & 3 \\\end{array} \right]}^{T}}=\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]\]
Ну вот и всё. Задача решена.
Ответ. $\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]$
Задача. Найдите обратную матрицу:
\[\left[ \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right]\]
Решение. Опять считаем определитель:
\[\begin{align} & \left| \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right|=\begin{matrix} \left(1\cdot 2\cdot 1+\left(-1 \right)\cdot \left(-1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left(2\cdot 2\cdot 1+\left(-1 \right)\cdot 0\cdot 1+1\cdot \left(-1 \right)\cdot 0 \right) \\\end{matrix}= \\ & =\left(2+1+0 \right)-\left(4+0+0 \right)=-1\ne 0. \\ \end{align}\]
Определитель отличен от нуля — матрица обратима. А вот сейчас будет самая жесть: надо посчитать аж 9 (девять, мать их!) алгебраических дополнений. И каждое из них будет содержать определитель $\left[ 2\times 2 \right]$. Полетели:
\[\begin{matrix} {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} 2 & -1 \\ 0 & 1 \\\end{matrix} \right|=2; \\ {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| \begin{matrix} 0 & -1 \\ 1 & 1 \\\end{matrix} \right|=-1; \\ {{A}_{13}}={{\left(-1 \right)}^{1+3}}\cdot \left| \begin{matrix} 0 & 2 \\ 1 & 0 \\\end{matrix} \right|=-2; \\ ... \\ {{A}_{33}}={{\left(-1 \right)}^{3+3}}\cdot \left| \begin{matrix} 1 & -1 \\ 0 & 2 \\\end{matrix} \right|=2; \\ \end{matrix}\]
Короче, союзная матрица будет выглядеть так:
Следовательно, обратная матрица будет такой:
\[{{A}^{-1}}=\frac{1}{-1}\cdot \left[ \begin{matrix} 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\\end{matrix} \right]=\left[ \begin{array}{*{35}{r}}-2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]\]
Ну и всё. Вот и ответ.
Ответ. $\left[ \begin{array}{*{35}{r}} -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]$
Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:
Не ленитесь выполнять проверку. Умножьте исходную матрицу на найденную обратную — должна получиться $E$.
Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.
Альтернативный способ
Как я и говорил, теорема об обратной матрице прекрасно работает для размеров $\left[ 2\times 2 \right]$ и $\left[ 3\times 3 \right]$ (в последнем случае — уже не так уж и «прекрасно»), а вот для матриц больших размеров начинается прям печаль.
Но не переживайте: есть альтернативный алгоритм, с помощью которого можно невозмутимо найти обратную хоть для матрицы $\left[ 10\times 10 \right]$. Но, как это часто бывает, для рассмотрения этого алгоритма нам потребуется небольшая теоретическая вводная.
Элементарные преобразования
Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:
- Умножение. Можно взять $i$-ю строку (столбец) и умножить её на любое число $k\ne 0$;
- Сложение. Прибавить к $i$-й строке (столбцу) любую другую $j$-ю строку (столбец), умноженную на любое число $k\ne 0$ (можно, конечно, и $k=0$, но какой в этом смысл? Ничего не изменится же).
- Перестановка. Взять $i$-ю и $j$-ю строки (столбцы) и поменять местами.
Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.
Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.
Присоединённая матрица
Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.
Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?
Определение. Пусть дана матрица $A=\left[ n\times n \right]$ и единичная матрица $E$ такого же размера $n$. Тогда присоединённая матрица $\left[ A\left| E \right. \right]$ — это новая матрица размера $\left[ n\times 2n \right]$, которая выглядит так:
\[\left[ A\left| E \right. \right]=\left[ \begin{array}{rrrr|rrrr}{{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} & 1 & 0 & ... & 0 \\{{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} & 0 & 1 & ... & 0 \\... & ... & ... & ... & ... & ... & ... & ... \\{{a}_{n1}} & {{a}_{n2}} & ... & {{a}_{nn}} & 0 & 0 & ... & 1 \\\end{array} \right]\]
Короче говоря, берём матрицу $A$, справа приписываем к ней единичную матрицу $E$ нужного размера, разделяем их вертикальной чертой для красоты — вот вам и присоединённая.:)
В чём прикол? А вот в чём:
Теорема. Пусть матрица $A$ обратима. Рассмотрим присоединённую матрицу $\left[ A\left| E \right. \right]$. Если с помощью элементарных преобразований строк привести её к виду $\left[ E\left| B \right. \right]$, т.е. путём умножения, вычитания и перестановки строк получить из $A$ матрицу $E$ справа, то полученная слева матрица $B$ — это обратная к $A$:
\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B={{A}^{-1}}\]
Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:
- Записать присоединённую матрицу $\left[ A\left| E \right. \right]$;
- Выполнять элементарные преобразования строк до тех пор, пока права вместо $A$ не появится $E$;
- Разумеется, слева тоже что-то появится — некая матрица $B$. Это и будет обратная;
- PROFIT!:)
Конечно, сказать намного проще, чем сделать. Поэтому давайте рассмотрим парочку примеров: для размеров $\left[ 3\times 3 \right]$ и $\left[ 4\times 4 \right]$.
Задача. Найдите обратную матрицу:
\[\left[ \begin{array}{*{35}{r}} 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end{array} \right]\]
Решение. Составляем присоединённую матрицу:
\[\left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\]
Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:
\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right] \\ \end{align}\]
Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.
Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:
\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \downarrow \\ -2 \\\end{matrix}\to \\ & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]
Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:
\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -1 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]
Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:
\[\begin{align} & \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -6 \\ \updownarrow \\ +1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\\end{array} \right] \\ \end{align}\]
Осталось лишь поменять местами строки 1 и 3:
\[\left[ \begin{array}{rrr|rrr} 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & -18 & 32 & -13 \\\end{array} \right]\]
Готово! Справа — искомая обратная матрица.
Ответ. $\left[ \begin{array}{*{35}{r}}4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\\end{array} \right]$
Задача. Найдите обратную матрицу:
\[\left[ \begin{matrix} 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\\end{matrix} \right]\]
Решение. Снова составляем присоединённую:
\[\left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\]
Немного позалимаем, попечалимся от того, сколько сейчас придётся считать... и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:
\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right] \\ \end{align}\]
Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:
\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & 1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end{array} \right]\begin{matrix} -2 \\ -1 \\ \updownarrow \\ -2 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]
Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:
\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} +1 \\ -3 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]
Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:
\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} 6 \\ \updownarrow \\ -5 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]
И снова слева единичная матрица, значит справа — обратная.:)
Ответ. $\left[ \begin{matrix} 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & -1 \\\end{matrix} \right]$
Ну вот и всё. Проверку сделайте сами — мне в лом.:)
Как правило, обратные операции используются для упрощения сложных алгебраических выражений. Например, если в задаче присутствует операция деления на дробь, можно заменить ее операцией умножения на обратную дробь, что является обратной операцией. Более того, матрицы делить нельзя, поэтому нужно умножать на обратную матрицу. Вычислять матрицу, обратную матрице размером 3х3, довольно утомительно, но нужно уметь делать это вручную. Также обратную величину можно найти с помощью хорошего графического калькулятора.
Шаги
С помощью присоединенной матрицы
Транспонируйте исходную матрицу. Транспонирование – это замена строк на столбцы относительно главной диагонали матрицы, то есть нужно поменять местами элементы (i,j) и (j,i). При этом элементы главной диагонали (начинается в верхнем левом углу и заканчивается в нижнем правом углу) не меняются.
- Чтобы поменять строки на столбцы, запишите элементы первой строки в первом столбце, элементы второй строки во втором столбце, а элементы третьей строки в третьем столбце. Порядок изменения положения элементов показан на рисунке, на котором соответствующие элементы обведены цветными кружками.
Найдите определить каждой матрицы размером 2х2. Каждый элемент любой матрицы, включая транспонированную, связан с соответствующей матрицей 2х2. Чтобы найти матрицу 2х2, которая соответствует определенному элементу, зачеркните строку и столбец, в которых находится данный элемент, то есть нужно зачеркнуть пять элементов исходной матрицы 3х3. Незачеркнутыми останутся четыре элемента, которые являются элементами соответствующей матрицы 2х2.
- Например, чтобы найти матрицу 2х2 для элемента, который расположен на пересечении второй строки и первого столбца, зачеркните пять элементов, которые находятся во второй строке и первом столбце. Оставшиеся четыре элемента являются элементами соответствующей матрицы 2х2.
- Найдите определитель каждой матрицы 2х2. Для этого произведение элементов второстепенной диагонали вычтите из произведения элементов главной диагонали (смотрите рисунок).
- Подробную информацию о матрицах 2х2, соответствующих определенным элементам матрицы 3х3, можно найти в интернете.
Создайте матрицу кофакторов. Результаты, полученные ранее, запишите в виде новой матрицы кофакторов. Для этого найденный определитель каждой матрицы 2х2 напишите там, где располагался соответствующий элемент матрицы 3х3. Например, если рассматривается матрица 2х2 для элемента (1,1), ее определитель запишите в позиции (1,1). Затем поменяйте знаки соответствующих элементов согласно определенной схеме, которая показана на рисунке.
- Схема изменения знаков: знак первого элемента первой строки не меняется; знак второго элемента первой строки меняется на противоположный; знак третьего элемента первой строки не меняется и так далее построчно. Обратите внимание, что знаки «+» и «-», которые показаны на схеме (смотрите рисунок), не свидетельствуют о том, что соответствующий элемент будет положительным или отрицательным. В данном случае знак «+» говорит о том, что знак элемента не меняется, а знак «-» свидетельствует об изменении знака элемента.
- Подробную информацию о матрицах кофакторов можно найти в интернете.
- Так вы найдете присоединенную матрицу исходной матрицы. Иногда ее называют комплексно-сопряженной матрицей. Такая матрица обозначается как adj(M).
Разделите каждый элемент присоединенной матрицы на определитель. Определитель матрицы М был вычислен в самом начале, чтобы проверить, что обратная матрица существует. Теперь разделите каждый элемент присоединенной матрицы на этот определитель. Результат каждой операции деления запишите там, где находится соответствующий элемент. Так вы найдете матрицу, обратную исходной.
- Определитель матрицы, которая показана на рисунке, равен 1. Таким образом, здесь присоединенная матрица является обратной матрицей (потому что при делении любого числа на 1 оно не меняется).
- В некоторых источниках операция деления заменяется операцией умножения на 1/det(М). При этом конечный результат не меняется.
Запишите обратную матрицу. Запишите элементы, расположенные на правой половине большой матрицы, в виде отдельной матрицы, которая является обратной матрицей.
С помощью калькулятора
Выберите калькулятор, который работает с матрицами. С помощью простых калькуляторов нельзя найти обратную матрицу, но это можно сделать на хорошем графическом калькуляторе, таком как Texas Instruments TI-83 или TI-86.
Введите исходную матрицу в память калькулятора. Для этого нажмите кнопку Matrix (Матрица), если она есть. В случае калькулятора Texas Instruments, возможно, понадобится нажать кнопки 2 nd и Matrix.
Выберите меню Edit (Редактирование). Сделайте это с помощью кнопок со стрелками или соответствующей функциональной кнопки, которая находится в верхней части клавиатуры калькулятора (расположение кнопки зависит от модели калькулятора).
Введите обозначение матрицы. Большинство графических калькуляторов умеет работать с 3-10 матрицами, которые можно обозначить буквами А-J. Как правило, просто выберите [A], чтобы обозначить исходную матрицу. Затем нажмите кнопку Enter (Ввод).
Введите размер матрицы. В данной статье говорится о матрицах 3х3. Но графические калькуляторы умеют работать с матрицами больших размеров. Введите количество строк, нажмите кнопку Enter, затем введите количество столбцов и еще раз нажмите кнопку Enter.
Введите каждый элемент матрицы. На экране калькулятора отобразится матрица. Если ранее в калькулятор уже вводилась матрица, она появится на экране. Курсор выделит первый элемент матрицы. Введите значение первого элемента и нажмите Enter. Курсор автоматически переместится к следующему элементу матрицы.
В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.
Определение 1
Метод обратной матрицы - это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.
Пример 1
Найти решение системы n линейных уравнений с n неизвестными:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
Матричный вид записи : А × X = B
где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n - матрица системы.
X = x 1 x 2 ⋮ x n - столбец неизвестных,
B = b 1 b 2 ⋮ b n - столбец свободных коэффициентов.
Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A - 1:
A - 1 × A × X = A - 1 × B .
Так как А - 1 × А = Е, то Е × X = А - 1 × В или X = А - 1 × В.
Замечание
Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю. Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А.
В том случае, если d e t A н е р а в е н н у л ю, у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.
Пример решения системы линейных уравнений с помощью метода обратной матрицы
Пример 2Решаем СЛАУ методом обратной матрицы:
2 x 1 - 4 x 2 + 3 x 3 = 1 x 1 - 2 x 2 + 4 x 3 = 3 3 x 1 - x 2 + 5 x 3 = 2
Как решить?
- Записываем систему в виде матричного уравнения А X = B , где
А = 2 - 4 3 1 - 2 4 3 - 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .
- Выражаем из этого уравнения X:
- Находим определитель матрицы А:
d e t A = 2 - 4 3 1 - 2 4 3 - 1 5 = 2 × (- 2) × 5 + 3 × (- 4) × 4 + 3 × (- 1) × 1 - 3 × (- 2) × 3 - - 1 × (- 4) × 5 - 2 × 4 - (- 1) = - 20 - 48 - 3 + 18 + 20 + 8 = - 25
d e t А не равняется 0, следовательно для этой системы подходит метод решения обратной матрицей.
- Находим обратную матрицу А - 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А:
А 11 = (- 1) (1 + 1) - 2 4 - 1 5 = - 10 + 4 = - 6 ,
А 12 = (- 1) 1 + 2 1 4 3 5 = - (5 - 12) = 7 ,
А 13 = (- 1) 1 + 3 1 - 2 3 - 1 = - 1 + 6 = 5 ,
А 21 = (- 1) 2 + 1 - 4 3 - 1 5 = - (- 20 + 3) = 17 ,
А 22 = (- 1) 2 + 2 2 3 3 5 - 10 - 9 = 1 ,
А 23 = (- 1) 2 + 3 2 - 4 3 - 1 = - (- 2 + 12) = - 10 ,
А 31 = (- 1) 3 + 1 - 4 3 - 2 4 = - 16 + 6 = - 10 ,
А 32 = (- 1) 3 + 2 2 3 1 4 = - (8 - 3) = - 5 ,
А 33 = (- 1) 3 + 3 2 - 4 1 - 2 = - 4 + 4 = 0 .
- Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А:
А * = - 6 7 5 17 1 - 10 - 10 - 5 0
- Записываем обратную матрицу согласно формуле:
A - 1 = 1 d e t A (A *) T: А - 1 = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 ,
- Умножаем обратную матрицу А - 1 на столбец свободных членов В и получаем решение системы:
X = A - 1 × B = - 1 25 - 6 17 - 10 7 1 - 5 5 - 10 0 1 3 2 = - 1 25 - 6 + 51 - 20 7 + 3 - 10 5 - 30 + 0 = - 1 0 1
Ответ : x 1 = - 1 ; x 2 = 0 ; x 3 = 1
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter