» » Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel. График функции y=sin x График функции y sin x 2

Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel. График функции y=sin x График функции y sin x 2

Урок и презентация на тему: "Функция y=sin(x). Определения и свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:

  • Свойства функции Y=sin(X).
  • График функции.
  • Как строить график и его масштаб.
  • Примеры.

Свойства синуса. Y=sin(X)

Ребята, мы уже познакомились с тригонометрическими функциями числового аргумента. Вы помните их?

Давайте познакомимся поближе с функцией Y=sin(X)

Запишем некоторые свойства этой функции:
1) Область определения – множество действительных чисел.
2) Функция нечетная. Давайте вспомним определение нечетной функции. Функция называется нечетной если выполняется равенство: y(-x)=-y(x). Как мы помним из формул привидения: sin(-x)=-sin(x). Определение выполнилось, значит Y=sin(X) – нечетная функция.
3) Функция Y=sin(X) возрастает на отрезке и убывает на отрезке [π/2; π]. Когда мы движемся по первой четверти (против часовой стрелки), ордината увеличивается, а при движении по второй четверти она уменьшается.

4) Функция Y=sin(X) ограничена снизу и сверху. Данное свойство следует из того, что
-1 ≤ sin(X) ≤ 1
5) Наименьшее значение функции равно -1 (при х = - π/2+ πk). Наибольшее значение функции равно 1 (при х = π/2+ πk).

Давайте, воспользовавшись свойствами 1-5, построим график функции Y=sin(X). Будем строить наш график последовательно, применяя наши свойства. Начнем строить график на отрезке .

Особое внимание стоит обратить на масштаб. На оси ординат удобнее принять единичный отрезок равный 2 клеточкам, а на оси абсцисс - единичный отрезок (две клеточки) принять равным π/3 (смотрите рисунок).


Построение графика функции синус х, y=sin(x)

Посчитаем значения функции на нашем отрезке:



Построим график по нашим точкам, с учетом третьего свойства.

Таблица преобразований для формул привидения

Воспользуемся вторым свойством, которое говорит, что наша функция нечетная, а это значит, что ее можно отразить симметрично относительно начало координат:


Мы знаем, что sin(x+ 2π) = sin(x). Это значит, что на отрезке [- π; π] график выглядит так же, как на отрезке [π; 3π] или или [-3π; - π] и так далее. Нам остается аккуратно перерисовать график на предыдущем рисунке на всю ось абсцисс.



График функции Y=sin(X) называют - синусоидой.


Напишем еще несколько свойств согласно построенному графику:
6) Функция Y=sin(X) возрастает на любом отрезке вида: [- π/2+ 2πk; π/2+ 2πk], k – целое число и убывает на любом отрезке вида: [π/2+ 2πk; 3π/2+ 2πk], k – целое число.
7) Функция Y=sin(X) – непрерывная функция. Посмотрим на график функции и убедимся что у нашей функции нет разрывов, это и означает непрерывность.
8) Область значений: отрезок [- 1; 1]. Это также хорошо видно из графика функции.
9) Функция Y=sin(X) - периодическая функция. Посмотрим опять на график и увидим, что функция принимает одни и те же значения, через некоторые промежутки.

Примеры задач с синусом

1. Решить уравнение sin(x)= x-π

Решение: Построим 2 графика функции: y=sin(x) и y=x-π (см. рисунок).
Наши графики пересекаются в одной точке А(π;0), это и есть ответ: x = π




2. Построить график функции y=sin(π/6+x)-1

Решение: Искомый график получится путем переноса графика функции y=sin(x) на π/6 единиц влево и 1 единицу вниз.




Решение: Построим график функции и рассмотрим наш отрезок [π/2; 5π/4].
На графике функции видно, что наибольшие и наименьшие значения достигаются на концах отрезка, в точках π/2 и 5π/4 соответственно.
Ответ: sin(π/2) = 1 – наибольшее значение, sin(5π/4) = наименьшее значение.



Задачи на синус для самостоятельного решения


  • Решите уравнение: sin(x)= x+3π, sin(x)= x-5π
  • Построить график функции y=sin(π/3+x)-2
  • Построить график функции y=sin(-2π/3+x)+1
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке
  • Найти наибольшее и наименьшее значение функции y=sin(x) на отрезке [- π/3; 5π/6]

Как построить график функции y=sin x? Для начала рассмотрим график синуса на промежутке .

Единичный отрезок берём длиной 2 клеточки тетради. На оси Oy отмечаем единицу.

Для удобства число π/2 округляем до 1,5 (а не до 1,6, как требуется по правилам округления). В этом случае отрезку длиной π/2 соответствуют 3 клеточки.

На оси Ox отмечаем не единичные отрезки, а отрезки длиной π/2 (через каждые 3 клеточки). Соответственно, отрезку длиной π соответствует 6 клеточек, отрезку длиной π/6 — 1 клеточка.

При таком выборе единичного отрезка график, изображённый на листе тетради в клеточку, максимально соответствует графику функции y=sin x.

Составим таблицу значений синуса на промежутке :

Полученные точки отметим на координатной плоскости:

Так как y=sin x — нечётная функция, график синуса симметричен относительно начала отсчёта — точки O(0;0). С учётом этого факта продолжим построение графика влево, то точки -π:

Функция y=sin x — периодическая с периодом T=2π. Поэтому график функции, взятый на на промежутке [-π;π], повторяется бесконечное число раз вправо и влево.

Теперь мы рассмотрим вопрос о том, как строить графики тригонометрических функций кратных углов ωx , где ω - некоторое положительное число.

Для построения графика функции у = sin ωx сравним эту функцию с уже изученной нами функцией у = sin x . Предположим, что при х = x 0 функция у = sin х принимает значение, равное у 0 . Тогда

у 0 = sin x 0 .

Преобразуем это соотношение следующим образом:

Следовательно, функция у = sin ωx при х = x 0 / ω принимает то же самое значение у 0 , что и функция у = sin х при х = x 0 . А это означает, что функция у = sin ωx повторяет свои значения в ω раз чаще, чем функция у = sin x . Поэтому график функции у = sin ωx получается путем "сжатия" графика функции у = sin x в ω раз вдоль оси х.

Например, график функции у = sin 2х получается путем «сжатия» синусоиды у = sin x вдвое вдоль оси абсцисс.

График функции у = sin x / 2 получается путем «растяжения» синусоиды у = sin х в два раза (или «сжатия» в 1 / 2 раза) вдоль оси х.

Поскольку функция у = sin ωx повторяет свои значения в ω раз чаще, чем функция
у = sin x , то период ее в ω раз меньше периода функции у = sin x . Например, период функции у = sin 2х равен 2π / 2 = π , а период функции у = sin x / 2 равен π / x / 2 = .

Интересно провести исследование поведения функции у = sin аx на примере анимации, которую очень просто можно создать в программе Maple :

Аналогично строятся графики и других тригонометрических функций кратных углов. На рисунке представлен график функции у = cos 2х , который получается путем «сжатия» косинусоиды у = cos х в два раза вдоль оси абсцисс.

График функции у = cos x / 2 получается путем «растяжения» косинусоиды у = cos х вдвое вдоль оси х.

На рисунке вы видите график функции у = tg 2x , полученный «сжатием» тангенсоиды у = tg x вдвое вдоль оси абсцисс.

График функции у = tg x / 2 , полученный «растяжением» тангенсоиды у = tg x вдвое вдоль оси х.

И, наконец, анимация, выполненная программой Maple:

Упражнения

1. Построить графики данных функций и указать координаты точек пересечения этих графиков с осями координат. Определить периоды данных функций.

а). y = sin 4x / 3 г). y = tg 5x / 6 ж). y = cos 2x / 3

б). у= cos 5x / 3 д). у = ctg 5x / 3 з). у= ctg x / 3

в). y = tg 4x / 3 е). у = sin 2x / 3

2. Определить периоды функций у = sin (πх) и у = tg ( πх / 2 ).

3. Приведите два примера функции, которые принимают все значения от -1 до +1 (включая эти два числа) и изменяются периодически с периодом 10.

4 *. Приведите два примера функций, которые принимают все значения от 0 до 1 (включая эти два числа) и изменяются периодически с периодом π / 2 .

5. Приведите два примера функций, которые принимают все действительные значения и изменяются периодически с периодом 1.

6 *. Приведите два примера функций, которые принимают все отрицательные значения и нуль, но не принимают положительные значения и изменяются периодически с периодом 5.

«Йошкар-Олинский техникум сервисных технологий»

Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel

/методическая разработка/

Йошкар – Ола

Тема . Построение и исследование графика тригонометрической функции y = sinx в табличном процессоре MS Excel

Тип урока – интегрированный (получение новых знаний)

Цели:

Дидактическая цель - исследовать поведение графиков тригонометрической функции y = sinx в зависимости от коэффициентов с помощью компьютера

Обучающие:

1. Выяснить изменение графика тригонометрической функции y = sin x в зависимости от коэффициентов

2. Показать внедрение компьютерных технологий в обучение математике, интеграцию двух предметов: алгебры и информатики.

3. Формировать навыки использования компьютерных технологий на уроках математики

4. Закрепить навыки исследования функций и построения их графиков

Развивающие:

1. Развивать познавательный интерес учащихся к учебным дисциплинам и умение применять свои знания в практических ситуациях

2. Развивать умения анализировать, сравнивать, выделять главное

3. Способствовать повышению общего уровня развития студентов

Воспитывающие :

1. Воспитывать самостоятельность, аккуратность, трудолюбие

2. Воспитывать культуру диалога

Формы работы на уроке – комбинированная

Дидактическое оснащение и оборудование:

1. Компьютеры

2. Мультимедийный проектор

4. Раздаточный материал

5. Слайды презентации

Ход урока

I . Организация начала урока

· Приветствие студентов и гостей

· Настрой на урок

II . Целеполагание и актуализация темы

Для исследования функции и построения ее графика требуется много времени, приходится выполнять много громоздких вычислений, это не удобно, на помощь приходят компьютерные технологии.

Сегодня мы научимся строить графики тригонометрических функций в среде табличного процессора MS Excel 2007.

Тема нашего занятия «Построение и исследование графика тригонометрической функцииy = sinx в табличном процессоре»

Из курса алгебры нам известна схема исследования функции и построения ее графика. Давайте вспомним как это сделать.

Слайд 2

Схема исследования функции

1. Область определения функции (D(f))

2. Область значения функции Е(f)

3. Определение четности

4. Периодичность

5. Нули функции (y=0)

6. Промежутки знакопостоянства (у>0, y<0)

7. Промежутки монотонности

8. Экстремумы функции

III . Первичное усвоение нового учебного материала

Откройте программу MS Excel 2007.

Построим график функции y=sinx

Построение графиков в табличном процессоре MS Excel 2007

График данной функции будем строить на отрезке x Є [-2π; 2π]

Значения аргумента будем брать с шагом, чтобы график получился более точным.

Т. к. редактор работает с числами, переведем радианы в числа, зная что П ≈ 3,14 . (таблица перевода в раздаточном материале).

1. Находим значение функции в точке х=-2П. Для остальных значение аргумента соответствующие значения функции редактор вычисляет автоматически.

2. Теперь у нас имеется таблица со значениями аргумента и функции. С помощью этих данных мы должны построить график этой функции с помощью мастера диаграмм.

3. Для построения графика надо выделить нужный диапазон данных, строки со значениями аргумента и функции

4..jpg" width="667" height="236 src=">

Выводы записываем в тетрадь (Слайд 5)

Вывод. График функции вида у=sinx+k получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОУ на k единиц

Если k >0, то график смещается вверх на k единиц

Если k<0, то график смещается вниз на k единиц

Построение и исследование функции вида у= k *sinx, k - const

Задание 2. На рабочем Листе2 в одной системе координат постройте графики функций y = sinx y =2* sinx , y = * sinx , на интервале (-2π; 2π) и проследите как изменяется вид графика.

(Чтобы заново не задавать значение аргумента давайте скопируем имеющиеся значения. Теперь вам надо задать формулу, и по полученной таблице построить график.)

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 6)

https://pandia.ru/text/78/510/images/image005_66.gif" width="16" height="41 src=">x , на интервале (-2π; 2π) и проследите как изменяется вид графика.

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 8)

https://pandia.ru/text/78/510/images/image008_35.jpg" width="649" height="281 src=">

Выводы записываем в тетрадь (Слайд 11)

Вывод. График функции вида у= sin(x+k) получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОХ на k единиц

Если k >1, то график смещается вправо вдоль оси ОХ

Если 0

IV . Первичное закрепление полученных знаний

Дифференцированные карточки с заданием на построение и исследование функции при помощи графика

Y=6 *sin(x)

Y= 1-2 sin х

Y= - sin (3х+ )

1. Область определения

2. Область значения

3. Четность

4. Периодичность

5. Промежутки знакопостоянства

6. Промежутки монотонности

Функция возрастает

Функция

убывает

7. Экстремумы функции

Минимум

Максимум

V . Организация домашнего задания

Построить график функции y=-2*sinх+1 , исследовать и проверить правильность построения в среде электронной таблицы Microsoft Excel. (Слайд 12)

VI . Рефлексия