С чем и связано её название. Это касается вещественной функции одной вещественной переменной.
Энциклопедичный YouTube
-
1 / 5
Если все переменные x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\dots ,x_{n}} и коэффициенты a 0 , a 1 , a 2 , … , a n {\displaystyle a_{0},a_{1},a_{2},\dots ,a_{n}} - вещественные числа, то графиком линейной функции в (n + 1) {\displaystyle (n+1)} -мерном пространстве переменных x 1 , x 2 , … , x n , y {\displaystyle x_{1},x_{2},\dots ,x_{n},y} является n {\displaystyle n} -мерная гиперплоскость
y = a 0 + a 1 x 1 + a 2 x 2 + ⋯ + a n x n {\displaystyle y=a_{0}+a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}}в частности при n = 1 {\displaystyle n=1} - прямая линия на плоскости.
Абстрактная алгебра
Термин «линейная функция», или, точнее, «линейная однородная функция», часто применяется для линейного отображения векторного пространства X {\displaystyle X} над некоторым полем k {\displaystyle k} в это поле, то есть для такого отображения f: X → k {\displaystyle f:X\to k} , что для любых элементов x , y ∈ X {\displaystyle x,y\in X} и любых α , β ∈ k {\displaystyle \alpha ,\beta \in k} справедливо равенство
f (α x + β y) = α f (x) + β f (y) {\displaystyle f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)}причём в этом случае вместо термина «линейная функция» используются также термины линейный функционал и линейная форма - также означающие линейную однородную функцию определённого класса.
Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.
В частном случае, если k = 0 , получим постоянную функцию y = b , график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b) .
Если b = 0 , то получим функцию y = kx , которая является прямой пропорциональностью.
b – длина отрезка , который отсекает прямая по оси Oy, считая от начала координат.
Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.
Свойства линейной функции:
1) Область определения линейной функции есть вся вещественная ось;
2) Если k ≠ 0 , то область значений линейной функции есть вся вещественная ось. Если k = 0 , то область значений линейной функции состоит из числа b ;
3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b .
a) b ≠ 0, k = 0, следовательно, y = b – четная;
b) b = 0, k ≠ 0, следовательно y = kx – нечетная;
c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;
d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.
4) Свойством периодичности линейная функция не обладает;
5) Точки пересечения с осями координат:
Ox: y = kx + b = 0, x = -b/k , следовательно (-b/k; 0) – точка пересечения с осью абсцисс.
Oy: y = 0k + b = b , следовательно (0; b) – точка пересечения с осью ординат.
Замечание.Если b = 0 и k = 0 , то функция y = 0 обращается в ноль при любом значении переменной х . Если b ≠ 0 и k = 0 , то функция y = b не обращается в ноль ни при каких значениях переменной х .
6) Промежутки знакопостоянства зависят от коэффициента k.
a) k > 0; kx + b > 0, kx > -b, x > -b/k.
y = kx + b – положительна при x из (-b/k; +∞) ,
y = kx + b – отрицательна при x из (-∞; -b/k) .
b) k < 0; kx + b < 0, kx < -b, x < -b/k.
y = kx + b – положительна при x из (-∞; -b/k) ,
y = kx + b – отрицательна при x из (-b/k; +∞) .
c) k = 0, b > 0; y = kx + b положительна на всей области определения,
k = 0, b < 0; y = kx + b отрицательна на всей области определения.
7) Промежутки монотонности линейной функции зависят от коэффициента k .
k > 0 , следовательно y = kx + b возрастает на всей области определения,
k < 0 , следовательно y = kx + b убывает на всей области определения.
8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b . Ниже приведена таблица, которая наглядно это иллюстрирует.
Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
Графиком линейной функции является прямая.1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.
Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:
2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
если k>0, то функция y=kx+b возрастает
если k
Коэффициент b показывает смещение графика функции вдоль оси OY:
если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
если b
На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.
Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)
Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3
На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)
Рассмотрим графики функций y=2x+3; y=2x; y=2x-3
Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.
Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
Если k 0Если k>0 и b>0 , то график функции y=kx+b имеет вид:
Если k>0 и b , то график функции y=kx+b имеет вид:
Если k, то график функции y=kx+b имеет вид:
Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:
Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:
3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.
Например, график уравнения x=3 выглядит так:
Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.4. Условие параллельности двух прямых:
График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2
5. Условие перепендикулярности двух прямых:
График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2
6. Точки пересечения графика функции y=kx+b с осями координат.
С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).
С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):
Определение линейной функции
Введем определение линейной функции
Определение
Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.
График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.
При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.
Рассмотрим рисунок 1.
Рис. 1. Геометрический смысл углового коэффициента прямой
Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:
\ \
Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:
\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]
С другой стороны $\frac{BC}{AC}=tg\angle A$.
Таким образом, можно сделать следующий вывод:
Вывод
Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.
Исследование линейной функции $f\left(x\right)=kx+b$ и её график
Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.
- $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
- ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
- График (рис. 2).
Рис. 2. Графики функции $y=kx+b$, при $k > 0$.
Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k
- Область определения -- все числа.
- Область значения -- все числа.
- $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
- При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.
Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$
- $f"\left(x\right)={\left(kx\right)}"=k
- $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
- ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
- График (рис. 3).