» » Устойчивое и неустойчивое равновесие. Равновесие III. Применение знаний об устойчивости тел

Устойчивое и неустойчивое равновесие. Равновесие III. Применение знаний об устойчивости тел

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета либо движется равномерно прямолинейно или вращается без касательного ускорения.

Определение через энергию системы [ | ]

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия [ | ]

Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное. Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия. Равновесие называется безразличным, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил равна нулю .

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума потенциальной энергии в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

  • неустойчивое равновесие;
  • устойчивое равновесие;
  • безразличное равновесие.

Неустойчивое равновесие [ | ]

В случае, когда вторая производная отрицательна, потенциальная энергия системы находится в состоянии локального максимума. Это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему. Т. е. при выведении тела из равновесия оно не возвращается на исходную позицию.

Устойчивое равновесие [ | ]

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво (см. Теорема Лагранжа об устойчивости равновесия). Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия. Равновесие устойчиво, если центр тяжести тела занимает наинизшее положение по сравнению со всеми возможными соседними положениями. При таком равновесии выведенное из равновесия тело возвращается на первоначальное место.

Безразличное равновесие [ | ]

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении. Если отклонить или сдвинуть тело оно останется в равновесии.

Устойчивость в системах с большим числом степеней свободы [ | ]

Если система имеет несколько степеней свободы, то может оказаться, что при отклонениях вдоль конкретного направления равновесие устойчиво, но если равновесие неустойчиво хотя бы в одном направлении, то оно неустойчиво и в целом. Простейшим примером такой ситуации является точка равновесия типа «седловина» или «перевал».

Равновесие системы с несколькими степенями свободы будет устойчивым только в том случае, если оно устойчиво по всем направлениям.

Всех сил, приложенных к телу относительно любой произвольно взятой оси вращения, также равна нулю.

В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета либо движется равномерно прямолинейно или вращается без касательного ускорения.

Энциклопедичный YouTube

    1 / 3

    ✪ Физика. Статика: Условия равновесия тела. Центр онлайн-обучения «Фоксфорд»

    ✪ УСЛОВИЕ РАВНОВЕСИЯ ТЕЛ 10 класс Романов

    ✪ Урок 70. Виды равновесия. Условие равновесия тела при отсутствии вращения.

    Субтитры

Определение через энергию системы

Так как энергия и силы связаны фундаментальными зависимостями , это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.

Виды равновесия

Приведём пример для системы с одной степенью свободы . В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной . Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:

  • неустойчивое равновесие;
  • устойчивое равновесие;
  • безразличное равновесие.

В случае, когда вторая производная отрицательна, потенциальная энергия системы находится в состоянии локального максимума. Это означает, что положение равновесия неустойчиво . Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему. Т. е. при выведении тела из равновесия оно не возвращается на исходную позицию.

Устойчивое равновесие

Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво (см. Теорема Лагранжа об устойчивости равновесия). Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия. Равновесие устойчиво, если центр тяжести тела занимает наинизшее положение по сравнению со всеми возможными соседними положениями. При таком равновесии выведенное из равновесия тело возвращается на первоначальное место.

Безразличное равновесие

Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным . Если система будет смещена на небольшое расстояние, она останется в новом положении. Если отклонить или сдвинуть тело оно останется в равновесии.

  • Виды устойчивости

Виды равновесия

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

равновесие физика смещение

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.


В статике абсолютно твёрдого тела различают три вида равновесия.

1. Рассмотрим шарик, который находится на вогнутой поверхности. В поло­жении, показанном на рис. 88, шарик на­ходится в равновесии: сила реакции опо­ры уравновешивает силу тяжести .

Если отклонить шарик от положения равновесия, то векторная сумма сил тя­жести и реакции опоры уже не равна ну­лю: возникает сила , которая стремится вернуть шарик в первоначаль­ное положение равновесия (в точку О ).

Это пример устойчивого равновесия.

У с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся вернуть тело в положение равновесия.

Потенциальная энергия шарика в лю­бой точке вогнутой поверхности больше, чем потенциальная энергия в положении равновесия (в точке О ). Например, в точ­ке А (рис. 88) потенциальная энергия больше, чем потенциальная энергия в точке О на величину Е п (А ) - Е п (0) = mgh .

В положении устойчивого равновесия потенци- альная энергия тела имеет мини­мальное значение по сравнению с соседними положениями.

2. Шарик на выпуклой поверхности находится в положении равновесия в верхней точке (рис. 89), где сила тяжести уравновешена силой реакции опо­ры . Если отклонить шарик от точки О , то возникает сила , направлен­ная в сторону от положения равновесия.

Под действием силы шарик будет уда­ляться от точки О . Это пример неустой­чивого равновесия.

Н е у с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся увести тело ещё дальше от положения равновесия.

Потенциальная энергия шарика на вы­пуклой поверхности имеет наибольшее значение (максимум) в точке О . В любой другой точке потенциальная энергия ша­рика меньше. Например, в точке А (рис. 89) потенциальная энергия меньше, чем в точке О , на величину Е п (0 ) - Е п (А ) = mgh .

В положении неустойчивого равнове­сия потен-циальная энергия тела имеет максимальное значение по сравнению с соседними положениями.

3. На горизонтальной поверхности силы, действующие на шарик, уравновешены в любой точке: (рис. 90). Если, например, сместить шарик из точки О в точку А , то равнодействующая сил
тяжести и реакции опоры по-прежнему равна нулю, т.е. в точке А шарик также находится в положении равновесия.

Это пример безразличного равнове­сия.

Б е з р а з л и ч н ы м называется такой вид равновесия, при выходе из которого тело остаётся в новом положении в равновесии.

Потенциальная энергия шарика во всех точках горизонтальной поверхности (рис. 90) одинакова.

В положениях безразличного равнове­сия потен- циальная энергия одинакова.

Иногда на практике приходится опре­делять вид равновесия тел различной формы в поле сил тяжести. Для этого нужно запомнить следующие правила:

1. Тело может находиться в положении устой- чивого равновесия, если точка приложения силы реакции опоры находится выше центра тяжести тела. При этом эти точки лежат на одной вертикали (рис. 91).

На рис. 91, б роль силы реакции опоры играет сила натяжения нити .

2. Когда точка приложения силы реакции опоры находится ниже центра тяжести, возможны два случая:

Если опора точечная (площадь поверхности опоры мала), то равновесие неустойчивое (рис. 92). При небольшом отклонении от положения равновесия момент сил и стремится увеличить от­клонение от начального положения;

Если опора неточечная (площадь поверх- ности опоры велика), то положение равновесия устой- чивое в том случае, когда линия действия силы тяжести АА " пересекает поверхность опоры тела
(рис. 93). В этом случае при небольшом отклонении тела от положения равновесия возникает момент сил и , кото­рый возвращает тело в первоначальное положение.


??? ОТВЕТЬТЕ НА ВОПРОСЫ:

1. Как изменяется положение центра тяжести тела, если тело вывести из положения: а) устой­чивого равновесия? б) неустойчивого равновесия?

2. Как изменяется потенциальная энергия те­ла, если изменить его положение при безразлич­ном равновесии?

«Физика - 10 класс»

Вспомните, что такое момент силы.
При каких условиях тело находится в покое?

Если тело находится в покое относительно выбранной системы отсчёта, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчёт, считая тело абсолютно твёрдым .

Для краткости абсолютно твёрдое тело будем называть твёрдым телом или просто телом . Изучив условия равновесия твёрдого тела, мы найдём условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Вспомните определение абсолютно твёрдого тела.

Раздел механики, в котором изучаются условия равновесия абсолютно твёрдых тел, называется статикой .

В статике учитываются размеры и форма тел, в этом случае существенным является не только значение сил, но и положение точек их приложения.

Выясним вначале с помощью законов Ньютона, при каком условии любое тело будет находиться в равновесии. С этой целью разобьём мысленно всё тело на большое число малых элементов, каждый из которых можно рассматривать как материальную точку. Как обычно, назовём силы, действующие на тело со стороны других тел, внешними, а силы, с которыми взаимодействуют элементы самого тела, внутренними (рис. 7.1). Так, сила 1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила же 2,1 действует на элемент 2 со стороны элемента 1. Это внутренние силы; к ним относятся также силы 1,3 и 3,1 , 2,3 и 3,2 . Очевидно, что геометрическая сумма внутренних сил равна нулю, так как согласно третьему закону Ньютона

12 = - 21 , 23 = - 32 , 31 = - 13 и т.д.

Статика - частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения ( = 0).

На каждый элемент в общем случае может действовать несколько внешних сил. Под 1 , 2 , 3 и т. д. будем понимать все внешние силы, приложенные соответственно к элементам 1, 2, 3, ... . Точно так же через " 1 , " 2 , " 3 и т. д. обозначим геометрическую сумму внутренних сил, приложенных к элементам 2, 2, 3, ... соответственно (эти силы не показаны на рисунке), т. е.

" 1 = 12 + 13 + ... , " 2 = 21 + 22 + ... , " 3 = 31 + 32 + ... и т.д.

Если тело находится в покое, то ускорение каждого элемента равно нулю. Поэтому согласно второму закону Ньютона будет равна нулю и геометрическая сумма всех сил, действующих на любой элемент. Следовательно, можно записать:

1 + "1 = 0, 2 + "2 = 0, 3 + "3 = 0. (7.1)

Каждое из этих трёх уравнений выражает условие равновесия элемента твёрдого тела.


Первое условие равновесия твёрдого тела.


Выясним, каким условиям должны удовлетворять внешние силы, приложенные к твёрдому телу, чтобы оно находилось в равновесии. Для этого сложим уравнения (7.1):

(1 + 2 + 3) + ("1 + "2 + "3) = 0.

В первых скобках этого равенства записана векторная сумма всех внешних сил, приложенных к телу, а во вторых - векторная сумма всех внутренних сил, действующих на элементы этого тела. Но, как известно, векторная сумма всех внутренних сил системы равна нулю, так как согласно третьему закону Ньютона любой внутренней силе соответствует сила, равная ей по модулю и противоположная по направлению. Поэтому в левой части последнего равенства останется только геометрическая сумма внешних сил, приложенных к телу:

1 + 2 + 3 + ... = 0 . (7.2)

В случае абсолютно твёрдого тела условие (7.2) называют первым условием его равновесия .

Оно является необходимым, но не является достаточным.

Итак, если твёрдое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось ОХ можно записать:

F 1x + F 2x + F 3x + ... = 0. (7.3)

Такие же уравнения можно записать и для проекций сил на оси OY и OZ.



Второе условие равновесия твёрдого тела.


Убедимся, что условие (7.2) является необходимым, но недостаточным для равновесия твёрдого тела. Приложим к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2. Сумма этих сил равна нулю:

+ (-) = 0. Но доска тем не менее будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис. 7.3).

Какое же ещё условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твёрдое тело находилось в равновесии? Воспользуемся теоремой об изменении кинетической энергии.

Найдём, например, условие равновесия стержня, шарнирно закреплённого на горизонтальной оси в точке О (рис. 7.4). Это простое устройство, как вам известно из курса физики основной школы, представляет собой рычаг первого рода.

Пусть к рычагу приложены перпендикулярно стержню силы 1 и 2 .

Кроме сил 1 и 2 , на рычаг действует направленная вертикально вверх сила нормальной реакции 3 со стороны оси рычага. При равновесии рычага сумма всех трёх сил равна нулю: 1 + 2 + 3 = 0.

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол α. Точки приложения сил 1 и 2 пройдут пути s 1 = ВВ 1 и s 2 = CC 1 (дуги ВВ 1 и СС 1 при малых углах α можно считать прямолинейными отрезками). Работа А 1 = F 1 s 1 силы 1 положительна, потому что точка В перемещается по направлению действия силы, а работа А 2 = -F 2 s 2 силы 2 отрицательна, поскольку точка С движется в сторону, противоположную направлению силы 2 . Сила 3 работы не совершает, так как точка её приложения не перемещается.

Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага а, измеренный в радианах: s 1 = α|ВО| и s 2 = α|СО|. Учитывая это, перепишем выражения для работы так:

А 1 = F 1 α|BO|, (7.4)
А 2 = -F 2 α|CO|.

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил 1 и 2 , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил

Как вы уже знаете, плечо силы - это кратчайшее расстояние от оси вращения до линии действия силы. Будем обозначать плечо силы буквой d. Тогда |ВО| = d 1 - плечо силы 1 , а |СО| = d 2 - плечо силы 2 . При этом выражения (7.4) примут вид

А 1 = F 1 αd 1 , А 2 = -F 2 αd 2 . (7.5)

Из формул (7.5) видно, что работа каждой из сил равна произведению момента силы на угол поворота рычага. Следовательно, выражения (7.5) для работы можно переписать в виде

А 1 = М 1 α, А 2 = М 2 α, (7.6)

а полную работу внешних сил можно выразить формулой

А = А 1 + А 2 = (М 1 + М 2)α. α, (7.7)

Так как момент силы 1 положителен и равен М 1 = F 1 d 1 (см. рис. 7.4), а момент силы 2 отрицателен и равен М 2 = -F 2 d 2 , то для работы А можно записать выражение

А = (М 1 - |М 2 |)α.

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершать работу, т. е. в этом случае А ≠ 0 и соответственно М 1 + М 2 ≠ 0.

Если работа внешних сил равна нулю, то кинетическая энергия тела не изменяется (остаётся равной нулю) и тело остаётся неподвижным. Тогда

М 1 + М 2 = 0 . (7.8)

Уравнение (7 8) и есть второе условие равновесия твёрдого тела .

При равновесии твёрдого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твёрдого тела следующие:

1 + 2 + 3 + ... = 0, (7.9)
М 1 + М 2 + М 3 + ... = 0
.

Второе условие равновесия можно вывести из основного уравнения динамики вращательного движения твёрдого тела. Согласно этому уравнению где М - суммарный момент сил, действующих на тело, М = М 1 + М 2 + М 3 + ... , ε - угловое ускорение. Если твёрдое тело неподвижно, то ε = 0, и, следовательно, М = 0. Таким образом, второе условие равновесия имеет вид М = М 1 + М 2 + М 3 + ... = 0.

Если тело не абсолютно твёрдое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равны нулю.

Приложим, например к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.