Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:
Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?
Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.
Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n&362;2 уравнение
в целых числах не имеет решений.
Для решения некоторых типов диофантовых уравнений полезную роль могут сыграть так называемые комплексные числа. Что это такое? Пусть буквой i обозначен некий объект, удовлетворяющий условию i 2 = -1 (понятно, что ни одно действительное число этому условию не удовлетворяет). Рассмотрим выражения вида α + iβ, где α и β - действительные числа. Такие выражения будем называть комплексными числами, определив над ними операции сложения и умножения, как и над двучленами, но с той лишь разницей, что выражение i 2 всюду будем заменять числом -1:
7.1. Из одной тройки много
Докажите, что если x 0 , y 0 , z 0 - пифагорова тройка, то тройки y 0 , x 0 , z 0 и x 0 k, y 0 k, z 0 k при любом значении натурального параметра k также являются пифагоровыми.
7.2. Частные формулы
Проверьте, что при любых натуральных значениях m>n тройка вида
является пифагоровой. Всякую ли пифагорову тройку x, y, z можно представить в таком виде, если разрешить переставлять местами числа x и y в тройке?
7.3. Несократимые тройки
Пифагорову тройку чисел, не имеющих общего делителя, большего 1, будем называть несократимой. Докажите, что пифагорова тройка является несократимой только в случае, если любые два из чисел тройки являются взаимно простыми.
7.4. Свойство несократимых троек
Докажите, что в любой несократимой пифагоровой тройке x, y, z число z и ровно одно из чисел x или y являются нечетными.
7.5. Все несократимые тройки
Докажите, что тройка чисел x, y, z является несократимой пифагоровой тройкой тогда и только тогда, когда она с точностью до порядка первых двух чисел совпадает с тройкой 2mn, m 2 - n 2 , m 2 + n 2 , где m>n - взаимно простые натуральные числа разной четности.
7.6. Общие формулы
Докажите, что все решения уравнения
в натуральных числах задаются с точностью до порядка неизвестных x и y формулами
где m>n и k - натуральные параметры (чтобы исключить дублирование каких-либо троек, достаточно выбирать числа тип взаимно простыми и к тому же разной четности).
7.7. Первые 10 троек
Найдите все пифагоровы тройки x, y, z, удовлетворяющие условию x
7.8. Свойства пифагоровых троек
Докажите, что для любой пифагоровой тройки x, y, z справедливы утверждения:
а) хотя бы одно из чисел x или y кратно 3;
б) хотя бы одно из чисел x или y кратно 4;
в) хотя бы одно из чисел x, y или z кратно 5.
7.9. Применение комплексных чисел
Модулем комплексного числа α + iβ называется неотрицательное число
Проверьте, что для любых комплексных чисел α + iβ и γ + iδ выполняется свойство
Пользуясь свойствами комплексных чисел и их модулей, докажите, что любые два целых числа m и n удовлетворяют равенству
т. е. задают решение уравнения
целых числах (сравните с задачей 7.5).
7.10. Непифагоровы тройки
Пользуясь свойствами комплексных чисел и их модулей (см. задачу 7.9), найдите формулы для каких-либо целочисленных решений уравнения:
а) x 2 + y 2 = z 3 ; б) x 2 + y 2 = z 4 .
Решения
7.1. Если x 0 2 + y 0 2 = z 0 2 , то y 0 2 + x 0 2 = z 0 2 , и при любом натуральном значении k имеем
что и требовалось доказать.
7.2. Из равенств
заключаем, что указанная в задаче тройка удовлетворяет уравнению x 2 + y 2 = z 2 в натуральных числах. Однако не всякую пифагорову тройку x, y, z можно представить в таком виде; например, тройка 9, 12, 15 является пифагоровой, но число 15 не представимо в виде суммы квадратов каких-либо двух натуральных чисел m и n.
7.3. Если какие-то два числа из пифагоровой тройки x, y, z имеют общий делитель d, то он будет делителем и третьего числа (так, в случае x = x 1 d, y = y 1 d имеем z 2 = x 2 + y 2 = (x 1 2 + y 1 2)d 2 , откуда z 2 делится на d 2 и z делится на d). Поэтому для несократимости пифагоровой тройки необходимо, чтобы любые два из чисел тройки были взаимно простыми,
7.4. Заметим, что одно из чисел x или y, скажем x, несократимой пифагоровой тройки x, y, z является нечетным, так как в противном случае числа x и y не были бы взаимно простыми (см. задачу 7.3). Если при этом другое число y также нечетно, то оба числа
дают остаток 1 при делении на 4, а число z 2 = x 2 + y 2 дает при делении на 4 остаток 2, т. е. оно делится на 2, но не делится на 4, чего не может быть. Таким образом, число y должно быть четным, а число z, стало быть, нечетным.
7.5. Пусть пифагорова тройка x, y, z несократима и, для определенности, число x четно, а числа y, z нечетны (см. задачу 7.4). Тогда
где числа являются целыми. Докажем, что числа а и b взаимно просты. В самом деле, если бы они имели общий делитель, больший 1, то такой же делитель имели бы и числа z = a + b, y = a - b, т. е. тройка не была бы несократимой (см. задачу 7.3). Теперь, раскладывая числа а и b в произведения простых множителей, замечаем, что любой простой множитель должен входить в произведение 4ab = x 2 только в четной степени, причем если он входит в разложение числа а, то не входит в разложение числа b и наоборот. Поэтому любой простой множитель входит в разложение числа а или b в отдельности только в четной степени, а, значит, сами эти числа являются квадратами целых чисел. Положим тогда получим равенства
причем натуральные параметры m>n взаимно просты (вследствие взаимной простоты чисел а и b) и имеют разную четность (из-за нечетности числа z = m 2 + n 2 ).
Пусть теперь натуральные числа m>n разной четности являются взаимно простыми. Тогда тройка х = 2mn, y = m 2 - n 2 , z = m 2 + n 2 , согласно утверждению задачи 7.2, является пифагоровой. Докажем, что она несократима. Для этого достаточно проверить, что числа y и z не имеют общих делителей (см. задачу 7.3). В самом деле, оба эти числа нечетны, так как числа тип имеют разную четность. Если же числа y и z имеют какой-либо простой общий делитель (тогда уж обязательно нечетный), то такой же делитель имеет и каждое из чисел и а с ними и каждое из чисел m и n, что противоречит их взаимной простоте.
7.6. В силу утверждений, сформулированных в задачах 7.1, 7.2, указанные формулы задают только пифагоровы тройки. С другой стороны, любая пифагорова тройка x, y, z после ее сокращения на наибольший общий делитель k пары чисел x и y становится несократимой (см. задачу 7.3) и, следовательно, может быть представлена с точностью до порядка чисел x и y в виде, описанном в задаче 7.5. Поэтому любая пифагорова тройка задается указанными формулами при некоторых значениях параметров.
7.7. Из неравенства z и формул задачи 7.6 получаем оценку m 2 т. е. m≤5 . Полагая m = 2, n = 1 и k = 1, 2, 3, 4, 5, получаем тройки 3, 4, 5; 6, 8, 10; 9, 12, 15; 12,16,20; 15, 20, 25. Полагая m = 3, n = 2 и k = 1, 2, получаем тройки 5, 12, 13; 10, 24, 26. Полагая m = 4, n = 1, 3 и k = 1, получаем тройки 8, 15, 17; 7, 24, 25. Наконец, полагая m = 5, n = 2 и k = 1, получаем тройку 20, 21, 29.
«Областной центр образования»
Методическая разработка
Использование пифагоровых троек при решении
геометрических задач и тригонометрических заданий ЕГЭ
г. Калуга, 2016
I. Введение
Теорема Пифагора – одна из главных и, можно даже сказать, самая главная теорема геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна ещё и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни гляди на прямоугольный треугольник, никак не увидишь, что между его сторонами есть такое простое соотношение: a2+ b2= c2 . Однако не Пифагор открыл теорему, носящую его имя. Она была известна еще раньше, но, возможно, только как факт, выведенный из измерений. Надо думать, Пифагор знал это, но нашел доказательство.
Существует бесчисленное множество натуральных чисел a, b, c , удовлетворяющих соотношению a2+ b2= c2 .. Они называются пифагоровыми числами. Согласно теореме Пифагора такие числа могут служить длинами сторон некоторого прямоугольного треугольника – будем называть их пифагоровыми треугольниками.
Цель работы: изучить возможность и эффективность применения пифагоровых троек для решения задач школьного курса математики, заданий ЕГЭ.
Исходя из цели работы, поставлены следующие задачи :
Изучить историю и классификацию пифагоровых троек. Проанализировать задачи с применением пифагоровых троек, имеющиеся в школьных учебниках и встречающиеся в контрольно-измерительных материалах ЕГЭ. Оценить эффективность применения пифагоровых троек и их свойств для решения задач.
Объект исследования : пифагоровы тройки чисел.
Предмет исследования : задачи школьного курса тригонометрии и геометрии, в которых используются пифагоровы тройки.
Актуальность исследования . Пифагоровы тройки часто используются в геометрии и тригонометрии, знание их избавит от ошибок в вычислениях и экономит время.
II. Основная часть. Решение задач с помощью пифагоровых троек.
2.1.Таблица троек пифагоровых чисел (по Перельману)
Пифагоровы числа имеют вид a = m·n , , где m и n – некоторые взаимно простые нечетные числа.
Пифагоровы числа обладают рядом любопытных особенностей:
Один из «катетов» должен быть кратным трем.
Один из «катетов» должен быть кратным четырем.
Одно из пифагоровых чисел должно быть кратным пяти.
В книге «Занимательная алгебра» приводится таблица пифагоровых троек, содержащих числа до ста, не имеющих общих множителей.
32+42=52 |
||
52+122=132 |
||
72+242=252 |
||
92+402=412 |
||
112+602=612 |
||
132+842=852 |
||
152+82=172 |
||
212 +202=292 |
||
332+562=652 |
||
392+802=892 |
||
352+122=372 |
||
452+282=532 |
||
552+482=732 |
||
652+722=972 |
||
632+162=652 |
||
772+362=852 |
2.2. Классификация пифагоровых троек по Шустрову.
Шустровым была обнаружена такая закономерность: если все пифагоровы треугольники распределить по группам, то для нечетного катета x, четного y и гипотенузы z справедливы следующие формулы:
х = (2N-1)·(2n+2N-1); y = 2n·(n+2N-1); z = 2n·(n+2N-1)+(2N-1) 2, где N – номер семейства и n – порядковый номер треугольника в семействе.
Подставляя в формулу в место N и n любые целые положительные числа, начиная с единицы, можно получить, все основные пифагоровы тройки чисел, а также кратные определенного вида. Можно составить таблицу всех пифагоровых троек по каждому семейству.
2.3. Задачи по планиметрии
Рассмотрим задачи из различных учебников по геометрии и выясним, насколько часто встречаются пифагоровы тройки в этих заданиях. Тривиальные задачи на нахождение третьего элемента по таблице пифагоровых троек рассматривать не будем, хотя они тоже встречаются в учебниках. Покажем, как свести решение задачи, данные которой не выражены натуральными числами, к пифагоровым тройкам.
Рассмотрим задачи из учебника по геометрии для 7-9 класса .
№ 000. Найдите гипотенузу прямоугольного треугольника по катетам а =, b =.
Решение. Умножим длины катетов на 7, получим два элемента из пифагоровой тройки 3 и 4. Недостающий элемент 5, который делим на 7. Ответ .
№ 000. В прямоугольнике ABCD найдите BC, если CD=1,5, AC=2,5.
https://pandia.ru/text/80/406/images/image007_0.gif" width="240" height="139 src=">
Решение. Решим прямоугольный треугольник АСD. Умножим длины на 2, получим два элемента из пифагоровой тройки 3 и 5, Недостающий элемент 4, который делим на 2. Ответ: 2.
При решении следующего номера проверять соотношение a2+ b2= c2 совершенно необязательно, достаточно воспользоваться пифагоровыми числами и их свойствами.
№ 000. Выясните, является ли треугольник прямоугольным, если его стороны выражаются числами:
а) 6,8,10 (пифагорова тройка 3,4.5) – да;
Один из катетов прямоугольного треугольника должен делиться на 4. Ответ: нет.
в) 9,12,15 (пифагорова тройка 3,4.5) – да;
г) 10,24,26 (пифагорова тройка 5,12.13) – да;
Одно из пифагоровых чисел должно быть кратным пяти. Ответ: нет.
ж) 15, 20, 25 (пифагорова тройка 3,4.5) – да.
Из тридцати девяти заданий данного параграфа (теорема Пифагора) двадцать два решаются устно с помощью пифагоровых чисел и знания их свойств.
Рассмотрим задачу № 000 (из раздела «Дополнительные задачи»):
Найдите площадь четырехугольника ABCD, в котором АВ=5 см, ВС=13 см, CD=9 см, DА=15 см, АС=12 см.
В задаче надо проверить соотношение a2+ b2= c2 и доказать, что данный четырехугольник состоит из двух прямоугольных треугольников (обратная теорема). А знание пифагоровых троек: 3, 4, 5 и 5, 12, 13, избавляет от вычислений.
Приведем решения нескольких задач из учебника по геометрии для 7-9 класса .
Задача 156 (з). Катеты прямоугольного треугольника равны 9 и 40. Найдите медиану, проведенную к гипотенузе.
Решение. Медиана, проведенная к гипотенузе, равна ее половине. Пифагорова тройка 9,40 и 41. Следовательно, медиана равна 20,5.
Задача 156 (и). Боковые стороны треугольника равны: а = 13 см, b = 20 см, а высота hс = 12 см. Найдите основание с.
Задача (КИМы ЕГЭ). Найдите радиус окружности, вписанной в остроугольный треугольник АВС, если высота ВH равна12 и известно, что sin А=,
sin С=left">
Решение.
Решаем прямоугольный ∆ АСК: sin А=, ВH=12 , отсюда АВ=13,АК=5 (Пифагорова тройка 5,12,13). Решаем прямоугольный ∆ ВСH: ВH =12, sin С===https://pandia.ru/text/80/406/images/image015_0.gif" width="12" height="13">3=9 (Пифагорова тройка 3,4,5). Радиус находим по формуле r ===4. Ответ.4.
2.4. Пифагоровы тройки в тригонометрии
Основное тригонометрическое тождество – частный случай теоремы Пифагора: sin2a + cos2a = 1; (a/c) 2 + (b/c)2 =1. Поэтому некоторые тригонометрические задания легко решаются устно с помощью Пифагоровых троек.
Задачи, в которых требуется по заданному значению функции найти значения остальных тригонометрических функций, можно решить без возведения в квадрат и извлечения квадратного корня. Все задания этого типа в школьном учебнике алгебры (10-11) Мордковича (№ 000-№ 000) можно решить устно, зная всего несколько пифагоровых троек: 3,4,5 ; 5,12,13 ; 8,15,17 ; 7,24,25 . Рассмотрим решения двух заданий.
№ 000 а). sin t = 4/5, π/2< t < π.
Решение . Пифагорова тройка: 3, 4, 5. Следовательно, cos t = -3/5; tg t = -4/3,
№ 000 б). tg t = 2,4, π< t < 3π/2.
Решение. tg t = 2,4=24/10=12/5. Пифагорова тройка 5,12,13. Учитывая знаки, получаем sin t = -12/13, cos t = -5/13, ctg t = 5/12.
3. Контрольно-измерительные материалы ЕГЭ
а) cos (arcsin 3/5)=4/5 (3, 4, 5)
б) sin (arccos 5/13)=12/13 (5, 12, 13)
в) tg (arcsin 0,6)=0,75 (6, 8, 10)
г) ctg (arccos 9/41) =9/40 (9, 40, 41)
д) 4/3 tg (π–arcsin (–3/5))= 4/3 tg (π+arcsin 3/5)= 4/3 tg arcsin 3/5=4/3·3/4=1
е) проверьте верность равенства:
arcsin 4/5 + arcsin 5/13 + arcsin 16/65 = π/2.
Решение. arcsin 4/5 + arcsin 5/13 + arcsin 16/65 = π/2
arcsin 4/5 + arcsin 5/13 = π/2 - arcsin 16/65
sin (arcsin 4/5 + arcsin 5/13) = sin (arсcos 16/65)
sin (arcsin 4/5) · cos (arcsin 5/13) + cos (arcsin 4/5) · sin (arcsin 5/13) = 63/65
4/5 · 12/13 + 3/5 · 5/13 = 63/65
III. Заключение
В геометрических задачах часто приходится решать прямоугольные треугольники, иногда несколько раз. Проанализировав задания школьных учебников и материалов ЕГЭ, можно сделать вывод, что в основном используются тройки: 3, 4, 5; 5, 12, 13; 7, 24, 25; 9, 40, 41; 8,15,17; которые легко запомнить. При решении некоторых тригонометрических заданий классическое решение с помощью тригонометрических формул и большим количеством вычислений занимает время, а знание пифагоровых троек избавит от ошибок в вычислениях и сэкономит время для решения более трудных задач на ЕГЭ.
Библиографический список
1. Алгебра и начала анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для общеобразовательных учреждений / [ и др.]; под ред. . – 8-е изд., стер. – М. : Мнемозина, 2007. – 315 с. : ил.
2. Перельман алгебра. – Д.: ВАП, 1994. – 200 с.
3. Рогановский: Учеб. Для 7-9 кл. с углубл. изучением математики общеобразоват. шк. с рус. яз. обучения, - 3-е изд. – Мн.; Нар. Асвета, 2000. – 574 с.: ил.
4. Математика: Хрестоматия по истории, методологии, дидактике. / Сост. . – М.: Изд-во УРАО, 2001. – 384 с.
5. Журнал «Математика в школе» №1, 1965 год.
6. Контрольно-измерительные материалы ЕГЭ.
7. Геометрия, 7-9: Учеб. для общеобразовательных учреждений /, и др. – 13-е изд.. – М. : Просвещение,2003. – 384 с. : ил.
8. Геометрия: Учеб. для 10-11 кл. сред. шк./ , и др. – 2-е изд. – М.: Просвещение, 1993, - 207 с.: ил.
Перельман алгебра. – Д.: ВАП, 1994. – 200 с.
Журнал «Математика в школе» №1, 1965 год.
Геометрия, 7-9: Учеб. для общеобразовательных учреждений /, и др. – 13-е изд.. – М. : Просвещение,2003. – 384 с. : ил.
Рогановский: Учеб. Для 7-9 кл. с углубл. изучением математики общеобразоват. шк. с рус. яз. обучения, - 3-е изд. – Мн.; Нар. Асвета, 2000. – 574 с.: ил.
Алгебра и начала анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для общеобразовательных учреждений / [ и др.]; под ред. . – 8-е изд., стер. – М. : Мнемозина, 2007. – 315 с. : ил., стр.18.
Свойства
Поскольку уравнение x 2 + y 2 = z 2 однородно , при домножении x , y и z на одно и то же число получится другая пифагорова тройка. Пифагорова тройка называется примитивной , если она не может быть получена таким способом, то есть - взаимно простые числа .
Примеры
Некоторые пифагоровы тройки (отсортированы по возрастанию максимального числа, выделены примитивные):
(3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (16, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (14, 48, 50), (30, 40, 50)…
История
Пифагоровы тройки известны очень давно. В архитектуре древнемесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н. э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей.
X Всероссийский симпозиум по прикладной и промышленной математике. Санкт - Петербург, 19 мая 2009г.
Доклад: Алгоритм решения Диофантовых уравнений.
В работе рассмотрен метод исследования Диофантовых уравнений и представлены решенные этим методом: - великая теорема Ферма; - поиск Пифагоровых троек и тд. http://referats.protoplex.ru/referats_show/6954.html
Ссылки
- Е. А. Горин Степени простых чисел в составе пифагоровых троек // Математическое просвещение . - 2008. - В. 12. - С. 105-125.
Wikimedia Foundation . 2010 .
Смотреть что такое "Пифагоровы тройки" в других словарях:
В математике пифагоровыми числами (пифагоровой тройкой) называется кортеж из трёх целых чисел удовлетворяющих соотношению Пифагора: x2 + y2 = z2. Содержание 1 Свойства … Википедия
Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Большой Энциклопедический словарь
Тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они… … Большая советская энциклопедия
Тройки целых положительных чисел х, у,z, удовлетворяющих уравнению x2+у 2=z2. Все решения этого уравнения, а следовательно, и все П. ч. выражаются формулами х=а 2 b2, y=2ab, z=a2+b2, где а, b произвольные целые положительные числа (а>b). П. ч … Математическая энциклопедия
Тройки таких натуральных чисел, что треугольник, длины сторон к рого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5 … Естествознание. Энциклопедический словарь
Тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, например тройка чисел: 3, 4, 5. * * * ПИФАГОРОВЫ ЧИСЛА ПИФАГОРОВЫ ЧИСЛА, тройки таких натуральных чисел, что… … Энциклопедический словарь
В математике пифагоровой тройкой называется кортеж из трёх натуральных чисел удовлетворяющих соотношению Пифагора: При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Содержание 1 Примитивные тройки … Википедия
Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 … Википедия
Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 Формулировки 2 Доказательства … Википедия
Это уравнение вида где P целочисленная функция (например, полином с целыми коэффициентами), а переменные принимают целые значения. Названы в честь древнегреческого математика Диофанта. Содержание 1 Примеры … Википедия
Червяк Виталий
Скачать:
Предварительный просмотр:
Конкурс научных проектов школьников
В рамках краевой научно-практической конференции «Эврика»
Малой академии наук учащихся Кубани
Исследование пифагоровых чисел
Секция математика.
Червяк Виталий Геннадиевич, 9 класс
МОБУ СОШ №14
Кореновский район
Ст. Журавская
Научный руководитель:
Манько Галина Васильевна
Учитель математики
МОБУ СОШ №14
Кореновск 2011 г
Червяк Виталий Геннадиевич
Пифагоровы числа
Аннотация.
Тема исследования: Пифагоровы числа
Цели исследования:
Задачи исследования:
- Выявление и развитие математических способностей;
- Расширение математического представления по данной теме;
- Формирование устойчивого интереса к предмету;
- Развитие коммуникативных и общеучебных навыков самостоятельной работы, умение вести дискуссию, аргументировать и т.д.;
- Формирование и развитие аналитического и логического мышления;
Методы исследования:
- Использование ресурсов сети Интернет;
- Обращение к справочной литературе;
- Проведение эксперимента;
Вывод:
- Эта работа может быть использована на уроке геометрии как дополнительный материал, для проведения элективных курсов или факультативов по математике, а также во внеклассной работе по математике;
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
- Введение…………………………………………………………………3
- Основная часть
2.1 Историческая страничка……………………………………………………4
2.2 Доказательство чётности и нечётности катетов……….............................5-6
2.3 Вывод закономерности для нахождения
Пифагоровых чисел……………………………………………………………7
2.4 Свойства пифагоровых чисел ……………………………………………… 8
3. Заключение……………………………………………………………………9
4.Список использованных источников и литературы…………………… 10
Приложения.........................................................................................................11
Приложение I……………………………………………………………………11
Приложение II…………………………………………………………………..13
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Введение
О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа.Я поставил цель исследования : узнать больше о теореме Пифагора и «пифагоровых числах».
Актуальность темы . Ценность теоремы Пифагора и пифагоровых троек доказана многими учёнными мира на протяжении многих веков. Проблема, о которой пойдёт речь в моей работе выглядит довольно простой потому, что в основе её лежит математическое утверждение, которое всем известно, - теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах. Теперь тройки натуральных чисел x, y, z, для которых x 2 + y 2 = z 2 , принято называть пифагоровыми тройками . Оказывается, пифагоровы тройки знали уже в Вавилоне. Постепенно нашли их и греческие математики.
Цель данной работы
- Исследовать пифагоровы числа;
- Понять, как получаются пифагоровы числа;
- Выяснить, какими свойствами обладают пифагоровы числа;
- Опытно-экспериментальным путём построить перпендикулярные прямые на местности, используя пифагоровы числа;
В соответствии с целью работы поставлен ряд следующих задач :
1. Глубже изучить историю теоремы Пифагора;
2. Анализ универсальных свойств пифагоровых троек.
3. Анализ практического применения пифагоровых троек.
Объект исследования : пифагоровы тройки.
Предмет исследования : математика .
Методы исследования : - Использование ресурсов сети Интернет; -Обращение к справочной литературе; -Проведение эксперимента;
Теоретическая значимость: роль, которую играет открытие пифагоровых троек в науке; практическое применение открытия Пифагора в жизнедеятельности человека.
Прикладная ценность исследования заключается в анализе литературных источников и систематизации фактов.
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Из истории пифагоровых чисел.
Математическая книга Чу-пей: [ 2]
"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".
- Древний Египет: [ 2]
Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты , или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.
- Вавилония: [ 3 ]
«Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."
- История теоремы Пифагора: ,
Хотя эта теорема и связывается с именем Пифагора, она была известна задолго до него.
В вавилонских текстах она встречается за 1200 лет до Пифагора.
По-видимому, он первым нашёл её доказательство. В связи с этим была сделана следующую запись: «… когда он открыл, что в прямоугольном треугольнике гипотенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Исследование Пифагоровых чисел.
- Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как
3 2 + 4 2 = 5 2.
- Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению
- А 2 + в 2 = с 2.
- Эти числа называются пифагоровыми числами
Пифагоровы тройки известны очень давно. В архитектуре древнелесопотамских надгробий встречается равнобедренный треугольник, составленный из двух прямоугольных со сторонами 9, 12 и 15 локтей. Пирамиды фараона Снофру (XXVII век до н.э.) построены с использованием треугольников со сторонами 20, 21 и 29, а также 18, 24 и 30 десятков египетских локтей. [ 1 ]
Прямоугольный треугольник, с катетами 3, 4 и гипотенузой 5 называется египетским треугольником. Площадь этого треугольника равна совершенному числу 6. Периметр равен 12 – числу, которое считалось символом счастья и достатка.
С помощью верёвки разделенной узлами на 12 равных частей древние египтяне строили прямоугольный треугольник и прямой угол. Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий. Необходимо взять шнур и три колышка, шнур располагают треугольником так, чтобы одна сторона состояла из 3 частей, вторая из 4 долей и последняя из пяти таких долей. Шнур расположится треугольником, в котором есть прямой угол.
Этот древний способ, по-видимому, применявшийся ещё тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся как 3:4:5, согласно теореме Пифагора, прямоугольный.
Нахождением пифагоровых троек занимались Евклид, Пифагор, Диофант и многие другие. [ 1]
Ясно, что если (x, y, z
) – пифагорова тройка, то для любого натурального
k
тройка (kx, ky, kz
)
также будет пифагоровой тройкой. В частности, (6, 8, 10), (9, 12, 15) и т.д. являются пифагоровыми тройками.
По мере того, как числа возрастают, пифагоровы тройки встречаются всё реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания
таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много.
Тройки, не имеющие общих делителей, больших 1, называются простейшими.
Рассмотрим некоторые свойства пифагоровых троек. [ 1]
Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами»,а с – « гипотенузой».
Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р- целочисленный множитель,- пифагоровы числа.
Верно и обратное утверждение!
Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р).
Покажем, что в каждой из таких троек а,в,с один из «катетов»должен быть чётным, а другой нечётным. Будем рассуждать «от противного». Если оба «катета» а и в чётны, то чётным будет число а 2 + в 2 , а значит и «гипотенуза». Но это противоречит тому, что числа а,в и с не имеют общих множителей, так как три чётных числа имеют общий множитель 2. Таким образом хоть один из « катетов» а и в нечётен.
Остаётся ещё одна возможность: оба «катета» нечётные, а «гипотенуза» чётная. Нетрудно доказать, что этого не может быть, так как если «катеты» имеют вид 2 х + 1 и 2у+1, то сумма их квадратов равна
4х 2 + 4х + 1 + 4у 2 + 4у +1 = 4 (х 2 + х + у 2 + у) +2, т.е. представляет собой число, которое при делении на 4 даёт в остатке 2. Между тем квадрат всякого чётного числа должен делиться на 4 без остатка.
Значит, сумма квадратов двух нечётных чисел не может быть квадратом чётного числа; иначе говоря, наши три числа - не пифагоровы.
ВЫВОД:
Итак, из « катетов» а, в один чётный, а другой нечётный. Поэтому число а 2 + в 2 нечётно, а значит, нечётна и « гипотенуза» с.
Пифагор нашёл формулы, которые в современной символике могут быть записаны так: a=2n+1, b=2n(n+1), c=2 n 2 +2n+1, где n – целое число.
Эти числа – пифагоровы тройки.
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Вывод закономерности для нахождения пифагоровых чисел.
Вот следующие пифагоровы тройки:
- 3, 4, 5; 9+16=25.
- 5, 12, 13; 25+144=225.
- 7, 24, 25; 49+576=625.
- 8, 15, 17; 64+225=289.
- 9, 40, 41; 81+1600=1681.
- 12, 35, 37; 144+1225=1369.
- 20, 21, 29; 400+441=881
Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки.
- 6, 8, 10;
- 9,12,15.
- 12, 16, 20;
- 15, 20, 25;
- 10, 24, 26;
- 18, 24, 30;
- 16, 30, 34;
- 21, 28, 35;
- 15, 36, 39;
- 24, 32, 40;
- 14, 48, 50;
- 30, 40, 50 и т.д.
Они так же являются Пифагоровыми числами/
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Свойства пифагоровых чисел.
- При рассмотрении пифагоровых чисел я увидел ряд свойств:
- 1) Одно из пифагоровых чисел должно быть кратно трём;
- 2) Другое из них должно быть кратно четырём;
- 3) А третье из пифагоровых чисел должно быть кратно пяти;
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Заключение.
Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» - греческое, в переводе означает «землемерие».
Люди очень рано столкнулись с необходимостью измерять земельные участки. Уже за 3-4 тыс. лет до н.э. каждый клочок плодородной земли в долинах Нила, Ефрата и Тигра, рек Китая имел значение для жизни людей. Это требовало определённого запаса геометрических и арифметических знаний.
Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.
И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчётов. Также строились водопроводы. Всё это требовало чертежей и расчётов. К этому времени были хорошо известны частные случаи теоремы Пифагора, уже знали, что если взять треугольники со сторонами x, y, z, где x, y, z – такие целые числа, что x 2 + y 2 = z 2 , то эти треугольники будут прямоугольными.
Все эти знания непосредственным образом применялись во многих сферах жизнедеятельности человека.
Так до сих пор великое открытие учёного и философа древности Пифагора находит прямое применение в нашей жизни.
Строительство домов, дорог, космических кораблей, автомобилей, станков, нефтепроводов, самолётов, тоннелей, метро и многое, многое другое. Пифагоровы тройки находят прямое применение в проектировании множества вещей, окружающих нас в повседневной жизни.
А умы учёных продолжают искать новые варианты доказательств теоремы Пифагора.
- В результате моей работы мне удалось:
- 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев.
- 2. Познакомится с историей теоремы Пифагора.
- 3. Узнать о пифагоровых числах, их свойствах, научиться их находить и применять в практической деятельности.
Червяк Виталий Геннадиевич
Краснодарский край, станица Журавская, МОБУ СОШ №14, 9 класс
Пифагоровы числа
Научный руководитель: Манько Галина Васильевна, учитель математики МОБУ СОШ №14
Литература.
- Занимательная алгебра. Я.И. Перельман (с.117-120)
- www.garshin.ru
- image.yandex.ru
4. Аносов Д.В. Взгляд на математику и нечто из неё. – М.: МЦНМО, 2003.
5. Детская энциклопедия. – М.: Издательство Академии Педагогических Наук РСФСР, 1959.
6. Степанова Л.Л. Избранные главы элементарной теории чисел. – М.: Прометей, 2001.
7. В. Серпинский Пифагоровы треугольники. - М.: Учпедгиз, 1959. С.111
Ход исследования Историческая страничка; Теорема Пифагора; Доказать, что один из « катетов» должен быть чётным, а другой нечётным; Вывод закономерности для нахождения пифагоровых чисел; Выявить свойства пифагоровых чисел;
Введение О Пифагоре и его жизни я услышал в пятом классе на уроке математики, и меня заинтересовало высказывание «Пифагоровы штаны во все стороны равны». При изучении теоремы Пифагора меня заинтересовали пифагоровы числа. Я поставил цель исследования: узнать больше о теореме Пифагора и «пифагоровых числах».
Пр ебудет вечной истина, как скоро Её познает слабый человек! И ныне теорема Пифагора Верна, как и в его далёкий век
Из истории пифагоровых чисел. Древний Китай Математическая книга Чу-пей: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".
Пифагоровы числа у древних египтян Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или " натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3; 4 и 5.
Теорема Пифагора в Вавилонии «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."
Каждый треугольник, стороны относятся как 3:4:5, согласно общеизвестной теореме Пифагора, - прямоугольный, так как 3 2 + 4 2 = 5 2. Кроме чисел 3,4 и 5 , существует, как известно, бесконечное множество целых положительных чисел а, в и с, удовлетворяющих соотношению А 2 + в 2 = с 2. Эти числа называются пифагоровыми числами
Согласно теореме Пифагора эти числа могут служить длинами некоторого прямоугольного треугольника; поэтому а и в называют «катетами», а с – « гипотенузой». Ясно, что если а,в,с есть тройка пифагоровых чисел, то и ра,рв,рс, где р - целочисленный множитель,- пифагоровы числа. Верно и обратное утверждение! Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р)
Вывод! Итак из чисел а и в одно чётно, а другое нечётно, а значит нечётно и третье число.
Вот следующие Пифагоровы тройки: 3, 4, 5; 9+16=25 . 5, 12, 13; 25+144=169. 7, 24, 25; 49+576=625. 8, 15, 17; 64+225=289. 9, 40, 41; 81+1600=1681. 12, 35, 37; 144+1225=1369. 20, 21, 29; 400+441=841
Нетрудно заметить, что при умножении каждого из чисел пифагоровой тройки на 2, 3, 4, 5 и т.д., мы получим следующие тройки. 6, 8, 10; 9,12,15. 12, 16, 20; 15, 20, 25; 10, 24, 26; 18, 24, 30; 16, 30, 34; 21, 28, 35; 15, 36, 39; 24, 32, 40; 14, 48, 50; 30, 40, 50 и т.д. Они так же являются Пифагоровыми числами
Свойства пифагоровых чисел При рассмотрении пифагоровых чисел я увидел ряд свойств: 1) Одно из пифагоровых чисел должно быть кратно трём; 2) одно из них должно быть кратно четырём; 3) А другое из пифагоровых чисел должно быть кратно пяти;
Практическое применение пифагоровых чисел
Вывод: В результате моей работы мне удалось 1. Больше узнать о Пифагоре, его жизни, братстве Пифагорейцев. 2. Познакомится с историей теоремы Пифагора. 3. Узнать о пифагоровых числах, их свойствах, научиться их находить. Опытно –экспериментальным путём откладывать прямой угол с помощью пифагоровых чисел.
» заслуженного профессора математики Уорикского университета, известного популяризатора науки Иэна Стюарта, посвященной роли чисел в истории человечества и актуальности их изучения в наше время.
Пифагорова гипотенуза
Пифагоровы треугольники имеют прямой угол и целочисленные стороны. У простейшего из них самая длинная сторона имеет длину 5, остальные - 3 и 4. Всего существует 5 правильных многогранников. Уравнение пятой степени невозможно решить при помощи корней пятой степени - или любых других корней. Решетки на плоскости и в трехмерном пространстве не имеют пятилепестковой симметрии вращения, поэтому такие симметрии отсутствуют и в кристаллах. Однако они могут быть у решеток в четырехмерном пространстве и в занятных структурах, известных как квазикристаллы.
Гипотенуза самой маленькой пифагоровой тройки
Теорема Пифагора гласит, что самая длинная сторона прямоугольного треугольника (пресловутая гипотенуза) соотносится с двумя другими сторонами этого треугольника очень просто и красиво: квадрат гипотенузы равен сумме квадратов двух других сторон.
Традиционно мы называем эту теорему именем Пифагора, но на самом деле история ее достаточно туманна. Глиняные таблички позволяют предположить, что древние вавилоняне знали теорему Пифагора задолго до самого Пифагора; славу первооткрывателя принес ему математический культ пифагорейцев, сторонники которого верили, что Вселенная основана на числовых закономерностях. Древние авторы приписывали пифагорейцам - а значит, и Пифагору - самые разные математические теоремы, но на самом деле мы представления не имеем о том, какой математикой занимался сам Пифагор. Мы даже не знаем, могли ли пифагорейцы доказать теорему Пифагора или просто верили в то, что она верна. Или, что наиболее вероятно, у них были убедительные данные о ее истинности, которых тем не менее не хватило бы на то, что мы считаем доказательством сегодня.
Доказательства Пифагора
Первое известное доказательство теоремы Пифагора мы находим в «Началах» Евклида. Это достаточно сложное доказательство с использованием чертежа, в котором викторианские школьники сразу узнали бы «пифагоровы штаны»; чертеж и правда напоминает сохнущие на веревке подштанники. Известны буквально сотни других доказательств, большинство из которых делает доказываемое утверждение более очевидным.
// Рис. 33. Пифагоровы штаны
Одно из простейших доказательств - это своего рода математический пазл. Возьмите любой прямоугольный треугольник, сделайте четыре его копии и соберите их внутри квадрата. При одной укладке мы видим квадрат на гипотенузе; при другой - квадраты на двух других сторонах треугольника. При этом ясно, что площади в том и другом случае равны.
// Рис. 34. Слева: квадрат на гипотенузе (плюс четыре треугольника). Справа: сумма квадратов на двух других сторонах (плюс те же четыре треугольника). А теперь исключите треугольники
Рассечение Перигаля - еще одно доказательство-пазл.
// Рис. 35. Рассечение Перигаля
Существует также доказательство теоремы с использованием укладки квадратов на плоскости. Возможно, именно так пифагорейцы или их неизвестные предшественники открыли эту теорему. Если взглянуть на то, как косой квадрат перекрывает два других квадрата, то можно увидеть, как разрезать большой квадрат на куски, а затем сложить из них два меньших квадрата. Можно увидеть также прямоугольные треугольники, стороны которых дают размеры трех задействованных квадратов.
// Рис. 36. Доказательство мощением
Есть интересные доказательства с использованием подобных треугольников в тригонометрии. Известно по крайней мере пятьдесят различных доказательств.
Пифагоровы тройки
В теории чисел теорема Пифагора стала источником плодотворной идеи: найти целочисленные решения алгебраических уравнений. Пифагорова тройка - это набор целых чисел a, b и c, таких что
Геометрически такая тройка определяет прямоугольный треугольник с целочисленными сторонами.
Самая маленькая гипотенуза пифагоровой тройки равна 5.
Другие две стороны этого треугольника равны 3 и 4. Здесь
32 + 42 = 9 + 16 = 25 = 52.
Следующая по величине гипотенуза равна 10, потому что
62 + 82 = 36 + 64 = 100 = 102.
Однако это, по существу, тот же треугольник с удвоенными сторонами. Следующая по величине и по-настоящему другая гипотенуза равна 13, для нее
52 + 122 = 25 + 144 = 169 = 132.
Евклид знал, что существует бесконечное число различных вариантов пифагоровых троек, и дал то, что можно назвать формулой для нахождения их всех. Позже Диофант Александрийский предложил простой рецепт, в основном совпадающий с евклидовым.
Возьмите любые два натуральных числа и вычислите:
их удвоенное произведение;
разность их квадратов;
сумму их квадратов.
Три получившихся числа будут сторонами пифагорова треугольника.
Возьмем, к примеру, числа 2 и 1. Вычислим:
удвоенное произведение: 2 × 2 × 1 = 4;
разность квадратов: 22 - 12 = 3;
сумма квадратов: 22 + 12 = 5,
и мы получили знаменитый треугольник 3–4–5. Если взять вместо этого числа 3 и 2, получим:
удвоенное произведение: 2 × 3 × 2 = 12;
разность квадратов: 32 - 22 = 5;
сумму квадратов: 32 + 22 = 13,
и получаем следующий по известности треугольник 5 - 12 - 13. Попробуем взять числа 42 и 23 и получим:
удвоенное произведение: 2 × 42 × 23 = 1932;
разность квадратов: 422 - 232 = 1235;
сумма квадратов: 422 + 232 = 2293,
никто никогда не слышал о треугольнике 1235–1932–2293.
Но эти числа тоже работают:
12352 + 19322 = 1525225 + 3732624 = 5257849 = 22932.
В диофантовом правиле есть еще одна особенность, на которую уже намекали: получив три числа, мы можем взять еще одно произвольное число и все их на него умножить. Таким образом треугольник 3–4–5 можно превратить в треугольник 6–8–10, умножив все стороны на 2, или в треугольник 15–20–25, умножив все на 5.
Если перейти на язык алгебры, правило приобретает следующий вид: пусть u, v и k - натуральные числа. Тогда прямоугольный треугольник со сторонами
2kuv и k (u2 - v2) имеет гипотенузу
Существуют и другие способы изложения основной идеи, но все они сводятся к описанному выше. Этот метод позволяет получить все пифагоровы тройки.
Правильные многогранники
Существует ровным счетом пять правильных многогранников. Правильный многогранник (или полиэдр) - это объемная фигура с конечным числом плоских граней. Грани сходятся друг с другом на линиях, именуемых ребрами; ребра встречаются в точках, именуемых вершинами.
Кульминацией евклидовых «Начал» является доказательство того, что может быть только пять правильных многогранников, то есть многогранников, у которых каждая грань представляет собой правильный многоугольник (равные стороны, равные углы), все грани идентичны и все вершины окружены равным числом одинаково расположенных граней. Вот пять правильных многогранников:
тетраэдр с четырьмя треугольными гранями, четырьмя вершинами и шестью ребрами;
куб, или гексаэдр, с 6 квадратными гранями, 8 вершинами и 12 ребрами;
октаэдр с 8 треугольными гранями, 6 вершинами и 12 ребрами;
додекаэдр с 12 пятиугольными гранями, 20 вершинами и 30 ребрами;
икосаэдр с 20 треугольными гранями, 12 вершинами и 30 ребрами.
// Рис. 37. Пять правильных многогранников
Правильные многогранники можно найти и в природе. В 1904 г. Эрнст Геккель опубликовал рисунки крохотных организмов, известных как радиолярии; многие из них по форме напоминают те самые пять правильных многогранников. Возможно, правда, он немного подправил природу, и рисунки не отражают полностью форму конкретных живых существ. Первые три структуры наблюдаются также в кристаллах. Додекаэдра и икосаэдра в кристаллах вы не найдете, хотя неправильные додекаэдры и икосаэдры там иногда попадаются. Настоящие додекаэдры могут возникать в виде квазикристаллов, которые во всем похожи на кристаллы, за исключением того, что их атомы не образуют периодической решетки.
// Рис. 38. Рисунки Геккеля: радиолярии в форме правильных многогранников
// Рис. 39. Развертки правильных многогранников
Бывает интересно делать модели правильных многогранников из бумаги, вырезав предварительно набор соединенных между собой граней - это называется разверткой многогранника; развертку складывают по ребрам и склеивают соответствующие ребра между собой. Полезно добавить к одному из ребер каждой такой пары дополнительную площадку для клея, как показано на рис. 39. Если такой площадки нет, можно использовать липкую ленту.
Уравнение пятой степени
Не существует алгебраической формулы для решения уравнений 5-й степени.
В общем виде уравнение пятой степени выглядит так:
ax5 + bx4 + cx3 + dx2 + ex + f = 0.
Проблема в том, чтобы найти формулу для решений такого уравнения (у него может быть до пяти решений). Опыт обращения с квадратными и кубическими уравнениями, а также с уравнениями четвертой степени позволяет предположить, что такая формула должна существовать и для уравнений пятой степени, причем в ней, по идее, должны фигурировать корни пятой, третьей и второй степени. Опять же, можно смело предположить, что такая формула, если она существует, окажется очень и очень сложной.
Это предположение в конечном итоге оказалось ошибочным. В самом деле, никакой такой формулы не существует; по крайней мере не существует формулы, состоящей из коэффициентов a, b, c, d, e и f, составленной с использованием сложения, вычитания, умножения и деления, а также извлечения корней. Таким образом, в числе 5 есть что-то совершенно особенное. Причины такого необычного поведения пятерки весьма глубоки, и потребовалось немало времени, чтобы в них разобраться.
Первым признаком проблемы стало то, что, как бы математики ни старались отыскать такую формулу, какими бы умными они ни были, они неизменно терпели неудачу. Некоторое время все считали, что причины кроются в неимоверной сложности формулы. Считалось, что никто просто не может как следует разобраться в этой алгебре. Однако со временем некоторые математики начали сомневаться в том, что такая формула вообще существует, а в 1823 г. Нильс Хендрик Абель сумел доказать обратное. Такой формулы не существует. Вскоре после этого Эварист Галуа нашел способ определить, решаемо ли уравнение той или иной степени - 5-й, 6-й, 7-й, вообще любой - с использованием такого рода формулы.
Вывод из всего этого прост: число 5 особенное. Можно решать алгебраические уравнения (при помощи корней n-й степени для различных значений n) для степеней 1, 2, 3 и 4, но не для 5-й степени. Здесь очевидная закономерность заканчивается.
Никого не удивляет, что уравнения степеней больше 5 ведут себя еще хуже; в частности, с ними связана такая же трудность: нет общих формул для их решения. Это не означает, что уравнения не имеют решений; это не означает также, что невозможно найти очень точные численные значения этих решений. Все дело в ограниченности традиционных инструментов алгебры. Это напоминает невозможность трисекции угла при помощи линейки и циркуля. Ответ существует, но перечисленные методы недостаточны и не позволяют определить, каков он.
Кристаллографическое ограничение
Кристаллы в двух и трех измерениях не имеют 5-лучевой симметрии вращения.
Атомы в кристалле образуют решетку, то есть структуру, которая периодически повторяется в нескольких независимых направлениях. К примеру, рисунок на обоях повторяется по длине рулона; кроме того, он обычно повторяется и в горизонтальном направлении, иногда со сдвигом от одного куска обоев к следующему. По существу, обои - это двумерный кристалл.
Существует 17 разновидностей обойных рисунков на плоскости (см. главу 17). Они различаются по типам симметрии, то есть по способам сдвинуть жестко рисунок таким образом, чтобы он точно лег сам на себя в первоначальном положении. К типам симметрии относятся, в частности, различные варианты симметрии вращения, где рисунок следует повернуть на определенный угол вокруг определенной точки - центра симметрии.
Порядок симметрии вращения - это то, сколько раз можно повернуть тело до полного круга так, чтобы все детали рисунка вернулись на первоначальные позиции. К примеру, поворот на 90° - это симметрия вращения 4-го порядка*. Список возможных типов симметрии вращения в кристаллической решетке вновь указывает на необычность числа 5: его там нет. Существуют варианты с симметрией вращения 2, 3, 4 и 6-го порядков, но ни один обойный рисунок не имеет симметрии вращения 5-го порядка. Симметрии вращения порядка больше 6 в кристаллах тоже не бывает, но первое нарушение последовательности происходит все же на числе 5.
То же происходит с кристаллографическими системами в трехмерном пространстве. Здесь решетка повторяет себя по трем независимым направлениям. Существует 219 различных типов симметрии, или 230, если считать зеркальное отражение рисунка отдельным его вариантом - притом, что в данном случае нет зеркальной симметрии. Опять же, наблюдаются симметрии вращения порядков 2, 3, 4 и 6, но не 5. Этот факт получил название кристаллографического ограничения.
В четырехмерном пространстве решетки с симметрией 5-го порядка существуют; вообще, для решеток достаточно высокой размерности возможен любой наперед заданный порядок симметрии вращения.
// Рис. 40. Кристаллическая решетка поваренной соли. Темные шарики изображают атомы натрия, светлые - атомы хлора
Квазикристаллы
Хотя симметрия вращения 5-го порядка в двумерных и трехмерных решетках невозможна, она может существовать в чуть менее регулярных структурах, известных как квазикристаллы. Воспользовавшись набросками Кеплера, Роджер Пенроуз открыл плоские системы с более общим типом пятикратной симметрии. Они получили название квазикристаллов.
Квазикристаллы существуют в природе. В 1984 г. Даниэль Шехтман открыл, что сплав алюминия и марганца может образовывать квазикристаллы; первоначально кристаллографы встретили его сообщение с некоторым скепсисом, но позже открытие было подтверждено, и в 2011 г. Шехтман был удостоен Нобелевской премии по химии. В 2009 г. команда ученых под руководством Луки Бинди обнаружила квазикристаллы в минерале с российского Корякского нагорья - соединении алюминия, меди и железа. Сегодня этот минерал называется икосаэдрит. Измерив при помощи масс-спектрометра содержание в минерале разных изотопов кислорода, ученые показали, что этот минерал возник не на Земле. Он сформировался около 4,5 млрд лет назад, в то время, когда Солнечная система только зарождалась, и провел большую часть времени в поясе астероидов, обращаясь вокруг Солнца, пока какое-то возмущение не изменило его орбиту и не привело его в конце концов на Землю.
// Рис. 41. Слева: одна из двух квазикристаллических решеток с точной пятикратной симметрией. Справа: атомная модель икосаэдрического алюминиево-палладиево-марганцевого квазикристалла