» » Выяснить являются ли векторы линейно зависимыми. Линейная зависимость системы векторов. Коллинеарные векторы. Векторы, их свойства и действия с ними

Выяснить являются ли векторы линейно зависимыми. Линейная зависимость системы векторов. Коллинеарные векторы. Векторы, их свойства и действия с ними

Определение 1. Система векторов называется линейно зависимой, если один из векторов системы можно представить в виде линейной комбинации остальных векторов системы, и линейно независимой - в противном случае.

Определение 1´. Система векторов называется линейно зависимой, если найдутся числа с 1 , с 2 , …, с k , не все равные нулю, такие, что линейная комбинация векторов с данными коэффициентами равна нулевому вектору: = , в противном случае система называется линейно независимой.

Покажем, что эти определения эквивалентны.

Пусть выполняется определение 1, т.е. один из векторов системы равен линейной комбинации остальных:

Линейная комбинация системы векторов равна нулевому вектору, причем не все коэффициенты этой комбинации равны нулю, т.е. выполняется определение 1´.

Пусть выполняется определение 1´. Линейная комбинация системы векторов равна , причем не все коэффициенты комбинации равны нулю, например, коэффициенты при векторе .

Один из векторов системы мы представили в виде линейной комбинации остальных, т.е. выполняется определение 1.

Определение 2. Единичным вектором, или ортом, называется n-мерный вектор , у которого i -я координата равна единице, а остальные - нулевые.

. (1, 0, 0, …, 0),

(0, 1, 0, …, 0),

(0, 0, 0, …, 1).

Теорема 1. Различные единичные векторы n -мерного пространства линейно независимы.

Доказательство. Пусть линейная комбинация этих векторов с произвольными коэффициентами равна нулевому вектору.

Из этого равенства следует, что все коэффициенты равны нулю. Получили противоречие.

Каждый вектор n -мерного пространства ā (а 1 , а 2 , ..., а n ) может быть представлен в виде линейной комбинации единичных векторов с коэффициентами, равными координатам вектора

Теорема 2. Если системы векторов содержит нулевой вектор, то она линейно зависима.

Доказательство. Пусть дана система векторов и один из векторов является нулевым, например = . Тогда с векторами данной системы можно составить линейную комбинацию, равную нулевому вектору, причем не все коэффициенты будут нулевыми:

Следовательно, система линейно зависима.

Теорема 3. Если некоторая подсистема системы векторов линейно зависима, то и вся система линейно зависима.

Доказательство. Дана система векторов . Предположим, что система линейно зависима, т.е. найдутся числа с 1 , с 2 , …, с r , не все равные нулю, такие, что = . Тогда

Получилось, что линейная комбинация векторов всей системы равна , причем не все коэффициенты этой комбинации равны нулю. Следовательно, система векторов линейно зависима.

Следствие. Если система векторов линейно независима, то и любая ее подсистема также линейно независима.

Доказательство.

Предположим противное, т.е. некоторая подсистема линейно зависима. Из теоремы следует, что вся система линейно зависима. Мы пришли к противоречию.

Теорема 4 (теорема Штейница). Если каждый из векторов является линейной комбинацией векторов и m >n , то система векторов линейно зависима.

Следствие. В любой системе n -мерных векторов не может быть больше чем n линейно независимых.

Доказательство. Каждый n -мерный вектор выражается в виде линейной комбинации n единичных векторов. Поэтому, если система содержит m векторов и m >n , то, по теореме, данная система линейно зависима.

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Определение 1

Коллинеарные векторы - это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1 . Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2 . Векторы a и b коллинеарны при равном отношении координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3 . Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

a ∥ b ⇔ a , b = 0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а = (1 ; 3) и b = (2 ; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ : a | | b

Пример 2

Какое значение m вектора a = (1 ; 2) и b = (- 1 ; m) необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = - 2 .

Ответ: m = - 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Доказательство

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k - 1 (a k - 1 a 1) e 1 + (a k - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Обозначим:

A k - 1 a m , где m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В таком случае:

β 1 e 1 + . . . + β k - 1 e k - 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен - 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора - коллинеарны. Два коллинеарных вектора - линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора - компланарны. (3 компланарных вектора - линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a = 3 , 4 , 5 , b = - 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , - 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

Из 2-ой строки вычитаем 1-ю, из 3-ей - 1-ю:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторов и имеем набор чисел
, тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторов
называется линейно зависимой, если существует такой набор коэффициентов
, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть
, тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов
называется линейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всех
равных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

 Пусть
, тогда .

Получим
, следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию (12) система линейно зависима. 

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть
- линейно зависимая подсистема
, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой. 

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора и линейно зависимы тогда и только тогда, когда
.

Необходимость.

и - линейно зависимы
, что выполняется условие
. Тогда
, т.е.
.

Достаточность.

Линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

- линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

, (13)

где
и
. По правилу параллелограмма есть диагональ параллелограмма со сторонами
, но параллелограмм – плоская фигура
компланарны
- тоже компланарны.

Достаточность .

- компланарны. Приложим три вектора к точке О:

C

B`

– линейно зависимы 

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы
были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точку D, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипед OB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма
.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда)
, тогда

EMBED Equation.3 .

По теореме 1
такие, что . Тогда
, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.

Векторы, их свойства и действия с ними

Векторы, действия с векторами, линейное векторное пространство.

Векторы- упорядоченная совокупность конечного количества действительных чисел.

Действия: 1.Умножение вектора на число: лямда*вектор х=(лямда*х 1 , лямда*х 2 … лямда*х n).(3,4, 0, 7)*3=(9, 12,0,21)

2.Сложение векторов (принадлежат одному и тому же векторному пространству) вектор х+вектор у = (х 1 +у 1, х 2 +у 2, … х n +у n ,)

3. Вектор 0=(0,0…0)---n E n – n-мерное (линейное пространство) вектор х +вектор 0 = вектор х

Теорема. Для того чтобы система n векторов, n- мерного линейного пространства была линейно зависимой, необходимо и достаточно, чтобы один из векторов были линейной комбинацией остальным.

Теорема. Любая совокупность n+ 1ого вектора n- мерного линейного пространства явл. линейно зависимой.

Сложение векторов, умножение векторов на числа. Вычитание векторов.

Суммой двух векторов и называется вектор, направленный из начала вектора в конец вектора при условии, что начало совпадет с концом вектора. Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.

Рассмотрим это на примере декартовой системы координат. Пусть

Покажем, что

Из рисунка 3 видно, что

Сумма любого конечного числа векторов может быть найдена по правилу многоугольника (рис. 4): чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.

Свойства операции сложения векторов:

В этих выражениях m, n - числа.

Разностью векторов и называют вектор Второе слагаемое является вектором, противоположным вектору по направлению, но равным ему по длине.

Таким образом, операция вычитания векторов заменяется на операцию сложения

Вектор, начало которого находится в начале координат, а конец - в точке А (x1, y1, z1), называют радиус-вектором точки А и обозначают или просто. Так как его координаты совпадают с координатами точки А, то его разложение по ортам имеет вид

Вектор, имеющий начало в точке А(x1, y1, z1) и конец в точке B(x2, y2, z2), может быть записан в виде

где r 2 - радиус-вектор точки В; r 1 - радиус-вектор точки А.

Поэтому разложение вектора по ортам имеет вид

Его длина равна расстоянию между точками А и В

УМНОЖЕНИЕ

Так в случае плоской задачи произведение вектор на a = {ax; ay} на число b находится по формуле

a · b = {ax · b; ay · b}

Пример 1. Найти произведение вектора a = {1; 2} на 3.

3 · a = {3 · 1; 3 · 2} = {3; 6}

Так в случае пространственной задачи произведение вектора a = {ax; ay; az} на число b находится по формуле

a · b = {ax · b; ay · b; az · b}

Пример 1. Найти произведение вектора a = {1; 2; -5} на 2.

2 · a = {2 · 1; 2 · 2; 2 · (-5)} = {2; 4; -10}

Скалярное произведение векторов и где - угол между векторами и ; если либо , то

Из определения скалярного произведения следует, что

где, например, есть величина проекции вектора на направление вектора .

Скалярный квадрат вектора:

Свойства скалярного произведения:

Скалярное произведение в координатах

Если то

Угол между векторами

Угол между векторами - угол между направлениями этих векторов (наименьший угол).

Векторное произведение(Векторное произведение двух векторов.)- это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно является антикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся - векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов - длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности»

Коллинеарность векторов.

Два ненулевых (не равных 0) вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Допусти́м, но не рекомендуется синоним - «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).

Сме́шанное произведе́ние векторов(a, b,c) - скалярное произведение вектора a на векторное произведение векторов b и c:

(a,b,c)=a ⋅(b ×c)

иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами(a,b,c) .

Свойства

Смешанное произведение кососимметрично по отношению ко всем своим аргументам:т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, чтоСмешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и:

Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и, взятому со знаком "минус":

В частности,

Если любые два вектора параллельны, то с любым третьим вектором они образуют смешанное произведение равное нулю.

Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.

Геометрический смысл - Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и; знак зависит от того, является ли эта тройка векторов правой или левой.

Компланарность векторов.

Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости

Свойства компланарности

Если хотя бы один из трёх векторов - нулевой, то три вектора тоже считаются компланарными.

Тройка векторов, содержащая пару коллинеарных векторов, компланарна.

Смешанное произведение компланарных векторов. Это - критерий компланарности трёх векторов.

Компланарные векторы - линейно зависимы. Это - тоже критерий компланарности.

В 3-мерном пространстве 3 некомпланарных вектора образуют базис

Линейно зависимые и линейно независимые векторы.

Линейно зависимые и независимые системы векторов. Определение . Система векторов называется линейно зависимой , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная нулевому вектору. В противном случае, т.е. если только тривиальная линейная комбинация данных векторов равна нулевому вектору, векторы называются линейно независимыми .

Теорема (критерий линейной зависимости) . Для того чтобы система век торов линейного пространства была линейно зависимой, необходимо и достаточно, чтобы, по крайней мере, один из этих векторов являлся линейной комбинацией остальных.

1) Если среди векторов имеется хотя бы один нулевой вектор, то вся система векторов линейно зависима.

В самом деле, если, например, , то, полагая , имеем нетривиальную линейную комбинацию .▲

2) Если среди векторов некоторые образуют линейно зависимую систему, то и вся система линейно зависима.

Действительно, пусть векторы , , линейно зависимы. Значит, существует нетривиальная линейная комбинация , равная нулевому вектору. Но тогда, полагая , получим также нетривиальную линейную комбинацию , равную нулевому вектору.

2. Базис и размерность. Определение . Система линейно независимых векторов векторного пространства называетсябазисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство Это равенство называется разложением вектора по базису , а числа называютсякоординатами вектора относительно базиса (или в базисе ) .

Теорема (о единственности разложения по базису) . Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.

Определение 1 . Линейной комбинацией векторовназывается сумма произведений этих векторов на скаляры
:

Определение 2 . Система векторов
называется линейно зависимой системой, если линейная комбинация их (2.8) обращается в нуль:

причем среди чисел
существует хотя бы одно, отличное от нуля.

Определение 3 . Векторы
называются линейно независимыми, если их линейная комбинация (2.8) обращается в нуль лишь в случае, когда все числа.

Из этих определений можно получить следующие следствия.

Следствие 1 . В линейно зависимой системе векторов хотя бы один вектор может быть выражен как линейная комбинация остальных.

Доказательство . Пусть выполнено (2.9) и пусть для определенности, коэффициент
. Имеем тогда:
. Заметим, что справедливо и обратное утверждение.

Следствие 2. Если система векторов
содержит нулевой вектор, то эта система (обязательно) линейно зависима – доказательство очевидно.

Следствие 3 . Если средиn векторов
какие либоk (
) векторов линейно зависимы, то и всеn векторов линейно зависимы (опустим доказательство).

2 0 . Линейные комбинации двух, трех и четырех векторов . Рассмотрим вопросы линейной зависимости и независимости векторов на прямой, плоскости и в пространстве. Приведем соответствующие теоремы.

Теорема 1 . Для того чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Необходимость . Пусть векторыилинейно зависимы. Это означает, что их линейная комбинация
=0 и (ради определенности)
. Отсюда следует равенство
, и (по определению умножения вектора на число) векторыиколлинеарны.

Достаточность . Пусть векторыиколлинеарны () (предполагаем, что они отличны от нулевого вектора; иначе их линейная зависимость очевидна).

По теореме (2.7) (см. §2.1,п.2 0) тогда
такое, что
, или
– линейная комбинация равна нулю, причем коэффициент приравен 1 – векторыилинейно зависимы.

Из этой теоремы вытекает следующее следствие.

Следствие . Если векторыине коллинеарны, то они линейно независимы.

Теорема 2 . Для того чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Необходимость . Пусть векторы,илинейно зависимы. Покажем, что они компланарны.

Из определения линейной зависимости векторов следует существование чисел
итаких, что линейная комбинация
, и при этом (для определенности)
. Тогда из этого равенства можно выразить вектор:=
, то есть векторравен диагонали параллелограмма, построенного на векторах, стоящих в правой части этого равенства (рис.2.6). Это означает, что векторы,илежат в одной плоскости.

Достаточность . Пусть векторы,икомпланарны. Покажем, что они линейно зависимы.

Исключим случай коллинеарности какой либо пары векторов (ибо тогда эта пара линейно зависима и по следствию 3 (см.п.1 0) все три вектора линейно зависимы). Заметим, что такое предположение исключает также существование нулевого вектора среди указанных трех.

Перенесем три компланарных вектора в одну плоскость и приведем их к общему началу. Через конец вектора проведем прямые, параллельные векторами; получим при этом векторыи(рис.2.7) – их существование обеспечено тем, что векторыине коллинеарные по предположению векторы. Отсюда следует, что вектор=+. Переписав это равенство в виде (–1)++=0, заключаем, что векторы,илинейно зависимы.

Из доказанной теоремы вытекает два следствия.

Следствие 1 . Пустьине коллинеарные векторы, вектор– произвольный, лежащий в плоскости, определяемой векторамии, вектор. Существуют тогда числаитакие, что

=+. (2.10)

Следствие 2 . Если векторы,ине компланарны, то они линейно независимы.

Теорема 3 . Любые четыре вектора линейно зависимы.

Доказательство опустим; с некоторыми изменениями оно копирует доказательство теоремы 2. Приведем следствие из этой теоремы.

Следствие . Для любых некомпланарных векторов,,и любого вектора
итакие, что

. (2.11)

Замечание . Для векторов в (трехмерном) пространстве понятия линейной зависимости и независимости имеют, как это следует из приведенных выше теорем 1-3, простой геометрический смысл.

Пусть имеются два линейно зависимых вектора и. В таком случае один из них является линейной комбинацией второго, то есть просто отличается от него численным множителем (например,
). Геометрически это означает, что оба вектора находятся на общей прямой; они могут иметь одинаковое или противоположное направления (рис.2.8 хх).

Если же два вектора расположены под углом друг к другу (рис.2.9 хх), то в этом случае нельзя получить один из них умножением другого на число – такие векторы линейно независимы. Следовательно, линейная независимость двух векторов иозначает, что эти векторы не могут быть уложены на одну прямую.

Выясним геометрический смысл линейной зависимости и независимости трех векторов.

Пусть векторы ,илинейно зависимы и пусть (для определенности) векторявляется линейной комбинацией векторови, то есть расположен в плоскости, содержащей векторыи. Это означает, что векторы,илежат в одной плоскости. Справедливо и обратное утверждение: если векторы,илежат в одной плоскости, то они линейно зависимы.

Таким образом, векторы ,илинейно независимы в том и только в том случае, если они не лежат в одной плоскости.

3 0 . Понятие базиса . Одним из важнейших понятий линейной и векторной алгебры является понятие базиса. Введем определения.

Определение 1 . Пара векторов называется упорядоченной, если указано, какой вектор этой пары считается первым, а какой вторым.

Определение 2. Упорядоченная пара,неколлинеарных векторов называется базисом на плоскости, определяемой заданными векторами.

Теорема 1 . Всякий векторна плоскости может быть представлен как линейная комбинация базисной системы векторов,:

(2.12)

и это представление единственно.

Доказательство . Пусть векторыиобразуют базис. Тогда любой векторможно представить в виде
.

Для доказательства единственности предположим, что имеется еще одно разложение
. Имеем тогда=0, причем хотя бы одна из разностей отлична от нуля. Последнее означает, что векторыилинейно зависимы, то есть коллинеарны; это противоречит утверждению, что они образуют базис.

Но тогда – разложение единственно.

Определение 3 . Тройка векторов называется упорядоченной, если указано, какой вектор ее считается первым, какой вторым, а какой третьим.

Определение 4 . Упорядоченная тройка некомпланарных векторов называется базисом в пространстве.

Здесь также справедлива теорема разложения и единственности.

Теорема 2 . Любой векторможет быть представлен как линейная комбинация базисной системы векторов,,:

(2.13)

и это представление единственно (опустим доказательство теоремы).

В разложениях (2.12) и (2.13) величины называются координатами векторав заданном базисе (точнее, аффинными координатами).

При фиксированном базисе
и
можно писать
.

Например, если задан базис
и дано, что
, то это означает, что имеет место представление (разложение)
.

4 0 . Линейные операции над векторами в координатной форме . Введение базиса позволяет линейные операции над векторами заменить обычными линейными операциями над числами – координатами этих векторов.

Пусть задан некоторый базис
. Очевидно, задание координат вектора в этом базисе полностью определяет сам вектор. Имеют место следующие предложения:

а) два вектора
и
равны тогда и только тогда, когда равны их соответственные координаты:

б) при умножении вектора
на числоего координаты умножаются на это число:

; (2.15)

в) при сложении векторов складываются их соответственные координаты:

Доказательства этих свойств опустим; докажем лишь для примера свойство б). Имеем

==

Замечание . В пространстве (на плоскости) можно выбрать бесконечно много базисов.

Приведем пример перехода от одного базиса к другому, установим соотношения между координатами вектора в различных базисах.

Пример 1 . В базисной системе
заданы три вектора:
,
и
. В базисе,,векторимеет разложение. Найти координаты векторав базисе
.

Решение . Имеем разложения:
,
,
; следовательно,
=
+2
+
= =
, то есть
в базисе
.

Пример 2 . Пусть в некотором базисе
четыре вектора заданы своими координатами:
,
,
и
.

Выяснить, образуют ли векторы
базис; в случае положительного ответа найти разложение векторав этом базисе.

Решение . 1) векторы образуют базис, если они линейно независимы. Составим линейную комбинацию векторов
(
) и выясним, при каких
иона обращается в нуль:
=0. Имеем:

=
+
+
=

По определению равенства векторов в координатной форме получим следующую систему (линейных однородных алгебраических) уравнений:
;
;
, определитель которой
=1
, то есть система имеет (лишь) тривиальное решение
. Это означает линейную независимость векторов
и, следовательно, они образуют базис.

2) разложим вектор в этом базисе. Имеем:=
или в координатной форме.

Переходя к равенству векторов в координатной форме, получим систему линейных неоднородных алгебраических уравнений:
;
;
. Решая ее (например, по правилу Крамера), получим:
,
,
и (
)
. Имеем разложение векторав базисе
:=.

5 0 . Проекция вектора на ось. Свойства проекций. Пусть имеется некоторая осьl , то есть прямая с выбранным на ней направлением и пусть задан некоторый вектор.Определим понятие проекции векторана осьl .

Определение . Проекцией векторана осьl называется произведение модуля этого вектора на косинус угла между осьюl и вектором (рис.2.10):

. (2.17)

Следствием этого определения является утверждение о том, что равные векторы имеют равные проекции (на одну и ту же ось).

Отметим свойства проекций.

1) проекция суммы векторов на некоторую ось l равна сумме проекций слагаемых векторов на ту же ось:

2) проекция произведения скаляра на вектор равна произведению этого скаляра на проекцию вектора на ту же ось:

=
. (2.19)

Следствие . Проекция линейной комбинации векторов на ось равна линейной комбинации их проекций:

Доказательства свойств опустим.

6 0 . Прямоугольная декартова система координат в пространстве .Разложение вектора по ортам осей. Пусть в качестве базиса выбраны три взаимно перпендикулярных орта; для них вводим специальные обозначения
. Поместив их начала в точкуO , направим по ним (в соответствии с ортами
) координатные осиOx ,Oy иOz (ось с выбранным на ней положительным направлением, началом отсчета и единицей длины называется координатной осью).

Определение . Упорядоченная система трех взаимно перпендикулярных координатных осей с общим началом и общей единицей длины называется прямоугольной декартовой системой координат в пространстве.

Ось Ox называется осью абсцисс,Oy – осью ординат иOz осью аппликат.

Займемся разложением произвольного вектора по базису
. Из теоремы (см.§2.2,п.3 0 , (2.13)) следует, что
может быть и единственным образом разложен по базису
(здесь вместо обозначения координат
употребляют
):

. (2.21)

В (2.21)
суть (декартовы прямоугольные) координаты вектора. Смысл декартовых координат устанавливает следующая теорема.

Теорема . Декартовы прямоугольные координаты
вектораявляются проекциями этого вектора соответственно на осиOx ,Oy иOz .

Доказательство. Поместим векторв начало системы координат – точкуO . Тогда его конец будет совпадать с некоторой точкой
.

Проведем через точку
три плоскости, параллельные координатным плоскостямOyz ,Oxz иOxy (рис.2.11 хх). Получим тогда:

. (2.22)

В (2.22) векторы
и
называются составляющими вектора
по осямOx ,Oy иOz .

Пусть через
иобозначены соответственно углы, образованные векторомс ортами
. Тогда для составляющих получим следующие формулы:

=
=
,
=

=
,
=

=
(2.23)

Из (2.21), (2.22) (2.23) находим:

=
=
;=
=
;=
=
(2.23)

– координаты
вектораесть проекции этого вектора на координатные осиOx ,Oy иOz соответственно.

Замечание . Числа
называются направляющими косинусами вектора.

Модуль вектора (диагональ прямоугольного параллелепипеда) вычисляется по формуле:

. (2.24)

Из формул (2.23) и (2.24) следует, что направляющие косинусы могут быть вычислены по формулам:

=
;
=
;
=
. (2.25)

Возводя обе части каждого из равенств в (2.25) и складывая почленно левые и правые части полученных равенств, придем к формуле:

– не любые три угла образуют некоторое направление в пространстве, но лишь те, косинусы которых связаны соотношением (2.26).

7 0 . Радиус-вектор и координаты точки .Определение вектора по его началу и концу . Введем определение.

Определение . Радиусом-вектором (обозначается) называется вектор, соединяющий начало координатO с этой точкой (рис.2.12 хх):

. (2.27)

Любой точке пространства соответствует определенный радиус-вектор (и обратно). Таким образом, точки пространства представляются в векторной алгебре их радиус-векторами.

Очевидно, координаты
точкиM являются проекциями ее радиус-вектора
на координатные оси:

(2.28’)

и, таким образом,

(2.28)

– радиус-вектор точки есть вектор, проекции которого на оси координат равны координатам этой точки. Отсюда следует две записи:
и
.

Получим формулы для вычисления проекций вектора
по координатам его начала – точке
и конца – точке
.

Проведем радиус-векторы
и вектор
(рис.2.13). Получим, что

=
=(2.29)

– проекции вектора на координатные орты равны разностям соответствующих координат конца и начала вектора.

8 0 . Некоторые задачи на декартовы координаты .

1) условия коллинеарности векторов . Из теоремы (см.§2.1,п.2 0 , формула (2.7)) следует, что для коллинеарности векторовинеобходимо и достаточно, чтобы выполнялось соотношение:=. Из этого векторного равенства получаем три в координатной форме равенства:, откуда следует условие коллинеарности векторов в координатной форме:

(2.30)

– для коллинеарности векторов инеобходимо и достаточно, чтобы их соответствующие координаты были пропорциональны.

2) расстояние между точками . Из представления (2.29) следует, что расстояние
между точками
и
определяется формулой

=
=. (2.31)

3) деление отрезка в данном отношении . Пусть даны точки
и
и отношение
. Нужно найти
– координаты точкиM (рис.2.14).

Имеем из условия коллинеарности векторов:
, откуда
и

. (2.32)

Из (2.32) получим в координатной форме:

Из формул (2.32’) можно получить формулы для вычисления координат середины отрезка
, полагая
:

Замечание . Будем считать отрезки
и
положительными или отрицательными в зависимости от того, совпадает их направление с направлением от начала
отрезка к концу
, или не совпадает. Тогда по формулам (2.32) – (2.32”) можно находить координат точки, делящей отрезок
внешним образом, то есть так, что делящая точкаM находится на продолжении отрезка
, а не внутри его. При этом конечно,
.

4) уравнение сферической поверхности . Составим уравнение сферической поверхности – геометрического места точек
, равноудаленных на расстояниеот некоторого фиксированного центра – точки
. Очевидно, что в данном случае
и с учетом формулы (2.31)

Уравнение (2.33) и есть уравнение искомой сферической поверхности.