» » Трапеция равнобедренная если ее боковые стороны параллельны. Трапеция. Свойства трапеции. Отрезок, соединяющий середины диагоналей трапеции

Трапеция равнобедренная если ее боковые стороны параллельны. Трапеция. Свойства трапеции. Отрезок, соединяющий середины диагоналей трапеции

Связанные определения

Элементы трапеции

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами .
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.

Виды трапеций

Прямоугольная трапеция

Равнобедренная трапеция

  • Трапеция, у которой боковые стороны равны, называется равнобокой или равнобедренной .
  • Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной .

Общие свойства

  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Отрезок, соединяющий середины диагоналей, равен полуразности оснований.
  • Параллельные прямые, пересекающие стороны угла отсекают от сторон угла пропорциональные отрезки.
  • В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

Свойства и признаки равнобедренной трапеции

  • Прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции.
  • Высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.
  • В равнобедренной трапеции углы при любом основании равны.
  • В равнобедренной трапеции длины диагоналей равны.
  • Если трапецию можно вписать в окружность, то она равнобедренная.
  • Около равнобедренной трапеции можно описать окружность .
  • Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная и описанная окружность

Площадь

Эти формулы - одинаковы, так как полусумма оснований равняется средней линии трапеции.

Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.

Также встречаются такие названия, как равнобокая или равнобочная .

— это трапеция, у которой углы при боковой стороне прямые.

Элементы трапеции

a, b — основания трапеции (a параллельно b ),

m, n — боковые стороны трапеции,

d 1 , d 2 — диагонали трапеции,

h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),

MN — средняя линия (отрезок, соединяющий середины боковых сторон).

Площадь трапеции

  1. Через полусумму оснований a, b и высоту h : S = \frac{a + b}{2}\cdot h
  2. Через среднюю линию MN и высоту h : S = MN\cdot h
  3. Через диагонали d 1 , d 2 и угол (\sin \varphi ) между ними: S = \frac{d_{1} d_{2} \sin \varphi}{2}

Свойства трапеции

Средняя линия трапеции

Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:

MN || a, MN || b, MN = \frac{a + b}{2}

Сумма углов трапеции

Сумма углов трапеции , прилежащих к каждой боковой стороне, равна 180^{\circ} :

\alpha + \beta = 180^{\circ}

\gamma + \delta =180^{\circ}

Равновеликие треугольники трапеции

Равновеликими , то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.

Подобие образованных треугольников трапеции

Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.

\triangle AOD \sim \triangle COB

Коэффициент подобия k находится по формуле:

k = \frac{AD}{BC}

Причем отношение площадей этих треугольников равно k^{2} .

Отношение длин отрезков и оснований

Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:

\frac{OX}{OY} = \frac{BC}{AD}

Это будет являться справедливым и для высоты с самими диагоналями.

Рассмотрим базовые задачи на подобные треугольники в трапеции.

I. Точка пересечения диагоналей трапеции — вершина подобных треугольников.

Рассмотрим треугольники AOD и COB.

Визуализация облегчает решение задач на подобие. Поэтому подобные треугольники в трапеции выделим разными цветами.

1) ∠AOD= ∠ COB (как вертикальные);

2)∠DAO= ∠ BCO (как внутренние накрест лежащие при AD ∥ BC и секущей AC).

Следовательно, треугольники AOD и COB подобны ().

Задача.

Одна из диагоналей трапеции равна 28 см и делит другую диагональ на отрезки длиной 5 см и 9 см. Найти отрезки, на которые точка пересечения диагоналей делит первую диагональ.

AO=9 см, CO=5 см, BD=28 см. BO =?, DO- ?

Доказываем подобие треугольников AOD и COB. Отсюда

Выбираем нужные отношения:

Пусть BO=x см, тогда DO=28-x см. Следовательно,

BO=10 см, DO=28-10=18 см.

Ответ: 10 см, 18 см.

Задача

Известно, что О — точка пересечения диагоналей трапеции ABCD (AD ∥ BC). Найти длину отрезка BO, если AO:OC=7:6 и BD=39 см.

Аналогичн0, доказываем подобие треугольников AOD и COB и

Пусть BO=x см, тогда DO=39-x см. Таким образом,

Ответ: 18 см.

II. Продолжения боковых сторон трапеции пересекаются в точке.

Аналогично , рассмотрим треугольники AFD и BFC:

1) ∠ F - общий;

2)∠ DAF=∠ CBF (как соответственные углы при BC ∥ AD и секущей AF).

Следовательно, треугольники AFD и BFC подобны (по двум углам).

Из подобия треугольников следует пропорциональность соответствующих сторон:


























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  • обучающая – ввести понятие трапеции, познакомиться с видами трапеций, изучить свойства трапеции, научить учащихся применять полученные знания в процессе решения задач;
  • развивающая – развитие коммуникативных качеств учащихся, развитие умения проводить эксперимент, обобщать, делать выводы, развитие интереса к предмету.
  • воспитательная – воспитывать внимание, создать ситуацию успеха, радости от самостоятельного преодоления трудностей, развить у учащихся потребность в самовыражении через различные виды работ.

Формы работы: фронтальная, парная, групповая.

Форма организации деятельности детей: умение слушать, строить обсуждение, высказывать мысль, вопрос, дополнение.

Оборудование: компьютер, мультимедийный проектор, экран. На ученических столах: разрезной материал для составления трапеции у каждого ученика на парте; карточки с заданиями (распечатки чертежей и заданий из конспекта урока).

ХОД УРОКА

I. Организационный момент

Приветствие, проверка готовности рабочего места к уроку.

II. Актуализация знаний

  • развитие умений классифицировать объекты;
  • выделение главных и второстепенных признаков при классификации.

Рассматривается рисунок №1.

Далее идёт обсуждение рисунка.
– Из чего составлена данная геометрическая фигура? Ответ ребята находят на рисунках: [из прямоугольника и треугольников].
– Какими должны быть треугольники, составляющие трапецию?
Выслушиваются и обсуждаются все мнения, выбирается один вариант: [треугольники должны быть обязательно прямоугольными].
– Как составляются треугольники и прямоугольник? [Так, чтобы противоположные стороны прямоугольника совпадали с катетом каждого из треугольников].
– А что вы знаете о противоположных сторонах прямоугольника? [Они параллельны].
– Значит, и в данном четырёхугольнике будут параллельные стороны? [Да].
– Сколько их? [Две].
После обсуждения учитель демонстрирует «королеву урока» - трапецию.

III. Объяснение нового материала

1. Определение трапеции, элементы трапеции

  • научить учащихся давать определение трапеции;
  • называть ее элементы;
  • развитие ассоциативной памяти.

– А теперь попробуйте дать полное определение трапеции. Каждый учащийся продумывает ответ на вопрос. Обмениваются мнениями в паре, готовят единый ответ на вопрос. Устный ответ дают по одному учащемуся от 2-3 пар.
[Трапецией называется четырёхугольник, у которого две стороны параллельны, а две другие стороны не параллельны].

– Как называются стороны трапеции? [Параллельные стороны называются основаниями трапеции, а две другие – боковыми сторонами].

Учитель предлагает сложить из разрезных фигур трапеции. Учащиеся работают в парах, складывают фигуры. Хорошо, если пары учащихся будут разноуровневыми, тогда один из учеников является консультантом и помогает товарищу в случае затруднения.

– Постройте в тетрадях трапецию, запишите названия сторон трапеции. Задайте вопросы по чертежу своему соседу, выслушайте его ответы, сообщите свои варианты ответов.

Историческая справка

«Трапеция» – слово греческое, означавшее в древности «столик» (по гречески «трапедзион» означает столик, обеденный стол. Геометрическая фигура была названа так по внешнему сходству с маленьким столом.
В «Началах» (греч. Στοιχεῖα, лат. Elementa) - главный труд Евклида, написанный около 300 г. до н. э. и посвящённый систематическому построению геометрии) термин «трапеция» применяется не в современном, а в другом смысле: любой четырехугольник (не параллелограмм). «Трапеция» в нашем смысле встречаются впервые у древнегреческого математика Посидония (Iв.). В средние века трапецией называли, по Евклиду, любой четырехугольник (не параллелограмм); лишь в XVIIIв. это слово приобретает современный смысл.

Построение трапеции по её заданным элементам. Ребята выполняют задания на карточке №1.

Учащимся приходится конструировать трапеции самых разных расположений и начертаний. В пункте 1 необходимо построить прямоугольную трапецию. В пункте 2 появляется возможность построить равнобедренную трапецию. В пункте 3 трапеция окажется «лежащей на боку». В пункте 4 рисунок предусматривают построение такой трапеции, у которой одно из оснований оказывается непривычно маленьким.
Ученики «удивляют» учителя разными фигурами, носящими одно общее название – трапеция. Учитель демонстрирует возможные варианты построения трапеций.

Задача 1 . Будут ли равны две трапеции, у которых соответственно равны одно из оснований и две боковые стороны?
Обсуждают решение задачи в группах, доказывают правильность рассуждения.
По одному ученику от группы выполняет чертёж на доске, объясняет ход рассуждений.

2. Виды трапеции

  • развитие двигательной памяти, умений разбивать трапецию на известные фигуры, необходимые для решения задач;
  • развитие умений обобщать, сравнивать, давать определение по аналогии, выдвигать гипотезы.

Рассмотрим рисунок:

– Чем отличаются трапеции, изображённые на рисунке?
Ребята заметили, что вид трапеции зависит от вида треугольника, расположенного слева.
– Дополните предложение:

Трапеция называется прямоугольной, если …
Трапеция называется равнобедренной, если …

3. Свойства трапеции. Свойства равнобедренной трапеции.

  • выдвижение по аналогии с равнобедренным треугольником гипотезы о свойстве равнобедренной трапеции;
  • развитие аналитических умений (сравнивать, выдвигать гипотезу, доказывать, строить).
  • Отрезок, соединяющий середины диагоналей, равен полуразности оснований.
  • У равнобедренной трапеции углы при любом основании равны.
  • У равнобедренной трапеции диагонали равны.
  • У равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой – полуразности оснований.

Задача 2. Докажите, что в равнобедренной трапеции: а) углы при каждом основании равны; б) диагонали равны. Для доказательства этих свойств равнобедренной трапеции вспоминаются признаки равенства треугольников. Учащиеся выполняют задание в группах, обсуждают, записывают решение в тетради.
По одному ученику от группы проводят доказательство у доски.

4. Упражнение на внимание

5. Примеры применения форм трапеций в повседневной жизни:

  • в интерьерах (диваны, стены, навесные потолки);
  • в ландшафтном дизайне (границы газонов, искусственных водоемов, камней);
  • в индустрии моды (одежда, обувь, аксессуары);
  • в дизайне предметов повседневного пользования (светильники, посуда, с использованием форм трапеции);
  • в архитектуре.

Практическая работа (по вариантам).

– В одной системе координат постройте равнобедренные трапеции по заданным трём вершинам.

1 вариант: (0; 1), (0; 6), (– 4; 2), (…; …) и (– 6; – 5), (4; – 5), (– 4; – 3), (…; …).
2 вариант: (– 1; 0), (4; 0), (6; 5), (…; …) и (1; – 2), (4; – 3), (4; – 7), (…; …).

– Определите координаты четвёртой вершины.
Решение проверяется и комментируется всем классом. Учащиеся указывают координаты четвёртой найденной точки и устно пытаются объяснить, почему заданные условия определяют только одну точку.

Занимательная задача. Сложить трапецию из: а) четырёх прямоугольных треугольников; б) из трёх прямоугольных треугольников; в) из двух прямоугольных треугольников.

IV. Домашнее задание

  • воспитание правильной самооценки;
  • создание ситуации “успеха” для каждого ученика.

п.44, знать определение, элементы трапеции, ее виды, знать свойства трапеции, уметь их доказывать, №388, №390.

V. Итог урока. В конце урока даётся ребятам анкета, которая позволяет осуществить самоанализ, дать качественную и количественную оценку уроку.

Поэтому одну из них мы назовем большим , вторую - малым основанием трапеции. Высотой трапеции можно назвать любой отрезок перпендикуляра, проведенного из вершин на соответственно противоположную сторону (для каждой вершины есть две противоположные стороны), заключенный между взятыми вершиной и противоположной стороной. Но можно выделить "особый вид" высот.
Определение 8. Высотой основания трапеции называют отрезок прямой, перпендикулярной основаниям, заключенный между основаниями.
Теорема 7 . Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, ∠ ВСМ=∠ МDР - накрестлежащие, ∠ ВМС=∠ DМР - вертикальные), поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:

Теорема 8 . Диагонали делят трапецию на четыре части, две из которых, прилежащие к боковым сторонам, равовелики.
Напомню, что фигуры называются равновеликими, если у них одинаковая площадь. Треугольники АВD и АСD равновелики: у них равные высоты (обозначенные желтым) и общее основание. Эти треугольники имеют общую часть АОD. Их площадь можно разложить так:

Виды трапеций:
Определение 9. (рис 1) Остроугольной трапецией называется трапеция, у которой углы, прилегающие к большему основанию острые.
Определение 10. (рис 2) Тупоугольной трапецией называется трапеция, у которой один из углов, прилегающих к большему основанию тупой.
Определение 11. (рис 4) Прямоугольной называется трапеция, у которой одна боковая сторона перпендикулярна основаниям.
Определение 12. (рис 3) Равнобедренной (равнобокой, равнобочной) называется трапеция, у которой боковые стороны равны.

Свойства равнобокой трапеции:
Теорема 10 . Углы, прилежащие к каждому из оснований равнобокой трапеции, равны.
Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т.к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, ∠ СМD=∠ СDM, и, значит, ∠ А=∠ D. Углы, прилежащие к меньшему основанию, также равны, т.к. являются для найденных внутренними односторонним и имеют в сумме два прямых.
Теорема 11 . Диагонали равнобокой трапеции равны.
Доказательство. Рассмотрим треугольники АВD и ACD. Она равны по двум сторонам и углу между ними (АВ=СD, AD - общая, углы А и D равны по теореме 10). Поэтому АС=BD.

Теорема 13 . Диагонали равнобедренной трапеции точкой пересечения делятся на соответственно равные отрезки. Рассмотрим треугольники АВD и ACD. Она равны по двум сторонам и углу между ними (АВ=СD, AD - общая, углы А и D равны по теореме 10). Поэтому ∠ ОАD=∠ ОDA, отсюда равны и углы ОВС и ОСВ как соответственно накрестлежащие для углов ODA и ОАD. Вспомним теорему: если в треугольнике два угла равны, то он равнобедренный, поэтому треугольники ОВС и ОAD являются равнобедренными, значит, ОС=ОВ и ОА=OD, ч.т.д.
Равнобокая трапеция фигура симметричная.
Определение 13. Осью сисмметрии равнобокой трапеции называют прямую, проходящую через середины её оснований.
Теорема 14 . Ось сисмметрии равнобокой трапеции перпендикулярна её основаниям.
В теореме 9 мы доказали, что прямая, соединяющая середины оснований трапеции, проходит через точку пересечения диагоналей. Далее (теорема 13) мы доказали, что треугольники АОD и ВОС равнобедренные. ОМ и ОК являются медианами этих треугольников соответственно по определению . Вспомним свойство равнобедренного треугольника : медиана равнобедренного треугольника, опущенная на основание, одновременно является и высотой треугольника. Вследвствие перпендикулярности основаниям частей прямой КМ, ось симметрии перпендикулярна основаниям.
Признаки, выделяющие равнобокую трапецию среди всех трапеций:
Теорема 15 . Если углы, прилежищие к одному из оснований трапеции, равны, то трапеция равнобокая.
Теорема 16 . Если диагонали трапеции равны, то трапеция равнобокая.
Теорема 17 . Если продолженные до пересечения боковые стороны трапеции образуют вместе и её большим основанием равнобедренный треугольник, то трапеция равнобокая.
Теорема 18 . Если трапецию можно вписать в окружность, то она равнобокая.
Признак прямоугольной трапеции:
Теорема 19 . Всякий четырехугольник, у которого только два угла при смежных вершинах прямые, является прямоугольной трапецией (очевидно, что две стороны параллельны, т.к. односторонние равны. в случае, когда три прямых угла это прямоугольник)
Теорема 20 . Радиус вписанной в трапецию окружности равен половине высоты основания.
Доказательство этой теоремы заключается в объяснении того, что радиусы проведенные к основаниям лежат на высоте трапеции. Из точки О - центра вписанной в данную трапецию АВСD окружности проведем радиусы в точки касания её основаниями трапеции. Как известно, ридиус, проведенный в точку касания, перпендикулярен касатыльной, поэтому ОК^ ВС и ОМ^ AD. Вспомним теорему: если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и второй. Значит, прямая ОК также перпендикулярна AD. Таким образом, через точку О проходит две прямых перпендикулярных прямой AD, чего быть не может, поэтому эти прямые совпадают и составляют общуй перпендикуляр КМ, который равен сумме двух радиусов и является диаметром вписанной окружности, поэтому r=KM/2 или r=h/2.
Теорема 21 . Площадь трапеции равна произведению полусуммы оснований и высоты оснований.

Доказательство: Пусть ABCD - данная трапеция, а AB и CD - её основания. Пусть также AH - высота, опущенная из точки A на прямую CD. Тогда S ABCD = S ACD + S ABC .
Но S ACD = 1/2AH·CD, а S ABC = 1/2AH·AB.
Следовательно, S ABCD = 1/2AH·(AB + CD).
Что и требовалось доказать.

Вторая формула перешла от четырехугольника.